2015高考数学(理)一轮题组训练:15-2矩阵与变换

合集下载

2015届高考苏教版数学(理)大一轮配套课时训练73 矩阵及其变换]

2015届高考苏教版数学(理)大一轮配套课时训练73 矩阵及其变换]

课时跟踪检测(七十三) 矩阵及其变换1.设M =⎣⎢⎡⎦⎥⎤ 6 p -q p +q 5,N =⎣⎢⎡⎦⎥⎤xy -11 x +y ,若M =N ,求x ,y ,p ,q .2.曲线C 1:x 2+2y 2=1在矩阵M =⎣⎢⎡⎦⎥⎤1 201的作用下变换为曲线C 2,求C 2的方程.3.求出曲线y 2=4x 依次经过矩阵A =⎣⎢⎡⎦⎥⎤t 00 1,B =⎣⎢⎡⎦⎥⎤0 -11 0作用下变换得到的曲线方程x 2=2y ,求实数t .4.已知曲线C :x 2+y 2=1在矩阵M 对应的变换作用下得到曲线C ′:x 24+y 2=1,求矩阵M .5.如果曲线x 2+4xy +3y 2=1在矩阵⎣⎢⎡⎦⎥⎤1 a b1的作用下变换得到曲线x 2-y 2=1,求a +b 的值.6.若一个变换所对应的矩阵是⎣⎢⎡⎦⎥⎤-1002,求抛物线y 2=-4x 在这个变换下所得到的曲线的方程.7.已知矩阵A =⎣⎢⎡⎦⎥⎤0 1a0,B =⎣⎢⎡⎦⎥⎤0 2b 0,直线l 1:x -y +4=0经矩阵A 所对应的变换得到直线l 2,直线l 2又经矩阵B 所对应的变换得到直线l 3:x +y +4=0,求直线l 2的方程.8.二阶矩阵M 对应变换将点(1,2)和(2,1)分别变换成(5,1)和(4,-1). (1)求矩阵M ;(2)求矩阵M 将圆x 2+y 2=1变换后的方程.答 案1.解析:∵M =N ,∴⎩⎪⎨⎪⎧xy =6,x +y =5,p -q =-1,p +q =1,解得⎩⎪⎨⎪⎧ x =2,y =3,p =0,q =1,或⎩⎪⎨⎪⎧x =3,y =2,p =0,q =1.2.解:设P (x ,y )为曲线C 2上任意一点, P ′(x ′,y ′)为曲线C 1上与P 对应的点, 则⎣⎢⎡⎦⎥⎤1 201⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤x y , 即⎩⎪⎨⎪⎧ x =x ′+2y ′y =y ′⇒⎩⎪⎨⎪⎧x ′=x -2y ,y ′=y .∵P ′是曲线C 1上的点, ∴C 2的方程为(x -2y )2+2y 2=1. 3.解:由已知得BA =⎣⎢⎡⎦⎥⎤0 -11 0⎣⎢⎡⎦⎥⎤t 00 1=⎣⎢⎡⎦⎥⎤0 -1t 0.任取曲线y 2=4x 上一点P (x 0,y 0),它在矩阵AB 对应的变换作用下变为P ′(x ′,y ′),即有⎣⎢⎡⎦⎥⎤0 -1t 0⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′y ′,则有⎩⎪⎨⎪⎧-y 0=x ′,tx 0=y ′⇒⎩⎪⎨⎪⎧y 20=(-x ′)2,2tx 0=2y ′.∵P ′在曲线x 2=2y 上,∴x ′2=2y ′. 即y 20=2tx 0, ① y 20=4x 0,②比较①②得2t =4⇒t =2.4.解:在曲线C 上任取一点P (x ,y ),点P 在矩阵M 作用下得点P ′(x ′,y ′),设M =⎣⎢⎡⎦⎥⎤a b c d ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, ∴⎩⎪⎨⎪⎧x ′=ax +by ,y ′=cx +dy . 由题意⎩⎪⎨⎪⎧x =12x ′,y =y ′,即⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,∴a =2,b =0,c =0,d =1,∴M =⎣⎢⎡⎦⎥⎤2001.5.解:在曲线x 2+4xy +3y 2=1上任取一点P (x ,y ),设点P (x ,y )在矩阵⎣⎢⎡⎦⎥⎤1 a b 1的作用下变换得到点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤1 a b1⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′. 所以⎣⎢⎡⎦⎥⎤x +ay bx +y =⎣⎢⎡⎦⎥⎤x ′y ′, 即⎩⎪⎨⎪⎧x ′=x +ay ,y ′=bx +y . 则(x +ay )2-(bx +y )2=1. 化简,得(1-b 2)x 2+2(a -b )xy +(a 2-1)y 2=1.从而⎩⎪⎨⎪⎧1-b 2=1,2(a -b )=4,a 2-1=3.解得a =2,b =0,所以a +b =2.6.解:设P (x ,y )为y 2=-4x 上任意一点,P ′(x ′,y ′)为变换后所得曲线上对应P的点,由题意⎩⎪⎨⎪⎧x ′=-x ,y ′=2y ,∴⎩⎪⎨⎪⎧x =-x ′,y =y ′2.∴⎝⎛⎭⎫y ′22=-4(-x ′),即y ′2=16x ′. ∴抛物线y 2=-4x 经变换后的曲线方程为y 2=16x . 7.解:BA =⎣⎢⎡⎦⎥⎤0 2b0⎣⎢⎡⎦⎥⎤0 1a 0=⎣⎢⎡⎦⎥⎤2a 00 b , 设P (x ,y )是l 1上的任意一点,其在BA 所对应的变换作用下的像为(x ′,y ′),则⎣⎢⎡⎦⎥⎤2a 00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,得⎩⎪⎨⎪⎧x ′=2ax ,y ′=by . 由题意可得,点(x ′,y ′)在直线l 3上,所以2ax +by +4=0即为直线l 1:x -y +4=0,故a =12,b =-1.此时B =⎣⎢⎡⎦⎥⎤ 0 2-10,同理可设Q (x 0,y 0)为l 2上的任意一点,其在B 所对应的变换作用下的像为(x ′0,y ′0),则⎣⎢⎡⎦⎥⎤ 0 2-10⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x ′0y ′0, 得⎩⎪⎨⎪⎧x ′0=2y 0,y ′0=-x 0.,又(x ′0,y ′0)在直线l 3上,所以2y 0-x 0+4=0,故直线l 2的方程为2y -x +4=0,即x -2y -4=0.8.解:(1)设矩阵M =⎣⎢⎡⎦⎥⎤a b cd ,则由M ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤51和M ⎣⎢⎡⎦⎥⎤21=⎣⎢⎡⎦⎥⎤4-1,得⎩⎪⎨⎪⎧a +2b =5,c +2d =1,2a +b =4,2c +d =-1,解得⎩⎪⎨⎪⎧a =1,b =2,c =-1,d =1,所以M =⎣⎢⎡⎦⎥⎤ 12-1 1. (2)设点P (x ,y )是圆x 2+y 2=1上的任意一点,变换后的点为P ′(x ′,y ′),则M ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎪⎨⎪⎧x ′=x +2y ,y ′=-x +y ,从而⎩⎨⎧x =13(x ′-2y ′),y =13(x ′+y ′),代入x 2+y 2=1并化简得(x ′-2y ′)2+(x ′+y ′)2=9, 即(x -2y )2+(x +y )2=9.。

