PID设计
数字pid控制系统设计方案

数字PID控制系统设计方案如下:一、引言PID控制器是一种常用的闭环控制算法,用于调节系统的输出以使系统稳定在设定值附近。
数字PID控制系统通过数字信号处理器(DSP)或单片机实现PID控制算法,具有灵活性高、易实现和调试等优点。
本文将介绍数字PID控制系统的设计方案,包括硬件连接、软件算法设计和系统调试等内容。
二、硬件设计1. 控制对象:确定待控制的物理对象或过程,例如电机转速、温度、液位等。
2. 传感器:选择合适的传感器获取待控量的反馈信号,如编码器、温度传感器、压力传感器等。
3. 执行器:选择合适的执行器,如电机、阀门等,用于调节系统输出。
4. 控制器:采用DSP或单片机作为数字PID控制器,负责计算PID 控制算法输出并控制执行器。
三、软件算法设计1. PID算法:根据系统特性和需求设计PID控制算法,包括比例项、积分项和微分项的权重和计算方法。
2. 离散化:将连续时间的PID算法离散化,适应数字控制器的运算方式。
3. 反馈控制:读取传感器反馈信号,计算PID输出,并控制执行器实现闭环控制。
四、系统调试1. 参数整定:通过实验和调试确定PID控制器中的比例系数、积分时间和微分时间等参数。
2. 稳定性测试:观察系统响应和稳定性,调整PID参数以提高系统性能。
3. 实时监测:实时监测系统输入、输出和误差信号,确保PID控制器正常工作。
五、性能优化1. 自适应控制:根据系统动态特性调整PID参数,实现自适应控制。
2. 鲁棒性设计:考虑系统模型不确定性和外部扰动,设计鲁棒性PID 控制算法。
3. 高级控制:结合模糊控制、神经网络等高级控制方法,优化系统性能。
六、总结数字PID控制系统设计是一项重要的控制工程任务,通过合理的硬件设计和软件算法实现,可以实现对各种控制对象的精确控制。
希望通过本文的介绍,读者能够了解数字PID控制系统的设计原理和实现方法,并在实践中不断提升控制系统设计和调试的能力。
锅炉温度PID控制系统设计

第1章绪论1.1课题背景根据国内实际情况和环保问题的考虑和要求,燃烧锅炉由于污染并效率不高,已经逐渐被淘汰;燃油和燃气锅炉也存在着燃料供应不方便和安全性等问题。
因些在人口密集的居民区、旅馆、医院和学校,电加热锅炉完全替代燃煤、燃油、燃气锅炉。
自70年代以来,由于工业过程控制的需要,特别是在微电子技术和计算机技术的迅猛发展以及自动控制理论和设计方法发展的推动下,国内外温度控制系统的发展迅速,并在智能化,自适应、参数整定等方面,以日本、美国、德国、瑞典等国技术领先,都生产出了一批商品化的、性能优异的温度控制器及仪表,并在各行广泛应用。
电加热锅炉采用全新加热方式,它具有许多优点,使其比其他形式的锅炉更具有吸引力:(1) 无污染。
不会排放出有害气体、飞尘、灰渣,完全符合环保方面的要求。
(2) 能量转化效率高。
加热元件直接与水接触,能量转换效率很高,可达95%以上。
(3) 锅炉本体结构简单,安全性好。
不需要布管路,没有燃烧室、烟道,不会出现燃煤、燃油、燃气的泄漏和爆炸危险。
(4) 结构简单、体积小、重量轻,占地面积小。
(5) 启动、停止速度快,运行负荷调节范围大,调节速度快,操作简单。
由于加热元件工作由外部电气开关控制,所以启停速度快。
(6) 可采用计算机监控,完全实现自动化。
其温度的控制都能通过微控制芯片完成,使锅炉的运行完全实现自动化,最大程度地将控制器应用于传统的锅炉行业。
本课题主要研究锅炉温度的过程控制。
新型锅炉是机电一体化的产品,可将电能直接转化成热能,具有效率高,体积小,无污染,运行安全可靠,供热稳定,自动化程度高的优点,是理想的节能环保的供暖设备。
加上目前人们的环保意识的提高,电热锅炉越来越受人们的重视,在工业生产和民用生活用水中应用越来越普及。
