数列通项公式的求法集锦祁老师
数列通项公式的求法(最全)

非等差等比数列通 项公式的求法
构造法
构造法是一种常用 的数列通项公式求 法
构造法通过观察数 列的规律找出通项 公式
构造法需要一定的 数学基础和逻辑思 维能力
构造法可以应用于 非等差等比数列的 通项公式求法
数学归纳法
添加标题
定义:一种证明数学命题的方法通过证明一个命题对某个初始值成立并且假设对某个值 成立时可以推出对下一个值也成立从而证明命题对所有值都成立。
. 计算数列相邻项之间的差值得到差数列。 b. 观察差数列的规律寻找通项公式。 c. 验证通项公式的正确性。
适用范围:逐差法适用于等比数列、等差数列等有规律的数列。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
注意事项:在使用逐差法时需要注意差数列的规律避免遗漏或错误。
单击此处输入你的项正文文字是您思想的提炼言简意赅的阐述观点。
步骤: . 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或 公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
. 确定数列的通项公式的一般形式 b. 确定数列的起始项和公差或公比 c. 代入通项公式建立方程组 d. 求解方程组得到待定系数的值
应用:适用于求解非等差等比数列的通项公式 单击此处输入你的项正文文字是您思想的提炼,言简的阐述观点。
公式中的1表示首项d表示公差
公式法的适用范围:已知首项 和公差的等差数列
累加法
累加法原理:通过累加数列的前n项和得到通项公式 累加法公式:n=Sn-S(n-1)其中Sn为前n项和 累加法应用:适用于已知数列的前n项和求通项公式 累加法示例:例如已知数列{1,3,5,7,9}的前n项和为Sn=n^2则通项公式为n=2n-1
数列求通项公式方法大全

数列求通项公式方法大全数列是由一系列按特定规律排列的数字组成的序列。
求解数列的通项公式是找出数字之间的规律,从而可以用一个公式表示出数列中第N个数字与N的关系。
这样可以方便地计算数列中的任意项,而不需要逐个计算或列出所有的项。
以下是数列求通项公式的方法大全:1. 等差数列的通项公式:等差数列是指数列中相邻两项之间的差值保持恒定的数列。
根据等差数列的性质,可以得到通项公式为:an = a1 + (n - 1)d其中,an表示第n项,a1表示首项,d表示公差,n表示项数。
2. 等比数列的通项公式:等比数列是指数列中相邻两项之间的比值保持恒定的数列。
根据等比数列的性质,可以得到通项公式为:an = a1 * r^(n - 1)其中,an表示第n项,a1表示首项,r表示公比,n表示项数。
3. 斐波那契数列的通项公式:斐波那契数列是指数列中每一项都等于前两项之和的数列。
斐波那契数列的通项公式为:an = (phi^n - (-phi)^(-n)) / sqrt(5)其中,phi = (1 + sqrt(5)) / 2,an表示第n项。
4. 幂次数列的通项公式:幂次数列是指数列中每一项都是某个常数的指数函数。
幂次数列的通项公式为:an = a1 * (b^(n - 1))其中,an表示第n项,a1表示首项,b表示底数,n表示项数。
请注意,以上是一些常见的数列类型和其通项公式。
但实际上,还存在其他更复杂的数列类型,可能需要使用其他方法求解通项公式。
另外,在某些特定的数列中,可能无法找到通项公式,只能通过递推关系计算每一项。
举例说明:以等差数列为例,假设有一个等差数列的首项为2,公差为3。
现在需要求解数列中第10项的值。
根据等差数列的通项公式,可以得到:a10 = 2 + (10 - 1) * 3= 2 + 27= 29在这个例子中,我们利用等差数列的通项公式直接计算出了第10项的值。
如果没有通项公式,我们可能需要逐个计算前10项,而通项公式可以极大地简化计算过程。
数列通项公式的求法集锦

数列通项公式的求法集锦一,累加法形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。
解:∵111n a ==时,21324312123.......1n n n a a a a a a a a n -≥-=⎫⎪-=⎪⎪-=⎬⎪⎪-=-⎪⎭时, 这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222n n n a -+= (n N *∈). 例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。