【全程复习方略】2015届高考数学第一轮总复习 考点53 矩阵与变换提能训练(含2013年高考真题)

【全程复习方略】2015届高考数学第一轮总复习 考点53 矩阵与变换提能训练(含2013年高考真题)

考点53 矩阵与变换一、选择题1.(2013·某某高考理科·T17)在数列{}n a 中,21n n a =-,若一个7行12列的矩阵的第i 行第j 列的元素,i j i j i j a a a a a =⋅++,(1,2,,7;1,2,,12i j ==)则该矩阵元素能取到的不同数值的个数为( ) A.18 B.28 C.48D.63 【解析】选A.,21i j i j i j i j a a a a a +=⋅++=-,而2,3,,19i j +=,故不同数值个数为18个,选A . 二、填空题2.(2013·某某高考理科·T3)若2211x x x y y y =--,则______x y += 【解析】2220x y xy x y +=-⇒+=.【答案】0.3.(2013·某某高考文科·T4)已知1x 12=0,1x 1y =1,则y= . 【解析】111 2021 12 =-==⇒=-=y x y x x x x ,又已知 ,1,2==y x 联立上式,解得【答案】 1.三、解答题4.(2013·某某高考数学科·T21)已知矩阵A =1002-⎡⎤⎢⎥⎣⎦,B =1206⎡⎤⎢⎥⎣⎦,求矩阵1-A B . 【解题指南】先求出矩陈A 的逆矩陈再运算1A B -,主要考查逆矩阵、矩阵的乘法, 考查运算求解能力. 【解析】设矩阵A 的逆矩阵为a b c d ⎡⎤⎢⎥⎣⎦则1002-⎡⎤⎢⎥⎣⎦a b c d ⎡⎤⎢⎥⎣⎦=1001⎡⎤⎢⎥⎣⎦即22a b c d --⎡⎤⎢⎥⎣⎦=1001⎡⎤⎢⎥⎣⎦故a=-1, b=0, c=0, d=12,从而 A 的逆矩阵为1A -=10102-⎡⎤⎢⎥⎢⎥⎣⎦所以1A B -=10102-⎡⎤⎢⎥⎢⎥⎣⎦1206⎡⎤⎢⎥⎣⎦=1203--⎡⎤⎢⎥⎣⎦ 5.(2013·某某高考理科·T21)已知直线1:=+y ax l 在矩阵1201A ⎛⎫=⎪⎝⎭对应的变换作用下变为直线1:'=+by x l(I )某某数b a ,的值(II )若点),(00y x P 在直线l 上,且⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫ ⎝⎛0000y x y x A ,求点P 的坐标 【解析】(Ⅰ)设直线:1l ax y +=上任意一点(,)M x y 在矩阵A 对应的变换作用下的像是(,)M x y ''' 由12201x x x y y y y '+⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪⎪ ⎪'⎝⎭⎝⎭⎝⎭⎝⎭,得2x x y y y '=+⎧⎨'=⎩ 又点(,)M x y '''在l '上,所以1x by ''+=,即(2)1x b y ++=依题意121a b =⎧⎨+=⎩,解得11a b =⎧⎨=-⎩(Ⅱ)由0000x x A y y ⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭,得000002x x y y y =+⎧⎨=⎩解得00y = 又点00(,)P x y 在直线l 上,所以01x =故点P 的坐标为(1,0).。

2015高考数学一轮配套课件:15-2矩阵与变换

2015高考数学一轮配套课件:15-2矩阵与变换

【训练 3】已知 a∈R,矩阵 A=1a 12对应的线性变换把点 P(1,1) 变成点 P′(3,3),求矩阵 A 的特征值以及每个特征值的一个 特征向量. 解 由题意1a 1211=a+3 1=33, 得 a+1=3,即 a=2,矩阵 A 的特征多项式为 f(λ)=λ--21 λ--21=(λ-1)2-4=(λ+1)(λ-3), 令 f(λ)=0,所以矩阵 A 的特征值为 λ1=-1,λ2=3.
诊断·基础知识
突破·高频考第五点页,编辑于星培期五养:十·解三点题五能十九力分。
(3)逆矩阵与二元一次方程组:如果关于变量 x,y 的二元一次方
程组acxx++dbyy==nm, 的系数矩阵 A=ac db可逆,那么该方程组
有唯一解xy=ac db-1mn ,
d
-b
其中 A-1=ad--bcc
ad-bc a
.
ad-bc ad-bc
诊断·基础知识
突破·高频考第六点页,编辑于星培期五养:十·解三点题五能十九力分。
• 3.二阶矩阵的特征值和特征向量
• (1)特征值与特征向量的概念
• 设A是一个二阶矩λ阵,如果对于实数λα,存
在(2)一特征个多非项零式与向特量征α方,程使得Aα=λα,那么 称为A 的 的设一一λ 是个个二特特阶矩征征阵值向A,量=而.ac db的称一为个特A的征值一,个属于特征值λ
用下变换为曲线 C2,求 C2 的方程. 解 设 P(x,y)为曲线 C2 上任意一点,P′(x′,y′)为曲线 x2+2y2=1 上与 P 对应的点, 则10 21xy′ ′=xy,即xy==xy′′+2y′, ⇒xy′ ′= =xy- . 2y, 因为 P′是曲线 C1 上的点, 所以 C2 的方程为(x-2y)2+y2=1.