电热锅炉目前主要用于供暖和提供生活用水。
主要是控制水的温度,保证恒温供水。
随着计算机和信息技术的高速发展,单片机广泛的应用于工业控制中。
工业控制也越来越多的采用计算机控制,在这里我们采用51系列单片机来做控制器。
《基于软PLC的PID控制系统的设计与实现》

《基于软PLC的PID控制系统的设计与实现》一、引言随着工业自动化程度的不断提高,PID(比例-积分-微分)控制系统在工业生产过程中扮演着越来越重要的角色。
而软PLC (软件可编程逻辑控制器)作为一种新型的控制器,具有灵活、易用、可编程等优点,广泛应用于各种工业控制系统中。
本文将介绍基于软PLC的PID控制系统的设计与实现,旨在提高工业控制系统的性能和可靠性。
二、系统设计1. 需求分析在系统设计阶段,首先需要对系统需求进行全面的分析。
主要包括系统的控制对象、控制目标、系统性能指标等。
基于软PLC的PID控制系统主要用于对工业生产过程中的各种参数进行精确控制,以达到提高产品质量、降低能耗等目的。
2. 系统架构设计系统架构设计是系统设计的关键环节。
基于软PLC的PID控制系统采用分层结构设计,包括人机交互层、控制层和执行层。
人机交互层负责与操作人员进行交互,控制层负责实现PID控制算法,执行层负责与被控对象进行交互。
3. PID控制算法设计PID控制算法是系统的核心部分。
通过调整比例、积分和微分三个参数,使系统达到最佳的控制效果。
在算法设计过程中,需要考虑系统的稳定性、快速性、准确性等指标。
同时,为了适应不同控制对象的需求,系统支持多种PID控制算法的选择和切换。
三、系统实现1. 软PLC平台选择与搭建选择合适的软PLC平台是实现系统的基础。
根据系统需求和性能要求,选择具有良好可编程性、稳定性和扩展性的软PLC平台。
在搭建过程中,需要配置适当的硬件设备,如I/O模块、通信模块等,以保证系统的正常运行。
2. PID控制算法编程实现在软PLC平台上,使用编程语言(如梯形图、指令表等)实现PID控制算法。
在编程过程中,需要注意算法的逻辑性、可读性和可维护性。
同时,为了方便调试和优化,系统支持在线编程和离线仿真功能。
3. 系统调试与优化在系统实现后,需要进行系统调试和优化。
通过调整PID参数、检查程序逻辑等方式,确保系统达到预期的控制效果。
PID设计

管道和仪表流程图又称为P&I D,是P I P I N G A N D I N S T R U M E N T A T I O N D I A G R A M的缩写。
P&I D的设计是在P F D的基础上完成的。
它是化工厂的工程设计中从工艺流程到工程施工设计的重要工序,是工厂安装设计的依据。
化工工程的设计,从工艺包、基础设计到详细设计中的大部分阶段,P&I D都是化工工艺及工艺系统专业的设计中心,其他专业(设备、机泵、仪表、电气、管道、土建、安全等)都在为实现P&I D里的设计要求而工作。
广义的P&I D可分为工艺管道和仪表流程图(即通常意义的P&I D)和公用工程管道和仪表流程图(即U I D)两大类。
由于P&I D的设计千变万化,对同一工艺流程的装置,也可以因为外界因素的影响(如用户要求、地理环境的差异、以及操作人员的经验不同等),需要在设计P&I D时作出相应对策,再加上设计者不同的处理方法,因而同一工艺流程在不同的工程项目中,其P&I D不可能完全相同,但也不会有太大的差异。
P&I D通常有6~8版,视工程需要而定。
一套完整的P&I D及U I D清楚地标出工艺流程对工厂安装设计中的所有要求,包括所有的设备、配管、仪表等方面的内容和数据。
下面,对P&I D及U I D的设计进行简单介绍。
一.P&I D的设计1.P&I D的设计内容P&I D的设计应包括下列内容。
1.1设备(1)设备的名称和位号。
每台设备包括备用设备,都必须标示出来。