解:n=1时, 1a =121232343112222.......2n n n n a a a a a a a a --≥-=⎫⎪-=⎪⎪-=⎬⎪⎪⎪-=⎭时, 以上n-1个等式累加得21122...2n n a a --=+++=12(12)12n ---=22n -,故12221n n n a a =-+=- 且11a =也满足该式 ∴21n n a =- (n N *∈)。
一、累乘法 形如1()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。
解:由已知得1n na n a += ,分别取n=1、2、3……(n-1),代入该式得n-1个等式累乘,即3241231........n n a a a a a a a a -=1×2×3×…×(n-1)=(n-1)!所以时,1(1)!n a n a =-故(1)!n a n =- 且10!a ==1也适用该式 ∴(1)!n a n =- (n N *∈).例4.已知数列{n a }满足1a =23,11n n n a a n +=+,求n a 。
数列通项公式方法大全很经典

1,数列通项公式的十种求法:(1)公式法(构造公式法)例1 已知数列{}n a 满足1232nn n a a +=+⨯,12a =,求数列{}n a 的通项公式。
解:1232nn n a a +=+⨯两边除以12n +,得113222n n n n a a ++=+,则113222n n n n a a ++-=,故数列{}2nna 是以1222a 11==为首项,以23为公差的等差数列,由等差数列的通项公式,得31(1)22n n a n =+-,所以数列{}n a 的通项公式为31()222nn a n =-。
评注:本题解题的关键是把递推关系式1232nn n a a +=+⨯转化为113222n n n n a a ++-=,说明数列{}2n n a 是等差数列,再直接利用等差数列的通项公式求出31(1)22n n a n =+-,进而求出数列{}n a 的通项公式。
(2)累加法例2 已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。
解:由121n n a a n +=++得121n n a a n +-=+则112322112()()()()[2(1)1][2(2)1](221)(211)12[(1)(2)21](1)1(1)2(1)12(1)(1)1n n n n n a a a a a a a a a a n n n n n n nn n n n ---=-+-++-+-+=-++-+++⨯++⨯++=-+-++++-+-=+-+=-++=L L L 所以数列{}n a 的通项公式为2n a n =。
评注:本题解题的关键是把递推关系式121n n a a n +=++转化为121n n a a n +-=+,进而求出11232211()()()()n n n n a a a a a a a a a ----+-++-+-+L ,即得数列{}n a 的通项公式。
数列通项公式常见求法

数列通项公式常见求法1.等差数列:等差数列是指数列中相邻两项之间的差值保持不变的数列。
对于等差数列an,其通项公式可以通过以下方法求得:- 直接法:当等差数列已知首项a1和公差d时,通项公式可以通过观察数列的特点进行直接推导。
常用的通项公式为an = a1 + (n-1)d。
-递推法:对于等差数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
- 代数法:利用等差数列的性质,可以通过代数方法求得通项公式。
例如,可以使用方程an = a1 + (n-1)d,联立已知条件求解未知数。
2.等比数列:等比数列是指数列中相邻两项之间的比值保持不变的数列。
对于等比数列an,其通项公式可以通过以下方法求得:- 直接法:当等比数列已知首项a1和公比q时,通项公式可以通过观察数列的特点进行直接推导。
常用的通项公式为an = a1 * q^(n-1)。
-递推法:对于等比数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
- 代数法:利用等比数列的性质,可以通过代数方法求得通项公式。
例如,可以使用方程an = a1 * q^(n-1),联立已知条件求解未知数。
3.斐波那契数列:斐波那契数列是指数列中每一项都是前两项的和的数列。
斐波那契数列的通项公式可以通过以下方法求得:- 通项公式法:斐波那契数列有一个特殊的通项公式,即an = φ^n - (1-φ)^n / √5,其中φ为黄金分割比(约等于1.618)。
这个公式可以通过矩阵求解、特征方程、黄金分割法等方法推导得到。
4.幂方数列:幂方数列是指数列中每一项都是公比为一个固定值k的幂函数的数列。