【创新方案】(人教通用版)2015高考数学 五年高考真题分类汇编 第十三章 矩阵与变换 理

【创新方案】(人教通用版)2015高考数学 五年高考真题分类汇编 第十三章 矩阵与变换 理

五年高考真题分类汇编:矩阵与变换1.(2013•江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤-1 00 2,B =⎣⎢⎡⎦⎥⎤1 206,求矩阵A -1B . 解:设矩阵A 的逆矩阵为⎣⎢⎡⎦⎥⎤a b c d , 则⎣⎢⎡⎦⎥⎤-1 00 2⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1, 即⎣⎢⎡⎦⎥⎤-a -b 2c 2d =⎣⎢⎡⎦⎥⎤1 00 1,故a =-1,b =0,c =0,d =12, 从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12, 所以A -1B =⎣⎢⎢⎡⎦⎥⎥⎤-1 0 0 12⎣⎢⎡⎦⎥⎤1 20 6=⎣⎢⎡⎦⎥⎤-1 -20 3. 2.(2013•福建高考理)已知直线l :ax +y =1在矩阵A =⎝ ⎛⎭⎪⎫1 201对应的变换作用下变为直线l ′:x +by =1.①求实数a ,b 的值; ②若点P (x 0,y 0)在直线l 上,且A ⎝ ⎛⎭⎪⎫x 0y 0=⎝ ⎛⎭⎪⎫x 0y 0,求点P 的坐标. 解:(1)本小题主要考查矩阵、矩阵与变换等基础知识,考查运算求解能力,考查化归与转化思想.①设直线l :ax +y =1上任意点M (x ,y )在矩A 对应的变换作用下的像是M ′(x ′,y ′).由⎝ ⎛⎭⎪⎫x 'y ′=⎝ ⎛⎭⎪⎫1 20 1⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫x +2y y ,得⎩⎪⎨⎪⎧x ′=x +2y ,y ′=y . 又点M ′(x ′,y ′)在l ′上,所以x ′+by ′=1,即x +(b +2)y =1, 依题意得⎩⎪⎨⎪⎧ a =1,b +2=1,解得⎩⎪⎨⎪⎧ a =1,b =-1. ②由A ⎝ ⎛⎭⎪⎫x 0y 0=⎝ ⎛⎭⎪⎫x 0y 0,得⎩⎪⎨⎪⎧x 0=x 0+2y 0,y 0=y 0,解得y 0=0. 又点P (x 0,y 0)在直线l 上,所以x 0=1. 故点P 的坐标为(1,0). 3.(2012•江苏高考) 已知矩阵A 的逆矩阵A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 3412 -12,求矩阵A 的特征值. 解:因为A -1A =E ,所以A =(A -1)-1.因为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-14 3412 -12,所以A =(A -1)-1=⎣⎢⎡⎦⎥⎤2 32 1,于是矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=λ2-3λ-4. 令f (λ)=0,解得A 的特征值λ1=-1,λ2=4.4.(2012•福建高考理)设曲线2x 2+2xy +y 2=1在矩阵A =⎝ ⎛⎭⎪⎫a 0b 1(a >0)对应的变换作用下得到的曲线为x 2+y 2=1. (1)求实数a ,b 的值;(2)求A 2的逆矩阵.解:(1)设曲线2x 2+2xy +y 2=1上任意点P (x ,y )在矩阵A 对应的变换作用下的象是P ′(x ′,y ′).由⎝⎛⎭⎫x ′y ′=⎝⎛⎭⎫a 0b 1⎝⎛⎭⎫x y =⎝⎛⎭⎫ax bx +y ,得⎩⎪⎨⎪⎧ x ′=ax ,y ′=bx +y . 又点P ′(x ′,y ′)在曲线x 2+y 2=1上,所以x ′2+y ′2=1,即a 2x 2+(bx +y )2=1,整理得(a 2+b 2)x 2+2bxy +y 2=1.依题意得⎩⎪⎨⎪⎧ a 2+b 2=2,2b =2,解得⎩⎪⎨⎪⎧ a =1,b =1,或⎩⎪⎨⎪⎧ a =-1,b =1. 因为a >0,所以⎩⎪⎨⎪⎧ a =1,b =1.(2)由(1)知,A =⎝⎛⎭⎫1 01 1, A 2=⎝⎛⎭⎫1 01 1⎝⎛⎭⎫1 01 1=⎝⎛⎭⎫1 02 1,所以|A 2|=1,(A 2)-1=⎝⎛⎭⎫1 0-2 1.5.(2011•福建高考理)设矩阵M =⎝ ⎛⎭⎪⎫a 00 b (其中a >0,b >0). (Ⅰ)若a =2,b =3,求矩阵M 的逆矩阵M -1;(Ⅱ)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a ,b 的值.解:(Ⅰ)设矩阵M 的逆矩阵M -1=⎝ ⎛⎭⎪⎫x 1 y 1x 2 y 2, 则MM -1=⎝ ⎛⎭⎪⎫1 00 1. 又M ⎝ ⎛⎭⎪⎫2 00 3,所以⎝ ⎛⎭⎪⎫2 00 3⎝ ⎛⎭⎪⎫x 1 y 1x 2 y 2=⎝ ⎛⎭⎪⎫1 00 1, 所以2x 1=1,2y 1=0,3x 2=0,3y 2=1,即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎝ ⎛⎭⎪⎪⎫12 00 13. (Ⅱ)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎝ ⎛⎭⎪⎫a 00 b ⎝ ⎛⎭⎪⎫x y =⎝ ⎛⎭⎪⎫x ′y ′,即⎩⎪⎨⎪⎧ ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上,所以x ′24+y ′2=1,则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎪⎨⎪⎧ a 2=4,b 2=1.又a >0,b >0,所以⎩⎪⎨⎪⎧ a =2,b =1.6.(2011•江苏高考)已知矩阵A =⎣⎢⎡⎦⎥⎤1 12 1,向量β=⎣⎢⎡⎦⎥⎤12.求向量α,使得A 2α=β.解:A 2=⎣⎢⎡⎦⎥⎤1 12 1⎣⎢⎡⎦⎥⎤1 12 1=⎣⎢⎡⎦⎥⎤3 24 3.设α=⎣⎢⎡⎦⎥⎤x y .由A 2α=β,得⎣⎢⎡⎦⎥⎤3 24 3⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤12,从而⎩⎪⎨⎪⎧3x +2y =1,4x +3y =2. 解得x =-1,y =2,所以α=⎣⎢⎡⎦⎥⎤-1 2.。

