数学建模实验答案_简单的优化模型
数学建模第二讲简单的优化模型

数学建模第二讲简单的优化模型数学建模是利用数学方法对实际问题进行建模、分析和求解的过程。
在实际问题中,常常需要针对一些指标进行优化,以达到最优的效果。
本讲将介绍一些简单的优化模型。
一、线性规划模型线性规划是一种重要的数学优化方法,广泛应用于工程、经济、管理等领域。
其数学模型可以表示为:\begin{aligned}&\text{max} \quad c^Tx \\&\text{s.t.} \quad Ax \leq b, \quad x \geq 0\end{aligned}\]其中,$x$为决策变量,$c$为目标函数系数,$A$为约束条件系数矩阵,$b$为约束条件右端向量。
线性规划模型指的是目标函数和约束条件都是线性的情况。
通过线性规划模型,可以求解出使得目标函数取得最大(或最小)值时的决策变量取值。
二、非线性规划模型非线性规划模型指的是目标函数或约束条件中存在非线性部分的情况。
非线性规划模型相对于线性规划模型更为复杂,但在实际问题中更为常见。
对于非线性规划问题,通常采用数值优化方法进行求解,如梯度下降法、牛顿法等。
这些方法通过迭代的方式逐步靠近最优解。
三、整数规划模型整数规划模型是指决策变量必须为整数的规划模型。
整数规划在实际问题中应用广泛,如物流配送问题、工程调度问题等。
整数规划模型通常难以求解,因为整数规划问题是一个NP难问题。
针对整数规划问题,常用的求解方法有枚举法、分支定界法、遗传算法等。
四、动态规划模型动态规划模型是指将问题划分为子问题,并通过求解子问题最优解来求解原问题最优解的方法。
动态规划通常用于求解具有重叠子问题和最优子结构性质的问题。
动态规划模型具有递推性质,通过递归或迭代的方式求解子问题的最优解,并保存中间结果,以提高求解效率。
五、模拟退火模型模拟退火是一种用来求解组合优化问题的随机优化算法。
模拟退火算法基于固体退火过程的模拟,通过温度的控制和随机跳出来避免陷入局部最优解。
数学建模知到章节答案智慧树2023年山东师范大学

数学建模知到章节测试答案智慧树2023年最新山东师范大学第一章测试1.人类研究原型的目的主要有()。
参考答案:优化;预测;评价;控制2.概念模型指的是以图示、文字、符号等组成的流程图形式对事物的结构和机理进行描述的模型。
()参考答案:对3.数学建模的全过程包括()。
参考答案:模型应用;模型检验;模型求解;模型建立4.下面()不是按问题特性对模型的分类。
参考答案:交通模型5.椅子放稳问题中,如果椅子是长方形的,则不能在不平的地面上放稳。
()参考答案:错第二章测试1.山崖高度的估计模型中,测量时间中需要考虑的时间包括()。
参考答案:物体下落的时间;声音返回的时间;人体的反应时间2.落体运动模型当阻力趋于零时变为自由落体模型。
()参考答案:对3.安全行车距离与()有关。
参考答案:车辆速度;车辆品牌;驾驶员水平4.人体反应时间的确定一般使用测试估计法进行。
()参考答案:对5.当车速为80-120千米/小时时,简便的安全距离判断策略是()。
参考答案:等于车速1.存贮模型的建模关键是()。
参考答案:一个周期内存贮量的确定2.下面对简单的优化模型的描述()是正确的。
参考答案:没有约束条件的优化模型3.商品生产费用因为数值太小,所以不需要考虑。
()参考答案:错4.同等条件下,允许缺货时的生产周期比不允许缺货时的生产周期()。
参考答案:偏大5.开始灭火后,火灾蔓延的速度会()。
参考答案:变小1.如果工人工作每小时的影子价格是2元,则雇佣工人每小时的最高工资可以是3元。
()参考答案:错2.下面关于线性规划的描述正确的是()。
参考答案:可行域是凸多边形;最优解可以在可行域内部取得;目标函数是线性的;约束条件是线性的3.在牛奶加工模型中,牛奶资源约束是紧约束。
()参考答案:对4.在牛奶加工模型中,A1的价格由24元增长到25元,应该生产计划。
()参考答案:错5.求整数规划时,最优解应该采用()获得。
参考答案:使用整数规划求解方法重新求解1.人口过多会带来()。
数学建模与数学实验:第八章 优化模型