幂方数列的通项公式可以通过以下方法求得:-递推法:对于幂方数列,可以通过递推方法得到通项公式。
具体步骤是观察数列的前几项,找到相邻两项之间的关系,然后递推得到通项公式。
求数列通项公式方法总结

求数列通项公式的方法总结:1)观察法。
例如1、3、5、7、9……2)公式法。
对于等差数列:a n=a1+(n-1)d;对于等比数列:a n=a1·q n-1。
3)形如a n+1=pa n+q,变形为(a n+1+k)=p(a n+k),其中k=q/(p-1)构造数列{a n+k}是以a1+k为首项,p为公比的等比数列。
4)形如a n+2=pa n+1+qa n,,变形为a n+2+ma n+1=n(a n+1+ma n),自行解出m和n构造数列{a n+1+ma n}是以a2+ma1为首项,n为公比的等比试列。
5)形如a n+1=pa n+q n,变形为a n+1/q n=p/q·a n/q n-1+1,再利用3)的步骤即可求出通项公式。
6)形如a n+1=pa n+q n+t n,变形为a n+1/q n=p/q·a n/q n-1+(t/q)n+1,则先忽略(t/q)n这一项,利用3)的方法配出3)的形式,然后再同时除以(t/q)n,再利用3)的步骤即可求出通项公式。
7)a n+1=ta n/(p+qa n)变形为1/a n+1=p/t·1/a n+q/t, 再利用3)的步骤即可求出通项公式。
8)利用s n-s n-1=a n的关系求出通项公式。
利用以上方法求通项公式时,要用到数列求和的方法,下面予以归纳:1)公式法。
对于等差数列s n=na1+n·(n-1)d或s n=n(a1+a n)/2,对于等比数列s n=a1·q n-I。
2)常用的几个基本求和公式a)1+2+3+……+n=n·(n+1)/2b)12+22+32+……+n2=n·(n+1)·(2n+1)/6c)13+23+33+……+n3=n2·(n+1)2/4d)1+3+5+……+(2n-1)=n23)倒序相加法。
主要用于等差数列或组合数列。
数列通项公式的求法(较全)-精选.

常见数列通项公式的求法公式:1、定义法若数列是等差数列或等比数列,求通公式项时,只需求出1a 与d 或1a 与q ,再代入公式()d n a a n 11-+=或11-=n n q a a 中即可.例1、成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{}n b 的345,,b b b ,求数列{}n b 的的通项公式.练习:数列{}n a 是等差数列,数列{}n b 是等比数列,数列{}n c 中对于任何*n N ∈都有1234127,0,,,,6954n n n c a b c c c c =-====分别求出此三个数列的通项公式.2、累加法形如()n f a a n n =-+1()1a 已知型的的递推公式均可用累加法求通项公式. (1) 当()f n d =为常数时,{}n a 为等差数列,则()11n a a n d =+-; (2) 当()f n 为n 的函数时,用累加法. 方法如下:由()n f a a n n =-+1得 当2n ≥时,()11n n a a f n --=-,()122n n a a f n ---=-,L()322a a f -=,()211a a f -=,以上()1n -个等式累加得()()()()11+221n a a f n f n f f -=--+++L1n a a ∴=+()()()()1+221f n f n f f --+++L(3)已知1a ,()n f a a n n =-+1,其中()f n 可以是关于n 的一次函数、二次函数、指数函数、分式函数,求通项.①若()f n 可以是关于n 的一次函数,累加后可转化为等差数列求和; ②若()f n 可以是关于n 的二次函数,累加后可分组求和;③若()f n 可以是关于n 的指数函数,累加后可转化为等比数列求和; ④若()f n 可以是关于n 的分式函数,累加后可裂项求和求和. 例2、数列{}n a 中已知111,23n n a a a n +=-=-, 求{}n a 的通项公式.练习1:已知数列{}n a 满足11322,.n n n a a n a a +=++=且求练习2:已知数列{}n a 中,111,32n n n a a a n +=-=-, 求{}n a 的通项公式.练习3:已知数列{}n a 满足11211,,2n n a a a n n+==++求求{}n a 的通项公式.3、累乘法形如()1n n a f n a +=()1a 已知型的的递推公式均可用累乘法求通项公式.