江苏省2015届高考数学模拟试题分类汇编:第15章-矩阵与变换

江苏省2015届高考数学模拟试题分类汇编:第15章-矩阵与变换

目录(基础复习部分) 第十五章 矩阵与变换 (1)第01课 几种常见的变换 ........................................................................................................................ 1 第02课 矩阵的复合、乘法与逆矩阵、矩阵的特征值与特征向量 . (6)第十五章 矩阵与变换 第01课 几种常见的变换已知矩阵A =⎣⎡⎦⎤2b 13属于特征值λ的一个特征向量为α=⎣⎡⎦⎤ 1-1 .(1)求实数b ,λ的值;(2)若曲线C 在矩阵A 对应的变换作用下,得到的曲线为C ':x 2+2y 2=2,求曲线C 的方程.解:(1)因为矩阵A =⎣⎡⎦⎤2b 13属于特征值λ的一个特征向量为α=⎣⎡⎦⎤ 1-1,所以⎣⎡⎦⎤2b 13⎣⎡⎦⎤ 1-1=λ⎣⎡⎦⎤ 1-1,即⎣⎢⎡⎦⎥⎤2-b -2=⎣⎢⎡⎦⎥⎤λ-λ. ……………………… 3分 从而⎩⎨⎧2-b =λ,-2=-λ.解得b =0,λ=2. ………………………… 5分(2)由(1)知,A =⎣⎡⎦⎤2013.设曲线C 上任一点M (x ,y )在矩阵A 对应的变换作用后变为曲线C '上一点P (x 0,y 0), 则⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎡⎦⎤2013⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2x x +3y , 从而⎩⎨⎧x 0=2x ,y 0=x +3y .…………………………… 7分因为点P 在曲线C '上,所以x 02+2y 02=2,即(2x )2+2(x +3y )2=2, 从而3x 2+6xy +9y 2=1.所以曲线C 的方程为3x 2+6xy +9y 2=1. ……………………………… 10分已知曲线2:2C y x = ,在矩阵M 1002⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线1C ,1C 在矩阵N 0110-⎡⎤=⎢⎥⎣⎦对应的变换作用下得到曲线2C ,求曲线2C 的方程. 解:设A NM =则A 011002100210--⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦, ………………………………………………………3分 设()','P x y 是曲线C 上任一点,在两次变换下,在曲线2C 上的对应的点为(),P x y , 则 02'2'10''x x y y y x --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦, 即2',',x y y x =-⎧⎨=⎩∴',1'.2x y y x =⎧⎪⎨=-⎪⎩ ……………………………7分 又点()','P x y 在曲线2:2C y x = 上,∴ 21()22x y -=,即218y x =.………………………………10分已知矩阵1002A ⎡⎤=⎢⎥⎣⎦,1201B ⎡⎤=⎢⎥⎣⎦,若矩阵1AB -对应的变换把直线l 变为直线':20l x y +-=,求直线l 的方程.21.B .解:∵1201B ⎡⎤=⎢⎥⎣⎦,∴11201B --⎡⎤=⎢⎥⎣⎦, ∴1101212020102AB ---⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦. ………………5分 设直线l 上任意一点(,)x y 在矩阵1AB -对应的变换下为点(,)x y ''.1202x x y y '-⎤⎤⎡⎤⎡⎡=⎥⎥⎢⎥⎢⎢'⎣⎦⎣⎣⎦⎦,∴2,2,x x y y y '=-⎧⎨'=⎩ 代入:(2)(2)20l x y y '-+-=,化简后得:2l x =. ………………10分 求曲线1x y +=在矩阵M 10103⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的曲线所围成图形的面积.解:设点00(,)x y 为曲线1x y +=上的任一点,在矩阵10103M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的点为(,)x y '',则由0010103x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥'⎣⎦⎣⎦⎢⎥⎣⎦,………………………………………………………………3分得:00,1,3x x y y '=⎧⎪⎨'=⎪⎩ 即00,3,x x y y '=⎧⎨'=⎩ ………………………………………………………5分 所以曲线1x y +=在矩阵10103M ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦对应的变换作用下得到的曲线为31x y +=, ………………………………………………………………………………8分所围成的图形为菱形,其面积为1222233⨯⨯=. …………………………………10分(南京盐城模拟一)求直线10x y --=在矩阵2222M -⎥=⎥⎥⎣⎦的变换下所得曲线的方程.解:设(,)P x y 是所求曲线上的任一点,它在已知直线上的对应点为(,)Q x y '',则,,x y x x y y ''=''+=解得),),x x y y y x ⎧'=+⎪⎪⎨⎪'=-⎪⎩ (5)分代入10x y ''--=))10x y y x +--=,化简可得所求曲线方程为x =. (10)分(扬州期末)A .(本小题满分10分,矩阵与变换)在平面直角坐标系xOy 中,设曲线C 1在矩阵A=10102⎡⎤⎢⎥⎢⎥⎣⎦ 对应的变换作用下得到曲线C 2:2214x y +=,求曲线C 1的方程. 设(,)P x y 是曲线1C 上任意一点,点(,)P x y 在矩阵A 对应的变换下变为点(,)P x y ''',则有10102x x y y ⎡⎤'⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥' ⎣⎦⎣⎦⎣⎦,即,1.2x x y y '=⎧⎪⎨'=⎪⎩ ……5分又因为点(,)P x y '''曲线222:14x C y +=上, 故22()()14x y ''+=,从而22()()142x y +=, 所以曲线1C 的方程是224x y +=.(镇江期末)已知矩阵1002M ⎡⎤=⎢⎥⎣⎦,10201N ⎡⎤⎢⎥=⎢⎥⎣⎦,试求曲线x y sin =在矩阵MN 变换下的函数解析式. 解:MN =1002⎡⎤⎢⎥⎣⎦1021⎡⎤⎢⎥⎢⎥⎣⎦=10202⎡⎤⎢⎥⎢⎥⎣⎦, ……4分 即在矩阵MN 变换下11022022x x x x y y y y ⎡⎡⎤⎤'⎡⎡⎡⎤⎤⎤⎢⎢⎥⎥→==⎢⎢⎢⎥⎥⎥⎢⎢⎥⎥'⎦⎦⎦⎣⎣⎣⎢⎣⎦⎦⎣, ……6分 12x x '=,2y y '=, ……8分 代入得:1sin 22y x ''=, 即曲线sin y x =在矩阵MN 变换下的函数解析式为2sin 2y x =. ……10分(苏北四市期末) 已知,a b R ∈,矩阵 1 3a A b -⎡⎤=⎢⎥⎣⎦所对应的变换A T 将直线10x y --=变换为自身,求a ,b 的值。