u sin
kuy)) sec2 d
•
k 0
u
k
1 0
(cos
sec
sec0
) sec2
d
u 2k
(sec0
tan 0
2 sec0
tan 1
sec1
tan
0
ln
sec1 sec0
tan tan
1 0
)
•
•
• 1200
1000
800
600
•
•
8.2 最短路问题
• 8.2.1 图的基本概念
• 图中不含自己到自己的边,我们就称图为 简单图
• 图的邻接矩阵表示
•
• 例( 调度问题)为了向本市居民提供更好 的服务,市政府决定修建一个小型体育馆。 通过竞标,一家建筑公司获得了此项工程, 并且希望尽快完成工程。表8.1列出了工程中 的主要任务,时间以周计算。
(v2 2 u 2 )T122 2v2 (500 x)T12 [(500 x)2 380 2 ] 0
•
对于问题(2)
•
x 500 380 (u cos1 v(200 ))
•
u sin1
x 200 v u cos dy
0 u sin
•
dy u sindt
dt dy u sec2 sin d sec2 d
• 16. 考虑下图所描述的最短路问题。 • (1)写出从位置1到位置9的最短路的数学
模型 。
• (2)给出从位置1经过位置5到位置9的最 短路。
• (3)给出从位置1到位置9的最短路。
• 需要解决的问题是:
• (1)最早能在什么时候完成此工程?
• (2)市政府希望能够提前完工,为此市 政府决定工期每缩短一周,则向公司支付3 万元奖励。为缩短工期,公司需要雇用更 多工人,并租用更多设备(表中额外支出 部分)。如果公司希望获利最大,那么应 该在何时完成该工程?
数学建模简明教程课件:简单优化模型

由上面三个表达式可求得:
r
1
4a 4,
cos
r1
4
r 2
r1
22
这也是在能量消耗最小原则下血管分岔处几何形状的 结果.由这个结果得:
a4
cos 2a 4
r 若取a=1和a=2可得 r1 和θ的大致范围约为:
r
1.26
1.32
r1
37
49
23
3.模型检验
记动物大动脉和最细的毛细血管半径分别为rmax和rmin
时刻为t=t2,设t时刻森林烧毁面积为B(t),则造成损失的森
林烧毁面积为B(t2);单位时间烧毁的面积为 dB(t) (这 dt
也表示了火势蔓延的程度).在消防队员到达之前,即0≤t≤t1
期间,火势越来越大,从而
dB随(t )t的增加而增加 dt
;开始救火之后,即t1≤t≤t2期间,如果消防队员救火能力足
合来确定.式(3.3.2)还表明最优价格包括两部分:一部分为
成本的一半,另一部分与“绝对需求量”成正比,与市场
需求对价格的敏感系数成反比.
29
3.4 存贮模型
为了使生产和销售有条不紊地进行,一般的工商企业 总需要存贮一定数量的原料或商品,然而大量库存不但积 压了资金,而且会使仓库保管的费用增加.因此,寻求合理 的库存量乃是现代企业管理的一个重要课题.
min[订货费(或生产费)+存贮费+缺货损失费]
下面我们讨论几个重要的存贮模型.
31
3.4.1 不允许缺货的订货销售模型
为了使问题简化,我们作如下假设: (1)由于不允许缺货,所以规定缺货损失费为无穷大. (2)当库存量为零时,可立即得到补充. (3)需求是连续均匀的,且需求速度(单位时间的需求量) 为常数. (4)每次订货量不变,订货费不变. (5)单位存贮费不变.
数学建模简单的优化模型

q T1 时, t 0, 故有 Q rT1 . 在 T1 到 T 这段缺货时间内需求率
量,当 t
⑻
q
q 不变, t 按原斜率继续下降,
Q
由于规定缺货量需补足,所以在
R A r
T1
t T 时数量为 R 的产品立即达,
B
T
t
使下周期初的存储量恢复到Q. 与不容许缺货的模型相似,一个周期内的存储费是c2 乘以图中三角形 A 的面积,缺货损失费是 c3乘以三角形 面积B, 加上准备费,得一周期内的总费用为
2
⑷
而
2c1r Q rT . c2
将⑷代入到⑶式,得最小的平均费用为
⑸
C 2c1c2 r .
⑷,⑸被称为经济订货批量公式(EOQ公式).
⑹
结果解释 由⑷,⑸式可以看到,当 c1(准备费用)提高时,生 产周期和产量都变大;当 c2存储费增加时,生产周期和 产量都变小;当需求量 r 增加时,生产周期变小而产量 变大。这些结果都是符合常识的。
从而赢得竞争上的优势。
模型假设 为处理上的方便,假设模型是连续型的,即周期 T , 产量Q 均为连续变量. 1.每天的需求量为常数 r; 2.每次生产的准备费用为 c1 ,每天每件的存储费为 c2 ,
Q 3.生产能力无限大,即当存储量为零时, 件产品可以
立即生产出来.
建模 设存储量为 q t , q 0 Q. q t 以 r 递减,直到
0.1不变,研究 r 变化
40r 60 t r
r 1.5
⑶
t 是 r 的增函数,下图反映了t 与 r 的关系。
t 20
15
10
5
1.5
数学建模-简单的优化模型