对于扩建、改建项目,已有设备要用细实线表示,并用文字注明。
(2)成套设备对成套供应的设备(如快装锅炉、冷冻机组、压缩机组等),要用点划线画出成套供应范围的框线,并加标注。
通常在此范围内的所有附属设备位号后都要带后缀“X”以示这部分设备随主机供应,不需另外订货。
基于PID的液位控制系统的设计与实现

基于PID的液位控制系统的设计与实现液位控制系统是工业生产过程中常用的控制技术之一、PID(比例-积分-微分)控制器是一种经典的控制算法,可以有效地实现液位控制。
本文将设计和实现基于PID的液位控制系统。
液位控制系统一般由传感器、执行器和控制器组成。
传感器用于测量液位高度,执行器用于调节液位,而控制器则根据测量值和设定值之间的差异来控制执行器的运动。
在这个过程中,PID控制器起到关键的作用。
首先,我们需要设计传感器来测量液位高度。
常见的液位传感器有浮子式、压力式和电容式传感器。
根据实际应用需求,选择适合的传感器。
传感器的输出值将作为反馈信号输入到PID控制器中。
其次,我们需要选择合适的执行器来调节液位。
根据液位的控制需求,可以选择阀门、泵等执行器。
这些执行器的动作是由PID控制器输出的控制信号来控制的。
接下来,我们将重点介绍PID控制器的设计和实现。
PID控制器由比例、积分和微分三个部分组成。
比例部分输出和误差成正比,积分部分输出和误差的累积和成正比,微分部分输出和误差的变化率成正比。
PID控制器的公式为:输出=Kp*错误+Ki*积分误差+Kd*微分误差其中,Kp、Ki、Kd是PID控制器的三个参数。
这些参数的选择对于系统的稳定性和响应速度有重要影响。
参数的选择需要通过实验和调试来确定。
在PID控制器的实现中,有两种常用的方式:模拟PID和数字PID。
模拟PID控制器基于模拟电路实现,适用于一些低要求的应用场景。
数字PID控制器基于微处理器或单片机实现,适用于更复杂的控制场景。
在具体的实现中,我们需要先进行系统建模和参数调整。
系统建模是将液位控制系统转化为数学模型,以便进行分析和设计。
常见的建模方法有传递函数法和状态空间法。
参数调整是通过实验和仿真等手段来确定PID控制器的参数。
接下来,根据建模和参数调整的结果,我们可以进行PID控制器的实际设计和实现。
在设计过程中,需要注意选择合适的控制算法和调试方法,以保证系统的稳定性和性能。
PID控制器设计与参数整定方法综述

PID控制器设计与参数整定方法综述一、本文概述本文旨在全面综述PID(比例-积分-微分)控制器的设计与参数整定方法。
PID控制器作为一种广泛应用的工业控制策略,其设计的优劣直接影响到控制系统的性能和稳定性。
因此,深入理解并掌握PID控制器的设计原则与参数整定方法,对于提高控制系统的性能具有非常重要的意义。
本文将首先介绍PID控制器的基本原理和组成结构,包括比例、积分和微分三个基本环节的作用和特点。
在此基础上,详细阐述PID控制器设计的一般步骤和方法,包括确定控制目标、选择控制算法、设定PID参数等。
本文还将重点介绍几种常用的PID参数整定方法,如Ziegler-Nichols法、Cohen-Coon法以及基于优化算法的参数整定方法等,并对这些方法的优缺点进行比较分析。
本文将结合具体的应用实例,展示PID控制器设计与参数整定方法在实际工程中的应用效果,以期为读者提供有益的参考和借鉴。
通过本文的阅读,读者将能够全面了解PID控制器的设计与参数整定方法,掌握其在实际应用中的技巧和注意事项,为提高控制系统的性能和稳定性提供有力的支持。
二、PID控制器的基本原理PID(比例-积分-微分)控制器是一种广泛应用于工业控制系统的基本控制策略。
它的基本工作原理是基于系统的误差信号(即期望输出与实际输出之间的差值)来调整系统的控制变量,以实现对系统的有效控制。