2015年高考数学试题——矩阵与变换

2015年高考数学试题——矩阵与变换

1.(15年福建理科)已知矩阵2111,.4301A B 骣骣琪琪==琪
琪-桫桫
(Ⅰ)求A 的逆矩阵1A -;
(Ⅱ)求矩阵C ,使得AC=B. 【答案】(Ⅰ)312221⎛⎫- ⎪ ⎪-⎝⎭; (Ⅱ)32223⎛⎫ ⎪ ⎪--⎝⎭
. 【解析】
试题分析:因为2143A 骣琪=琪桫,得伴随矩阵3142A -⎛⎫= ⎪-⎝⎭,且2A =,由11A A A -=可求得1A -;(Ⅱ) 因为AC B =,故1C A B -=,进而利用矩阵乘法求解.
试题解析:(1)因为|A|=23-14=2创
所以13131222242212
2A --⎛⎫⎛⎫ ⎪- ⎪== ⎪ ⎪- ⎪- ⎪⎝⎭⎝⎭ (2)由AC=B 得11()C A A A B --=, 故1313112C ==222012123A B -⎛⎫⎛⎫-⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪-⎝⎭---⎝⎭⎝⎭
考点:矩阵和逆矩阵.
2.(15年江苏)已知R y x ∈,,向量⎥⎦⎤⎢⎣⎡-=11α是矩阵⎢⎣
⎡⎥⎦⎤=01y x A 的属性特征值2-的一个特征向量,矩阵A 以及它的另一个特征值.
【答案】1120-⎡⎤A =⎢
⎥⎣⎦,另一个特征值为1. 【解析】
试题分析:由矩阵特征值与特征向量可列出关于x,y 的方程组,再根据特征多项式求出矩阵另一个特征值 试题解析:由已知,得2ααA =-,即1112012x x y y --⎡⎤⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦

则122x y -=-⎧⎨=⎩,即12x y =-⎧⎨=⎩,所以矩阵1120-⎡⎤A =⎢⎥⎣⎦
. 从而矩阵A 的特征多项式()()()21f λλλ=+-,所以矩阵A 的另一个特征值为1. 考点:矩阵运算,特征值与特征向量
3.。

高考数学一轮复习 14.2 矩阵与变换 理 苏教版

高考数学一轮复习 14.2 矩阵与变换 理 苏教版

14.2 矩阵与变换解答题1. 在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在矩阵A =⎣⎢⎡⎦⎥⎤2001对应的变换下得到曲线F ,求F 的方程.解析 设P (x ,y )是椭圆4x 2+y 2=1上的任意一点,点P (x ,y )在矩阵A 对应的变换下变为点P ′(x ′,y ′),则有⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2001 ⎣⎢⎡⎦⎥⎤x y ,即⎩⎪⎨⎪⎧x ′=2x ,y ′=y ,所以⎩⎪⎨⎪⎧x =x ′2y =y ′.又因为点P (x ,y )在椭圆4x 2+y 2=1上, 所以4(x ′2)2+y ′2=1,即x ′2+y ′2=1.故曲线F 的方程为x 2+y 2=1.【点评】 线性变换是基本变换,解这类问题关键是由⎣⎢⎡⎦⎥⎤x ′y ′=A ⎣⎢⎡⎦⎥⎤x y 得到点P ′(x ′,y ′)与点P (x ,y )的坐标关系.2.已知在一个二阶矩阵M 对应变换的作用下,点A (1,2)变成了点A ′(7,10),点B (2,0)变成了点B ′(2,4),求矩阵M . 解析 设M =⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤12=⎣⎢⎡⎦⎥⎤710,⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤20=⎣⎢⎡⎦⎥⎤24, 即⎩⎪⎨⎪⎧ a +2b =7,c +2d =10,2a =2,2c =4.解得⎩⎪⎨⎪⎧a =1,b =3,c =2,d =4.所以M =⎣⎢⎡⎦⎥⎤1324.3.求圆C :x 2+y 2=4在矩阵A =⎣⎢⎡⎦⎥⎤2001的变换作用下的曲线方程.解析 设P ′(x ′,y ′)是圆C :x 2+y 2=4上的任一点,设P (x ,y )是P ′(x ′,y ′)在矩阵A =⎣⎢⎡⎦⎥⎤2 00 1对应变换作用下新曲线上的对应点, 则⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤2 00 1 ⎣⎢⎡⎦⎥⎤x ′y ′=⎣⎢⎡⎦⎥⎤2x ′ y ′, 即⎩⎪⎨⎪⎧x =2x ′,y =y ′,所以⎩⎪⎨⎪⎧x ′=x 2,y ′=y .将⎩⎪⎨⎪⎧x ′=x 2,y ′=y代入x 2+y 2=4,得x 24+y 2=4,故方程为x 216+y 24=1.4.在平面直角坐标系xOy 中,直线l :x +y +2=0在矩阵M =⎣⎢⎡⎦⎥⎤1 a b4对应的变换作用下得到直线m :x -y -4=0,求实数a ,b 的值.解析 在直线l :x +y +2=0上取两点A (-2,0),B (0,-2).A 、B 在矩阵M 对应的变换作用下分别对应于点A ′、B ′.因为⎣⎢⎡⎦⎥⎤1 a b 4 ⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ -2 -2b ,所以点A ′的坐标为(-2,-2b ); ⎣⎢⎡⎦⎥⎤1 a b4 ⎣⎢⎡⎦⎥⎤ 0-2=⎣⎢⎡⎦⎥⎤-2a -8,所以点B ′的坐标为(-2a ,-8). 由题意,点A ′、B ′在直线m :x -y -4=0上,所以⎩⎪⎨⎪⎧-2--2b -4=0,-2a --8-4=0.解得a =2,b =3.5.求曲线C :xy =1在矩阵M =⎣⎢⎡⎦⎥⎤1 1-1 1对应的变换作用下得到的曲线C 1的方程. 解析 设P (x 0,y 0)为曲线C :xy =1上的任意一点,它在矩阵M =⎣⎢⎡⎦⎥⎤11-1 1对应的变换作用下得到点Q (x ,y ) 由⎣⎢⎡⎦⎥⎤ 1 1-11⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,得⎩⎪⎨⎪⎧x 0+y 0=x ,-x 0+y 0=y .解得⎩⎪⎨⎪⎧x 0=x -y2,y 0=x +y2.因为P (x 0,y 0)在曲线C :xy =1上,所以x 0y 0=1. 所以x -y 2×x +y2=1,即x 2-y 2=4.所以所求曲线C 1的方程为x 2-y 2=4. 6. 已知矩阵⎥⎦⎤⎢⎣⎡=d c A 33,若矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,属 于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α.求矩阵A 的逆矩阵. 解析 由矩阵A 属于特征值6的一个特征向量为⎥⎦⎤⎢⎣⎡=111α,可得⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡11=6⎥⎦⎤⎢⎣⎡11,即6=+d c ; 由矩阵A 属于特征值1的一个特征向量为⎥⎦⎤⎢⎣⎡-=232α可得,⎥⎦⎤⎢⎣⎡d c 33⎥⎦⎤⎢⎣⎡-23=⎥⎦⎤⎢⎣⎡-23, 即223-=-d c ,解得⎩⎨⎧==,4,2d c 即A =⎥⎦⎤⎢⎣⎡4233,A 逆矩阵是⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2131-21-32. 7.在平面直角坐标系xOy 中,已知点A (0,0),B (-2,0),C (-2,1),设k 为非零实数,M=⎣⎢⎡⎦⎥⎤k 001,N =⎣⎢⎡⎦⎥⎤0 110,点A 、B 、C 在矩阵MN 对应的变换下得到的点分别为A 1、B 1、C 1,△A 1B 1C 1的面积是△ABC 面积的2倍,求k 的值.解析 由题设得MN =⎣⎢⎡⎦⎥⎤k 00 1⎣⎢⎡⎦⎥⎤0 11 0=⎣⎢⎡⎦⎥⎤k 10.由⎣⎢⎡⎦⎥⎤0 k 10⎣⎢⎡⎦⎥⎤00=⎣⎢⎡⎦⎥⎤00,⎣⎢⎡⎦⎥⎤0 k 1 0 ⎣⎢⎡⎦⎥⎤-2 0=⎣⎢⎡⎦⎥⎤ 0-2,⎣⎢⎡⎦⎥⎤0 k 1 0 ⎣⎢⎡⎦⎥⎤-2 1 ⎣⎢⎡⎦⎥⎤k -2,可知A 1(0,0),B 1(0,-2),C 1(k ,-2). 计算得△ABC 的面积是1,△A 1B 1C 1的面积是|k |,则由题设知|k |=2×1=2. 所以k 的值为-2或2.8.已知矩阵M =⎣⎢⎡⎦⎥⎤110,N =⎣⎢⎡⎦⎥⎤0 -11 0.在平面直角坐标系中,设直线2x -y +1=0在矩阵MN 对应的变换作用下得到的曲线F ,求曲线F 的方程.解析 由题设得MN =⎣⎢⎡⎦⎥⎤0110 ⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤1 00 -1,设(x ,y )是直线2x -y +1=0上任意一点,点(x ,y )在矩阵MN 对应的变换作用下变为(x ′,y ′),则有⎣⎢⎡⎦⎥⎤1 00 -1 ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎣⎢⎡⎦⎥⎤ x -y =⎣⎢⎡⎦⎥⎤x ′y ′, 所以⎩⎪⎨⎪⎧x =x ′,y =-y ′.因为点(x ,y )在直线2x -y +1=0上,从而2x ′-(-y ′)+1=0,即2x ′+y ′+1=0, 所以曲线F 的方程为2x +y +1=0.。