3)f1(x)与B(t2)成正比,系数c1 (烧毁单位面积损失费) 4)每个队员的单位时间灭火费用c2, 一次性费用c3
火势以失火点为中心,
均匀向四周呈圆形蔓延,
假设1) 的解释
半径 r与 t 成正比
r
B
面积 B与 t2成正比, dB/dt与 t成正比.
模型建立
假设1) 假设2)
dB
b t1,
t t b
由模型决定队员数量x
问题
4 最优价格
根据产品成本和市场需求,在产销平
衡条件下确定商品价格,使利润最大
假设
1)产量等于销量,记作 x 2)收入与销量 x 成正比,系数 p 即价格 3)支出与产量 x 成正比,系数 q 即成本 4)销量 x 依赖于价格 p, x(p)是减函数
进一步设 x( p) a bp, a, b 0
C~
c1
c2
Q 2
T
c1 c2
rT 2 2
每天总费用平均 值(目标函数)
~ C(T ) C c1 c2rT
TT 2
模型求解
dC 0 dT 模型分析
求 T 使C(T ) c1 c2rT Min T2
T 2c1 rc2
Q rT 2c1r c2
c1 T,Q
模型应用
c2 T,Q
失火时刻t=0, 开始救火时刻t1, 灭火时刻t2, 画出时刻 t 森林烧毁面积B(t)的大致图形
分析B(t)比较困难, 转而讨论森林烧毁 速度dB/dt.
B B(t2)
0
t1
t2
t
模型假设
1)0tt1, dB/dt 与 t成正比,系数 (火势蔓延速度)
2)t1tt2, 降为-x (为队员的平均灭火速度)
3.数学建模之优化模型实例[1]
![3.数学建模之优化模型实例[1]](https://img.taocdn.com/s3/m/8d5354c3bb4cf7ec4afed06d.png)
即按照模式1、2、3分别切割10、10、8根原料钢管,使用 原料钢管总根数为28根。第一种切割模式下一根原料钢管 切割成3根4米钢管和1根6米钢管;第二种切割模式下一根 原料钢管切割成2根4米钢管、1根5米钢管和1根6米钢管; 第三种切割模式下一根原料钢管切割成2根8米钢管。 如果充分利用LINGO建模语言的能力,使用集合和属性 的概念,可以编写以下LINGO程序,这种方法更具有一 般的通用性,并有利于输入更大规模的下料问题的优化模 型:
优化建模
模型建立 决策变量 由于不同切割模式不能超过3种,可以用xi 表 示按照第i种模式(i=1, 2, 3)切割的原料钢管的根数, 显然它们应当是非负整数。设所使用的第i种切割模式 下每根原料钢管生产4米长、5米长、6米长和8米长的 钢管数量分别为r1i, r2i, r3i, r4i(非负整数)。 决策目标 以切割原料钢管的总根数最少为目标,即目标为
优化建模
问题1)的求解
问题分析 首先,应当确定哪些切割模式是可行的。 所谓一个切割模式,是指按照客户需要在原料钢管上 安排切割的一种组合。例如,我们可以将19米长的钢 管切割成3根4米长的钢管,余料为7米显然,可行的 切割模式是很多的。 其次,应当确定哪些切割模式是合理的。通常假设一 个合理的切割模式的余料不应该大于或等于客户需 要的钢管的最小尺寸。在这种合理性假设下,切割 模式一共有7种,如表1所示。
Reduced Cost 1.000000 1.000000 1.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000
优化建模
数学建模最优化模型