PID控制器的核心在于其通过调整比例、积分和微分三个环节的参数,即比例系数Kp、积分系数Ki和微分系数Kd,来优化系统的动态性能和稳态精度。
比例环节(P)根据误差信号的大小成比例地调整控制变量,从而直接减少误差。
积分环节(I)则是对误差信号进行积分,以消除系统的静态误差,提高系统的稳态精度。
微分环节(D)则根据误差信号的变化趋势进行预测,提前调整控制变量,以改善系统的动态性能,抑制过冲和振荡。
PID控制器的这三个环节可以单独使用,也可以组合使用,以满足不同系统的控制需求。
直线电机的PID控制器设计

直线电机的PID控制器设计直线电机是一种常用于工业自动化控制系统中的电动机,它具有结构简单、性能优越等优点,广泛应用于数控机床、自动化生产线等领域。
PID控制器是一种常用的控制算法,可以对直线电机进行精确的位置、速度和力矩控制。
1.系统建模:首先需要对直线电机进行建模,得到其数学模型。
直线电机的数学模型可以通过动力学方程来描述,其中考虑到机械和电磁的相互作用。
根据直线电机的特性,可以得到其动力学方程,例如:Mi=Ke*Ie-Fe-Ff-FvVi=Kt*i其中Mi为直线电机的力矩,Ke为电动势常数,Ie为电流,Fe为电磁力,Ff为摩擦力,Fv为外部干扰力,Vi为速度,Kt为电动势常数,i为电流。
2. 参数调整:在PID控制器中,P代表比例控制,I代表积分控制,D代表微分控制。
需要根据实际情况对这三个参数进行调整,以达到最优的控制效果。
参数调整可以通过试验或者计算的方式进行。
常见的调参方法有Ziegler-Nichols方法、最小二乘法等。
3.控制策略选择:根据实际需求,选择合适的控制策略。
直线电机的PID控制器可以采用位置控制、速度控制或者力矩控制策略。
根据电机的特点和应用场景,选择合适的控制策略。
4.实施控制算法:将PID控制器算法实施到直线电机的控制系统中。
使用编程语言或者控制器硬件进行实现,将参数调整好的PID控制器算法应用到直线电机的控制系统中。
5.闭环控制:PID控制器是一种闭环控制算法。
在实际使用中,需要通过传感器获取直线电机的实际位置、速度或者力矩,然后将其与期望值进行比较,计算出控制信号,对直线电机进行调节。
通过反馈控制,使得直线电机的输出与期望输出尽可能接近,实现精确的控制。
在PID控制器设计中,还需要考虑以下几个因素:1.控制器输出:PID控制器通过计算得到的控制信号,需要转换成适合直线电机的输入信号。
可以通过电流、电压加以控制。
2.控制器稳定性:PID控制器需要保持系统的稳定性,以确保输出结果不会出现震荡、持续偏差等情况。
汽车巡航系统PID控制器设计

汽车巡航系统PID控制器设计本文中,首先建立了基于PID控制器的巡航控制系统框图如3.3所示。
图3.3 巡航系统PID控制系统框图Fig. 3.3 The block diagram of ACC PID control system以参考车速与巡航车实际车速之差E为PID控制系统输入变量,差值E经PID控制器计算,输出节气门开度值,节气门开度输入车辆纵向动力学模型中,输出巡航车实际速度,实际车速作为反馈量形成闭环控制。
(1)汽车结构参数选取选取的车辆参数如下表3.4所示。
表3.4 车辆结构参数Tab. 3.4 Vehicle structure parameters参数符号取值车辆质量m1250 kg轴距L 2.5 m 轴距离重心距离f L 1.1 mL 1.4 m 后轴距离重心距离rC0.379 kg/m2风阻系数d车轮半径r0.334 m等效迎风面积A 1.93 m2发动机转动部件和液力变I0.11 kgm2矩器泵轮的有效转动惯量e前轮转动惯量f I 1.8 kgm2I 1.8 kgm2后轮转动惯量r减速器传动比o i 4.43 传动系动力传递系数t 0.99滚动阻力系数f0.02(2)仿真工况设计论文设定仿真时间140s,设计了多种仿真工况,包括低速行驶状态下匀加速、匀速,高速行驶状态下匀加速、匀速及匀减速工况。