给递推公式()()1,n na f n n N a ++=∈中的n 依次取1,2,3,……,1n -,可得到下面1n -个式子:()()()()23412311,2,3,,1.n n a a a af f f f n a a a a -====-L 利用公式()23411231,0,n n n n a a a aa a a n N a a a a +-=⨯⨯⨯⨯⨯≠∈L 可得: ()()()()11231.n a a f f f f n =⨯⨯⨯⨯⨯-L例3、已知数列{}n a 满足11,2,31n n n na a a a n +==+求.练习1:数列{}n a 中已知1121,n n a n a a n++==, 求{}n a 的通项公式.练习2:设{}n a 是首项为1的正项数列,且2211(1)0n n n n n a na a a +++-+=,求{}n a 的通项公式. 4、 奇偶分析法(1)对于形如()1n n a a f n ++=型的递推公式求通项公式①当()1n n a a d d ++=为常数时,则数列为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n ++=,()11n n a a f n -+=-两式相减,得到()()+111n n a a f n f n --=--,分奇偶项来求通项.例4、数列{}n a 满足111,4n n a a a +=+=,求{}n a 的通项公式. 练习:数列{}n a 满足116,6n n a a a +=+=-,求{}n a 的通项公式.例5、数列{}n a 满足110,2n n a a a n +=+=,求{}n a 的通项公式.练习1: 数列{}n a 满足111,1n n a a a n +=-+=-,求{}n a 的通项公式.练习2:数列{}n a 满足112,31n n a a a n +=+=-,求{}n a 的通项公式. (2)对于形如()1n n a a f n +⋅=型的递推公式求通项公式①当()1n n a a d d +⋅=为常数时,则数列为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论.②当()f n 为n 的函数时,由()1n n a a f n +⋅=,()11n n a a f n -⋅=-两式相除,得到()()+111n n f n a a f n -=-,分奇偶项来求通项. 例6、已知数列{}n a 满足112,4n n a a a +=⋅=,求{}n a 的通项公式.练习:已知数列{}n a 满足112,23n n a a a +=⋅=-,求{}n a 的通项公式. 例7、已知数列{}n a 满足1113,2nn n a a a +⎛⎫=⋅= ⎪⎝⎭,求{}n a 的通项公式.练习1: 数列{}n a 满足112,3n n n a a a +=⋅=,求{}n a 的通项公式.练习2:数列{}n a 满足111,2n n n a a a +=⋅=,求{}n a 的通项公式. 5、待定系数法(构造法)若给出条件直接求n a 较难,可通过整理变形等从中构造出一个等差或等比数列,从而根据等差或者等比数列的定义求出通项.常见的有: (1)()1,n n a pa q p q +=+为常数(){}1,n n n a t p a t a t +⇒+=++构造为等比数列. (2)()11111,n pn n nn n n n a a a pa tp t p t p p+++++=+−−−−−−→=+两边同时除以为常数 (3)()()11111,,,1n pn n nn n n na a p a pa tq t p q t q q q +++++=+−−−−−−→=+两边同时除以为常数再参考类型(4)()1,,n n a pa qn r p q r +=++是常数⇒ ()()11n n a n p a n λμλμ++++=++ (5)21+n n n a pa qa ++=(){}2111t ,t n n n n n n a ta p a a a a ++++⇒-=--构造等比数列 例8、已知数列{}n a 中,11=a ,321+=+n n a a ,求n a .练习:已数列{}n a 中,11a =且111,____.2n n n a a a +=+=则例9、已知数列{}n a 中,1113,33n n n a a a ++==+, 求{}n a 的通项公式.练习1:已知数列{}n a 中,113,22n n n a a a -=-=+,则=n a .练习2:已知数列{}n a 中,112,3433n n n a a a +==+⋅, 求{}n a 的通项公式.例10、已知数列{}n a 满足11162,1,n n n a a a ++=+=求.n a练习1:设数列{n a }满足n n n a a a 23,111+==+,则=n a . 