或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
41m外点法sutm内点法障碍罚函数法1罚函数法2近似规划法罚函数法罚函数法基本思想是通过构造罚函数把约束问题转化为一系列无约束最优化问题进而用无约束最优化方法去求解这类方法称为序列无约束最小化方法简称为sumt法其一为sumt外点法其二为sumt内点法其中txm称为罚函数m称为罚因子带m的项称为罚项这里的罚函数只对不满足约束条件的点实行惩罚
曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的
y
平方和作为这种“偏差”的度量.即
2
x
S
m i 1
yi
a1
1 a3
a2 ln 1 exp
xi a4 a5
显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
一下是否达到了最优。 (比如基金人投资)
• 在各种科学问题、工程问题、生产管理、社会 经济问题中,人们总是希望在有限的资源条件 下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。
以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验03 简单的优化模型(2学时)
(第3章简单的优化模型)
1. 生猪的出售时机p63~65
目标函数(生猪出售纯利润,元):
Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640
其中,t≥0为第几天出售,g为每天价格降低值(常数,元/公斤),r为每天生猪体重增加值(常数,公斤)。
求t使Q(t)最大。
1.1(求解)模型求解p63
(1) 图解法
绘制目标函数
Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640
的图形(0 ≤t≤ 20)。
其中,g=0.1, r=2。
从图形上可看出曲线Q(t)的最大值。
(2) 代数法
对目标函数
Q(t) = ( 8 – g t )( 80 + rt ) – 4t–640
用MATLAB求t使Q(t)最大。
其中,r, g是待定参数。
(先对Q(t)进行符号函数求导,对导函数进行符号代数方程求解)
然后将代入g=0.1, r=2,计算最大值时的t和Q(t)。
要求:
①编写程序绘制题(1)图形。
②编程求解题(2).
③对照教材p63相关内容。
相关的MATLAB函数见提示。
★要求①的程序和运行结果:
程序:
t=0:1:30;
g=0.1;r=2;
Q=(8-g.*t).*(80+r.*t)-4.*t-640;
plot(t,Q)
图形:
★要求②的程序和运行结果:
程序:
syms g t r ;
Q=(8-g.*t).*(80+r.*t)-4.*t-640;
q=diff(Q,t);
q=solve(q);
g=0.1;r=2;
tm=eval(q)
Q=(8-g.*tm).*(80+r.*tm)-4.*tm-640
运行结果:
1.2(编程)模型解的的敏感性分析p63~64
对1.1中(2)所求得的符号表达式t(r,g),分别对g和r进行敏感性分析。
(1) 取g=0.1,对t(r)在r=1.5:0.1:3上求r与t的关系数据,绘制r与t的关系图形(见教材p65)。
(2) 取r=2,对t(g)在g=0.06:0.01:0.15上求g与t的关系数据,绘制g与t 的关系图形(见教材p65)。
要求:分别编写(1)和(2)的程序,调试运行。
★给出(1)的程序及运行结果:
程序:
syms g t r ;
Q=(8-g.*t).*(80+r.*t)-4.*t-640;
q=diff(Q,t);
q=solve(q);
g=0.1;r=1.5:0.1:3;
t=eval(q);
plot(r,t)
[r;t]
数值结果:
图形结果:
★给出(2)的程序及运行结果:程序:
syms g t r;
Q=(8-g.*t).*(80+r.*t)-4.*t-640; q=diff(Q,t);
q=solve(q);
r=2;g=0.06:0.01:0.15;
t=eval(q);
plot(g,t)
[g;t]
数值结果:
图形结果:
2.(编程)冰山运输模型求解p77~81
按函数调用顺序。
(1) 每立方米水所需费用
)
,(),(),(000V u W V u S V u Y = u 为船速,V 0为冰山的初始体积。
(2) 冰山运抵目的地后可获得水的体积
3
030133.4(,)(,)34T t V W u V r t u ππ=⎫=⎪⎪⎭∑ 400T u
=为冰山抵达目的地所需天数。
(3) 第t 天冰山球面半径融化速率:
3100015610(104)06(,)10000.2(10.4),6.u .u t,t u r t u u t u -⎧⨯+≤≤⎪⎪=⎨⎪+>⎪⎩
(4) 运送冰山费用
0011400()151(,)7.2(6)3lg (,)T t t k f V S u V u u r k u u u ==⎛⎫⎫=++- ⎪⎪⎪ ⎪⎭⎝⎭
∑∑ 400T u
=为冰山抵达目的地所需天数。
(5) 船的日租金
⎪⎩
⎪⎨⎧≤<≤<⨯⨯≤=7
06655
001010,0.8100105,2.6105,0.4)(V V V V f
参照教材p81的表4,求不同V 0,u 下每立方米水的费用。
下面是不完整的MATLAB 程序:
要求:
①编写所要求的程序。
②运行。
注:第一个函数为主函数,没有输入参数,可直接执行
③结果与教材p81表4比较。
★完整的程序:
end
★程序运行结果:
附1:实验提示
第1.1题
MATLAB函数:@,fplot,syms,sym,diff,solve,eval
附2:第3章简单的优化模型3.2 生猪的出售时机
3.7 冰山运输。