2015届高考苏教版数学大一轮复习配套课件:第14章 第1节 矩阵及其变换

2015届高考苏教版数学大一轮复习配套课件:第14章 第1节 矩阵及其变换

故将曲线xy=1绕坐标原点按逆时针方向旋转45°,所得曲线的方程 为y22-x22=1.
数学
首页
上一页
下一页
末页
第二十六页,编辑于星期五:十点 三十三分。
第一节 矩阵及其变换 结束
2.已知a,b为实数,如果A=
a
0
1
b
所对应的变换T把直线x-y=
1变换为自身,试求a,b的值. 解:设点(x,y)是直线x-y=1上任意一点.在变换T作用下的 对应点为(x′,y′),
2.(2014·福建龙岩模拟)已知点A在变换T:xy →xy′′=x+y 2y 作用后,再绕原点逆时针旋转90°,得到点B,若点B的坐
标为(-3,4),求点A的坐标.
解:10
-11 0 0
12=01
-21.
设A(a,b),则由10 -21ab=- 4 3,得-a+b=2b-=34,.
所以ab= =- 3 2 ,即A(-2,3).
地,矩阵s0 01可以用来表示 水平 伸缩变换. (4)旋转变换:把点A(x,y)绕着坐标原点逆时针旋转α角的
变换,对应的矩阵是csions
α α
-sin cos α
α.
数学
首页
上一页
下一页
末页
第四页,编辑于星期五:十点 三十三分。
第一节 矩阵及其变换 结束
(5)切变变换:
1 0
s 1
x y