练习2:已知数列{}n a 中,111511,632n n n a a a ++⎛⎫==+ ⎪⎝⎭,求n a .练习3:已知数列{}n a ()n N *∈的满足:111113,432,,7n n n a k a a n k k R --⎛⎫=-=-≥≠∈ ⎪⎝⎭(1)判断数列47n n a ⎧⎫-⎨⎬⎩⎭是否成等比数列;(2)求数列{}n a 的通项公式.例11、数列{}n a 中已知111,23n n a a a n +==+, 求{}n a 的通项公式.练习1:数列{}n a 中已知112,32n n a a a n +==-+, 求{}n a 的通项公式.练习2:数列{}n a 中已知2112,322n n a a a n n +==+-+, 求{}n a 的通项公式.例12、已知数列{}n a 中,()12125,2,2+33n n n a a a a a n --===≥,求求{}n a 的通项公式.练习1:已知数列{}n a 中,12+2+1211,2,+33n n n a a a a a ===,求求{}n a 的通项公式.练习2:在数列{}n a 中,11a =,235a =,2n a +=135n a ++23n a ,令1n n n b a a +=- 。
数列通项公式求法归纳

数列通项公式的求法集锦一、 累加法形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例1.在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。
解:∵111n a ==时,21324312123.......1n n n a a a a a a a a n -≥-=⎫⎪-=⎪⎪-=⎬⎪⎪-=-⎪⎭时,这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+=且11a =也满足该式 ∴222n n n a -+=(n N *∈).例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。
解:n=1时, 1a =121232343112222 (2)n n n n a a a a a a a a --≥-=⎫⎪-=⎪⎪-=⎬⎪⎪⎪-=⎭时,以上n-1个等式累加得21122 (2)n n a a --=+++=12(12)12n ---=22n -,故12221n nn a a =-+=- 且11a =也满足该式∴21nn a =- (n N *∈)。
二、 累乘法形如1()n n a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。
解:由已知得1n na n a += ,分别取n=1、2、3……(n-1),代入该式得n-1个等式累乘,即3241231........n n a a a a a a a a -=1×2×3×…×(n-1)=(n-1)!所以时,1(1)!n a n a =-故(1)!n a n =-且10!a ==1也适用该式 ∴(1)!n a n =- (n N *∈). 例4.已知数列{n a }满足1a =23,11n n n a a n +=+,求n a 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数列通项公式的求法集锦非等比、等差数列的通项公式的求法,题型繁杂,方法琐碎,笔者结合近几年的高考情况,对数列求通项公式的方法给以归纳总结。
一、 累加法形如1()n n a a f n --= (n=2、3、4…...) 且(1)(2)...(1)f f f n +++-可求,则用累加法求n a 。
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例1. 在数列{n a }中,1a =1,11n n a a n --=- (n=2、3、4……) ,求{n a }的通项公式。
解:∵111n a ==时,21324312123.......1n n n a a a a a a a a n -≥-=⎫⎪-=⎪⎪-=⎬⎪⎪-=-⎪⎭时,这n-1个等式累加得:112...n a a -=+++(n-1)=(1)2n n - 故21(1)222n n n n n a a --+=+= 且11a =也满足该式 ∴222n n n a -+= (n N *∈).例2.在数列{n a }中,1a =1,12n n n a a +-= (n N *∈),求n a 。