具体描述为初始时刻巡航车静止,前方目标车辆以12km/h起步并以0.8m/s2加速度加速至20km/h,然后以此速度匀速前进30s,在40s时再以1.5 m/s2加速至80km/h,保持80km/h速度匀速前进至120s,最终再以-0.5m/s2匀减速行驶。
汽车巡航系统PID控制仿真模块,它由纵向动力学模块及其控制器模块组成。
纵向动学模块包括发动机模块、液力变矩器模块、自动变速器模块以及车辆传动、行驶系及整车运动系统模块。
车辆纵向动力学模块仿真框图图中,FDJ——发动机子模块;YLBJQ——液力变矩器模快;CD——传递模块;CLDLX——车辆传动、行驶系及整车运动系统模块。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
P&ID 设计 1 管道和仪表流程图又称为P&ID,是PIPING AND INSTRUMENTATION DIAGRAM的缩写。P&ID的设计是在PFD的基础上完成的。它是化工厂的工程设计中从工艺流程到工程施工设计的重要工序,是工厂安装设计的依据。
化工工程的设计,从工艺包、基础设计到详细设计中的大部分阶段,P&ID 都是化工工艺及工艺系统专业的设计中心,其他专业(设备、机泵、仪表、电气、管道、土建、安全等)都在为实现P&ID里的设计要求而工作。
广义的P&ID可分为工艺管道和仪表流程图(即通常意义的P&ID)和公用工程管道和仪表流程图(即UID)两大类。
由于P&ID的设计千变万化,对同一工艺流程的装置,也可以因为外界因素的影响(如用户要求、地理环境的差异、以及操作人员的经验不同等),需要在设计P&ID时作出相应对策,再加上设计者不同的处理方法,因而同一工艺流程在不同的工程项目中,其P&ID不可能完全相同,但也不会有太大的差异。P&ID通常有6~8版,视工程需要而定。
一套完整的P&ID及UID清楚地标出工艺流程对工厂安装设计中的所有要求,包括所有的设备、配管、仪表等方面的内容和数据。
下面,对P&ID及UID的 设计进行简单介绍。 一. P&ID的设计 1.P&ID的设计内容 P&ID的设计应包括下列内容。 1.1 设备 (1)设备的名称和位号。 每台设备包括备用设备,都必须标示出来。对于扩建、改建项目,已有设备要用细实线表示,并用文字注明。
(2)成套设备 对成套供应的设备(如快装锅炉、冷冻机组、压缩机组等),要用点划线画出成套供应范围的框线,并加标注。通常在此范围内的所有附属设备位号后都要带后缀“X”以示这部分设备随主机供应,不需另外订货。
(3)设备位号和设备规格 P&ID上应注明设备位号和设备的主要规格和设计参数,如泵应注明流量Q和扬程H;容器应注明直径D和长度L;换热器要注出换热面积及设计数据;储罐要注出容P&ID 设计 2 积及有关的数据。和PFD不同的是,P&ID中标注的设备规格和参数是设计值,而PFD标注的是操作数据。
(4)接管与联接方式 管口尺寸、法兰面形式和法兰压力等级均应详细注明。一般而言,若设备管口的尺寸、法兰面形式和压力等级与相接管道尺寸、管道等级规定的法兰面形式和压力等级一致,则不需特殊标出;若不一致,须在管口附近加注说明,以免在安装设计时配错法兰。
(5)零部件 为便于理解工艺流程,零部件如与管口相邻的塔盘、塔盘号和塔的其他内件(如挡板、堰、内分离器、加热/冷却盘)都要在P&ID中表示出来。
(6)标高 对安装高度有要求的设备必须标出设备要求的最低标高。塔和立式容器须标明自地面到塔、容器下切线的实际距离或标高;卧式容器应标明容器内底部标高或到地面的实际距离。