数学
首页
上一页
下一页
末页
第八页,编辑于星期五:十点 三十三分。
第一节 矩阵及其变换 结束
待定系数法在平面变换中的应用 通过二阶矩阵与平面向量的乘法求出变换前与变换后坐 标之间的变换公式,进而得到所求曲线(或点),求解时应注 意待定系数法的应用.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲 矩阵与变换1.(2009·江苏卷)求矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤3221的逆矩阵. 解 设矩阵A 的逆矩阵为⎣⎢⎢⎡⎦⎥⎥⎤x z y w , 则⎣⎢⎢⎡⎦⎥⎥⎤3221⎣⎢⎢⎡⎦⎥⎥⎤x z y w =⎣⎢⎢⎡⎦⎥⎥⎤10 01, 即⎣⎢⎡⎦⎥⎤3x +2z 3y +2w 2x +z 2y +w =⎣⎢⎡⎦⎥⎤1001. 故⎩⎨⎧3x +2z =1,2x +z =0,3y +2w =0,2y +w =1,解得⎩⎨⎧x =-1,y =2,z =2,w =-3.从而A 的逆矩阵为A -1=⎣⎢⎢⎡⎦⎥⎥⎤-12 2-3. 2.(2008·江苏卷)在平面直角坐标系xOy 中,设椭圆4x 2+y 2=1在矩阵A =⎣⎢⎢⎡⎦⎥⎥⎤201对应的变换作用下得到曲线F ,求F 的方程. 解 设P (x 0,y 0)是椭圆上任意一点,点P (x 0,y 0)在矩阵A 对应的变换下变为点P ′(x ′0,y ′0)则有 ⎣⎢⎢⎡⎦⎥⎥⎤x ′0y ′0=⎣⎢⎢⎡⎦⎥⎥⎤2001⎣⎢⎢⎡⎦⎥⎥⎤x 0y 0,即⎩⎨⎧x ′0=2x 0y ′0=y 0∴⎩⎪⎨⎪⎧x 0=x ′02,y 0=y ′0.又∵点P 在椭圆上,故4x 20+y 20=1,从而x ′20+y ′20=1.∴曲线F 的方程是x 2+y 2=1. 3.已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤1ba 1,N =⎣⎢⎢⎡⎦⎥⎥⎤c 0 2d ,且MN =⎣⎢⎢⎡⎦⎥⎥⎤2-200.(1)求实数a 、b 、c 、d 的值;(2)求直线y =3x 在矩阵M 所对应的线性变换作用下的像的方程.解 (1)由题设得:⎩⎨⎧c +0=2,2+ad =0,bc +0=-2,2b +d =0.解得⎩⎨⎧a =-1,b =-1,c =2,d =2.(2)∵矩阵M 对应的线性变换将直线变成直线(或点), ∴可取直线y =3x 上的两点(0,0),(1,3), 由⎣⎢⎢⎡⎦⎥⎥⎤1-1-11⎣⎢⎢⎡⎦⎥⎥⎤00=⎣⎢⎢⎡⎦⎥⎥⎤00,⎣⎢⎢⎡⎦⎥⎥⎤1-1 -11⎣⎢⎢⎡⎦⎥⎥⎤13=⎣⎢⎢⎡⎦⎥⎥⎤-22, 得点(0,0),(1,3)在矩阵M 所对应的线性变换作用下的像是点(0,0),(-2,2). 从而,直线y =3x 在矩阵M 所对应的线性变换作用下的像的方程为 y =-x .4.(2014·苏北四市调研一)若点A (2,2)在矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤cos αsin α -sin αcos α对应变换的作用下得到的点为B (-2,2),求矩阵M 的逆矩阵. 解 由题意,知M ⎣⎢⎢⎡⎦⎥⎥⎤22=⎣⎢⎢⎡⎦⎥⎥⎤-22, 即⎣⎢⎢⎡⎦⎥⎥⎤2cos α-2sin α2sin α+2cos α=⎣⎢⎢⎡⎦⎥⎥⎤-22, ∴⎩⎨⎧ cos α-sin α=-1,sin α+cos α=1,解得⎩⎨⎧cos α=0,sin α=1. ∴M =⎣⎢⎢⎡⎦⎥⎥⎤01 -10. 由M -1M =⎣⎢⎢⎡⎦⎥⎥⎤101,解得M -1=⎣⎢⎢⎡⎦⎥⎥⎤0-110. 5.(2013·南通调研)已知二阶矩阵A =⎣⎢⎡⎦⎥⎤a b c d ,矩阵A 属于特征值λ1=-1的一个特征向量为a 1=⎣⎢⎡⎦⎥⎤ 1-1,属于特征值λ2=4的一个特征向量为a 2=⎣⎢⎡⎦⎥⎤32,求矩阵A .解 由特征值、特征向量定义可知,Aa 1=λ1a 1, 即⎣⎢⎡⎦⎥⎤ab cd ⎣⎢⎡⎦⎥⎤ 1-1=-1×⎣⎢⎡⎦⎥⎤1-1,得⎩⎨⎧a -b =-1,c -d =1.同理可得⎩⎨⎧3a +2b =12,3c +2d =8.解得a =2,b =3,c =2,d =1.因此矩阵A =⎣⎢⎡⎦⎥⎤2321. 6.(2012·扬州调研)已知矩阵M =⎣⎢⎢⎡⎦⎥⎥⎤3-1 -13,求M 的特征值及属于各特征值的一个特征向量.解 由矩阵M 的特征多项式f (λ)=⎪⎪⎪⎪⎪⎪⎪⎪λ-311λ-3= (λ-3)2-1=0,解得λ1=2,λ2=4,即为矩阵M 的特征值. 设矩阵M 的特征向量为⎣⎢⎡⎦⎥⎤x y ,当λ1=2时,由M ⎣⎢⎡⎦⎥⎤x y =2⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧-x +y =0,x -y =0.可令x =1,得y =1,∴α1=⎣⎢⎡⎦⎥⎤11是M 的属于λ1=2的特征向量.当λ2=4时,由M ⎣⎢⎡⎦⎥⎤x y =4⎣⎢⎡⎦⎥⎤x y ,可得⎩⎨⎧x +y =0,x +y =0,取x =1,得y =-1,∴α2=⎣⎢⎡⎦⎥⎤1-1是M 的属于λ2=4的特征向量.7.(2014·南京模拟)求曲线C :xy =1在矩阵M =⎣⎢⎡⎦⎥⎤ 11-1 1 对应的变换作用下得到的曲线C 1的方程.解 设P (x 0,y 0)为曲线C :xy =1上的任意一点, 它在矩阵M =⎣⎢⎡⎦⎥⎤11-1 1对应的变换作用下得到点Q (x ,y ) 由⎣⎢⎡⎦⎥⎤ 1 1-11⎣⎢⎡⎦⎥⎤x 0y 0=⎣⎢⎡⎦⎥⎤x y ,得⎩⎨⎧x 0+y 0=x ,-x 0+y 0=y . 解得⎩⎪⎨⎪⎧x 0=x -y 2,y 0=x +y2.因为P (x 0,y 0)在曲线C :xy =1上,所以x 0y 0=1. 所以x -y 2×x +y2=1,即x 2-y 2=4. 