解:n=1时, 1a =121232343112222.......2n n n n a a a a a a a a --≥-=⎫⎪-=⎪⎪-=⎬⎪⎪⎪-=⎭时,以上n-1个等式累加得21122...2n n a a --=+++=12(12)12n ---=22n-,故12221n n n a a =-+=- 且11a =也满足该式 ∴21n n a =- (n N *∈)。
二、累乘法形如1()nn a f n a -= (n=2、3、4……),且(1)(2)...(1)f f f n +++-可求,则用累乘法求n a 。
有时若不能直接用,可变形成这种形式,然后用这种方法求解。
例3.在数列{n a }中,1a =1,1n n a na +=,求n a 。
解:由已知得1n na n a += ,分别取n=1、2、3……(n-1),代入该式得n-1个等式累乘,即3241231........n n a a a a a a a a -=1×2×3×…×(n-1)=(n-1)!所以时,1(1)!n a n a =-故(1)!n a n =- 且10!a ==1也适用该式 ∴(1)!n a n =- (n N *∈).例4.已知数列{n a }满足1a =23,11n n na a n +=+,求n a 。
解:由已知得11n n a na n +=+,分别令n=1,2,3,….(n-1),代入 上式得n-1个等式累乘,即3241231........n n a a a a a a a a -= 1231......234n n -⨯⨯⨯所以11n a a n=,又因为123a =也满足该式,所以23n a n =。
三、构造等比数列法原数列{n a }既不等差,也不等比。
若把{n a }中每一项添上一个数或一个式子构成新数列,使之等比,从而求出n a 。
该法适用于递推式形如1n a +=n ba c +或1n a +=()n ba f n +或1n a += n n ba c +其中b 、c 为不相等的常数,()f n 为一次式。
例5、(06福建理22)已知数列{n a }满足1a =1,1n a +=21n a + (n N *∈),求数列{n a }的通项公式。
解:构造新数列{}n a p +,其中p 为常数,使之成为公比是n a 的系数2的等比数列 即1n a p ++=2()n a p + 整理得:1n a +=2n a p +使之满足1n a +=21n a + ∴p=1 即{}1n a +是首项为11a +=2,q=2的等比数列∴1n a +=122n -⋅ n a =21n -例6、(07全国II 理21)设数列{n a }的首项1(0,1)a ∈,n a =132n a --,n=2、3、4…… (I )求{n a }的通项公式。
解:构造新数列{}n a p +,使之成为12q =-的等比数列即n a p +=11()2n a p --+ 整理得:n a =11322n a p ---满足n a =132n a --得 32p -=32 ∴p=-1 即新数列{}1n a -首项为11a -,12q =-的等比数列 ∴1n a -=1(1a -)112n --() 故 n a =1(1a -)112n --()+1例7、(07全国I 理22)已知数列{n a }中,1a =2,1n a +=1)(2)n a + n N *∈(I )求{n a }的通项公式。
解:构造新数列{}n a p +,使之成为1q =的等比数列1n a p ++=1)()n a p + 整理得:1n a +=1)n a +2)p使之满足已知条件 1n a +=1)n a +21)∴2)1)p =解得p =∴{n a 是首项为2 1q =的等比数列,由此得n a (211)n - ∴n a 1)n例8、已知数列{n a }中,1a =1,1n a +=23n n a +,求数列的通项公式。
(分析:该数列不同于以上几个数列,该数列中含3n 是变量,而不是常量了。
故应构造新数列{3}n n a λ+,其中λ为常数,使之为公比是n a 的系数2的等比数列。
)解:构造数列{3}n n a λ+,λ为不为0的常数,使之成为q=2的等比数列 即113n n a λ+++=2(3)n n a λ+ 整理得:1n a +=12(233)n n n a λλ++-满足 1n a +=23n n a + 得12333n n n λλ+-= ∴1λ=-新数列{3}n n a -是首项为113a -=2-,q=2的等比数列 ∴3n n a -=122n --⨯ ∴n a =32n n -例9、(07天津文20)在数列{n a }中,1a =2,1n a +=431n a n -+ ,求数列的通项n a 。