所以所求曲线C 1的方程为x 2-y 2=4. 8.已知矩阵A =⎣⎢⎡⎦⎥⎤1002,B =⎣⎢⎡⎦⎥⎤0 -11 0,求(AB )-1. 解 AB =⎣⎢⎡⎦⎥⎤1 00 2⎣⎢⎡⎦⎥⎤0 -11 0=⎣⎢⎡⎦⎥⎤0 -12 0. 设(AB )-1=⎣⎢⎡⎦⎥⎤a b c d , 则由(AB )·(AB )-1=⎣⎢⎡⎦⎥⎤1001, 得⎣⎢⎡⎦⎥⎤0 -12 0⎣⎢⎡⎦⎥⎤a b c d =⎣⎢⎡⎦⎥⎤1 00 1,即⎣⎢⎡⎦⎥⎤-c -d 2a 2b =⎣⎢⎡⎦⎥⎤1 00 1, 所以⎩⎨⎧-c =1,-d =0,2a =0,2b =1,解得⎩⎪⎨⎪⎧a =0,b =12,c =-1,d =0.故(AB )-1=⎣⎢⎢⎡⎦⎥⎥⎤012-1 0. 9.(2011·福建卷)设矩阵M =⎣⎢⎡⎦⎥⎤a00 b (其中a >0,b >0). (1)若a =2,b =3,求矩阵M 的逆矩阵M -1;(2)若曲线C :x 2+y 2=1在矩阵M 所对应的线性变换作用下得到曲线C ′:x 24+y 2=1,求a 、b 的值.解 (1)设矩阵M 的逆矩阵M -1=⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2, 则MM -1=⎣⎢⎡⎦⎥⎤1001. 又M =⎣⎢⎡⎦⎥⎤200 3.∴⎣⎢⎡⎦⎥⎤2 003⎣⎢⎡⎦⎥⎤x 1 y 1x 2 y 2=⎣⎢⎡⎦⎥⎤1 001. ∴2x 1=1,2y 1=0,3x 2=0,3y 2=1, 即x 1=12,y 1=0,x 2=0,y 2=13,故所求的逆矩阵M -1=⎣⎢⎢⎡⎦⎥⎥⎤12 00 13. (2)设曲线C 上任意一点P (x ,y ),它在矩阵M 所对应的线性变换作用下得到点P ′(x ′,y ′),则⎣⎢⎡⎦⎥⎤a00 b ⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即⎩⎨⎧ax =x ′,by =y ′,又点P ′(x ′,y ′)在曲线C ′上,∴x ′24+y ′2=1.则a 2x 24+b 2y 2=1为曲线C 的方程.又已知曲线C 的方程为x 2+y 2=1,故⎩⎨⎧a 2=4,b 2=1.又a >0,b >0,∴⎩⎨⎧a =2,b =1.10.(2012·南通调研)已知矩阵M =⎣⎢⎡⎦⎥⎤2a 21,其中a ∈R ,若点P (1,-2)在矩阵M 的变换下得到点P ′(-4,0),求: (1)实数a 的值;(2)矩阵M 的特征值及其对应的特征向量. 解 (1)由⎣⎢⎡⎦⎥⎤2 a 2 1⎣⎢⎡⎦⎥⎤ 1-2=⎣⎢⎡⎦⎥⎤-4 0, 所以2-2a =-4.所以a =3.(2)由(1)知M =⎣⎢⎡⎦⎥⎤2 32 1,则矩阵M 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-2 -3-2 λ-1=(λ-2)(λ-1)-6=λ2-3λ-4. 令f (λ)=0,得矩阵M 的特征值为-1与4. 当λ=-1时,⎩⎨⎧(λ-2)x -3y =0,-2x +(λ-1)y =0⇒x +y =0.所以矩阵M 的属于特征值-1的一个特征向量为⎣⎢⎡⎦⎥⎤1-1.当λ=4时,⎩⎨⎧(λ-2)x -3y =0,-2x +(λ-1)y =0⇒2x -3y =0.所以矩阵M 的属于特征值4的一个特征向量为⎣⎢⎡⎦⎥⎤32.11.已知二阶矩阵M 有特征值λ=8及对应的一个特征向量e 1=⎣⎢⎡⎦⎥⎤11,并且矩阵M 对应的变换将点(-1,2)变换成(-2,4). (1)求矩阵M ;(2)求矩阵M 的另一个特征值,及对应的一个特征向量e 2的坐标之间的关系;(3)求直线l :x -y +1=0在矩阵M 的作用下的直线l ′的方程. 解 (1)设M =⎣⎢⎡⎦⎥⎤ab cd ,则⎣⎢⎡⎦⎥⎤a b c d ⎣⎢⎡⎦⎥⎤11=8⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤88,故⎩⎨⎧a +b =8,c +d =8.因⎣⎢⎡⎦⎥⎤ab c d ⎣⎢⎡⎦⎥⎤-1 2=⎣⎢⎡⎦⎥⎤-2 4,故⎩⎨⎧-a +2b =-2,-c +2d =4. 联立以上两方程组解得a =6,b =2,c =4,d =4, 故M =⎣⎢⎡⎦⎥⎤6244. (2)由(1)知,矩阵M 的特征多项式为 f (λ)=(λ-6)(λ-4)-8=λ2-10λ+16, 故其另一个特征值为λ=2.设矩阵M 的另一个特征向量是e 2=⎣⎢⎡⎦⎥⎤x y ,则Me 2=⎣⎢⎡⎦⎥⎤6x +2y 4x +4y =2⎣⎢⎡⎦⎥⎤x y ,解得2x +y =0.(3)设点(x ,y )是直线l 上的任一点,其在矩阵M 的变换下对应的点的坐标为(x ′,y ′),则⎣⎢⎡⎦⎥⎤624 4⎣⎢⎡⎦⎥⎤x y =⎣⎢⎡⎦⎥⎤x ′y ′,即x =14x ′-18y ′,y =-14x ′+38y ′,代入直线l 的方程后并化简得x ′-y ′+2=0,即x -y +2=0.12.已知矩阵A =⎣⎢⎡⎦⎥⎤1 a -1 b ,A 的一个特征值λ=2,其对应的特征向量是α1=⎣⎢⎡⎦⎥⎤21.(1)求矩阵A ;(2)若向量β=⎣⎢⎡⎦⎥⎤74,计算A 5β的值.解 (1)A =⎣⎢⎡⎦⎥⎤ 12-14. (2)矩阵A 的特征多项式为f (λ)=⎪⎪⎪⎪⎪⎪λ-1 -2 1 λ-4=λ2-5λ+6=0,得λ1=2,λ2=3,当λ1=2时,α1=⎣⎢⎡⎦⎥⎤21,当λ2=3时,得α2=⎣⎢⎡⎦⎥⎤11.由β=m α1+n α2,得⎩⎨⎧2m +n =7,m +n =4,解得m =3,n =1.∴A 5β=A 5(3α1+α2)=3(A 5α1)+A 5α2=3(λ51α1)+λ52α2=3×25⎣⎢⎡⎦⎥⎤21+35⎣⎢⎡⎦⎥⎤11=⎣⎢⎡⎦⎥⎤435339.。

相关文档
最新文档