解:构造新数列{}n a n λ+,使之成为q=4的等比数列,则1(1)n a n λ+++=4()n a n λ+ 整理得:1n a +=43n a n λλ+-满足1n a +=431n a n -+,即331n n λλ-=-+得1λ=-∴新数列{}n a n -的首项为111a -=,q=4的等比数列∴14n n a n --= ∴14n n a n -=+四、构造等差数列法数列{n a }既不等差,也不等比,递推关系式形如11()n n n a ba b f n ++=++,那么把两边同除以1n b +后,想法构造一个等差数列,从而间接求出n a 。
例10.(07石家庄一模)数列{n a }满足1221n n n a a -=+-(2)n ≥且481a =。
求(1)1a 、2a 、3a (2)是否存在一个实数λ,使此数列{}2n n a λ+为等差数列?若存在求出λ的值及n a ;若不存在,说明理由。
解:(1)由4a =43221a +-=81 得3a =33;又∵3a =32221a +-=33得2a =13;又∵2a =21221a +-=13,∴1a =5(2)假设存在一个实数λ,使此数列{}2n n a λ+为等差数列 即1122n n n n a a λλ--++-= 122n n n a a λ---= 212n nλ--= 112n λ+- 该数为常数 ∴λ=1- 即1{}2n n a -为首项11122a -=,d=1的等差数列 ∴12n na -=2+(1)1n -⨯=n+1 ∴n a =(1)21n n +⨯+ 例11、数列{n a }满足1n a += 12(2)n n a +-+- (n N *∈),首项为12a =-,求数列{n a }的通项公式。
解:1n a += 12(2)n n a +-+- 两边同除以1(2)n +-得11(2)n n a ++-=(2)nna -+1 ∴数列{}(2)n n a -是首项为12(2)--=1,d=1的等差数列∴(2)n na -=1+(1)1n n -⨯= 故n a =(2)n n -例12.数列{n a }中,1a =5,且1331n n n a a -=+- (n=2、3、4……),试求数列{n a }的通项公式。
解:构造一个新数列{}3n n a λ+,λ为常数,使之成为等差数列,即1133n n n n a a d λλ--++=+ 整理得133n n n a a d λ-+=++3λ,让该式满足1331n n n a a -=+-∴取33n n d ⋅=,21λ=-得12λ=-,d=1 ,即{}3n n a λ+是首项为1113232a -=,公差d=1的等差数列。
故1312(1)1322n n a n n -=+-⨯=+ ∴n a =11()322n n +⋅+例13、(07天津理21)在数列{n a }中,1a =2,且11(2)2n n n n a a λλλ++=++- (n N *∈)其中λ>0,()I 求数列{n a }的通项公式。
解:1n λ+的底数与n a 的系数相同,则两边除以1n λ+得1111221n nn nn nn na a λλλλ++++=++-即111221n nn n n na a λλ+++--=+∴2{}nn na λ-是首项为120a λ-=,公差d=1的等差数列。
∴20(1)1nn na n n λ-=+-=- ∴(1)2n n n a n λ=-+。
五、 取倒数法(有些关于通项的递推关系式变形后含有1n n a a +项,直接求相邻两项的关系很困难,但两边同除以1n n a a +后,相邻两项的倒数的关系容易求得,从而间接求出n a 。
) 例14、已知数列{n a },1a = 1-,11nn na a a +=- n N *∈,求n a =? 解:把原式变形得11n n n n a a a a ++-⋅= 两边同除以1n n a a +得1111n n a a +=+ ∴1{}na 是首项为1-,d=1-的等差数列故11(1)(1)n n n a =-+--=-∴1n a n =-。
例15、(06江西理22)已知数列{n a }满足132a =,且11321n n n na a a n --=+-(2n ≥n N *∈)()I 求数列{n a }的通项公式。
解:把原式变形成112(1)3n n n n a a n a na --+-= 两边同除以1n n a a +得 即111233n n n n a a --=+ …… ⑴构造新数列{}n na λ+,使其成为公比q= 13的等比数列即111()3n n n n a a λλ--+=+整理得:11233n n n n a a λ--=- 满足⑴式使2233λ-= ∴1λ=-∴数列{1}n n a -是首项为11113a -=-,q= 13的等比数列∴11111()()333n nn n a --=-=- ∴331n n n n a ⋅=-。