(7)驱动装置 泵、风机和压缩机的驱动装置要注明驱动机类型,有时还要标出驱动机功率。 (8)排放要求 P&ID应注明容器、塔、换热器等设备和管道的放空、放净去向,如排放到大气、泄压系统、干气系统或湿气系统。若排往下水道,要分别注明排往生活污水、雨水或含油污水系统。
1.2配管 (1)管道规格 在P&ID中要表示出全部在正常生产、开车、停车、事故维修、取样、备用、再生各种工况下所需要的工艺物料管线和公用工程管线。所有的管道都要注明管径、管道号、管道等级和介质流向。管径一般用公称直径(DN)表示,根据工程的要求,也可采用英制(”,英寸)。
若同一根管道上使用了不同等级的材料,应在图上注明管道等级的分界点。 一般在P&ID上管道改变方向处标明介质流向。 (2)间断使用的管道 P&ID 设计 3 对间断使用的管道要注明“开车”、“停车”、“正常无流量(NNF)”等字样。
(3)阀件 正常操作时常闭的阀件或需要保证开启或关闭的阀门要注明“常闭(N.C)”、“铅封开(C.S.O)”、“铅封闭(C.S.C)”、“锁开(L.O)”、“锁闭(L.C)”等字样。
所有的阀门(仪表阀门除外)在P&ID上都要示出,并按图例表示出阀门的形式;若阀门尺寸与管道尺寸不一致时,要注明。
阀门的压力等级与管道的压力等级不一致时,要标注清楚;如果压力等级相同,但法兰面的形式不同,也要标明,以免安装设计时配错法兰,导致无法安装。
(4)管道的衔接 管道进出P&ID中,图面的箭头接到哪一张图及相接设备的名称和位号要交待清楚。以便查找相接的图纸和设备。
(5)两相流管道 两相流管道由于容易产生“塞流”而造成管道振动,因此应在P&ID上注明“两相流”。
(6)管口 开车、停车、试车用的放空口、放净口、蒸汽吹扫口、冲洗口和灭火蒸汽口等,在P&ID上都要清楚地标示出来。
(7)伴热管 蒸汽伴热管、电伴热管、夹套管及保温管等,在P&ID中要清楚地标示出来,但保温厚度和保温材料类别不必示出(可以在管道数据表上查到)。
(8)埋地管道 所有埋地管道应用虚线标示,并标出始末点的位置。 (9)管件 各种管路附件,如补偿器、软管、永久过滤器、临时过滤器、异径管、盲板、疏水器、可拆卸短管、非标准的管件等都要在图上标示出来。有时还要注明尺寸,工艺要求的管件要标上编号。
(10)取样点 P&ID 设计 4 取样点的位置和是否有取样冷却器等都要标出,并注明接管尺寸、编号。 (11)特殊要求 管道坡度、对称布置和液封高度要求等均必须注明。 (12)成套设备接管 P&ID中应标示出和成套供应的设备相接的连结点,并注明设备随带的管道和阀门与工程设计管道的分界点。工程设计部分必须在P&ID上标示,并与设备供货的图纸一致。
(13)扩建管道与原有管道 扩建管道与已有设备或管道连接时,要注明其分界点。已有管道用细实线表示。
(14)装置内、外管道 装置内管道与装置外管道连接时,要画“管道连接图”。并列表标出:管道号、管径、介质名称;装置内接往某张图、与哪个设备相接;装置外与装置边界的某根管道相接,这根管道从何处来或去何处。
(15)特殊阀件 双阀、旁通阀在P&ID上都要标示清楚。 (16)清焦管道 在反应器的催化剂再生时;须除焦的管道应标注清楚。 1.3 仪表与仪表配管 (1)在线仪表 流量计、调节阀等在线仪表的接口尺寸如与管道尺寸不一致时,要注明尺寸。 (2)调节阀 调节阀及其旁通阀要注明尺寸,并标明事故开(FO)或事故关(FC)、是否可以手动等。我国钢制调节阀阀体的最低压力等级是 4 x 106Pa,而管道的压力等级往往低于 4 x 106Pa,此点在 P&ID上要注明,以免法兰配不上。
(3)安全阀/呼吸阀(压力真空释放阀) 要注明连接尺寸和设定压力值。 (4)设备附带仪表 P&ID 设计 5 设备上的仪表如果是作为设备附件供应,不须另外订货时,要加标注,该仪表编号可加后缀“X”。
(5) 仪表编号 仪表编号和电动、气动讯号的联接不可遗漏,按图例符号规定(lead sheet)编制。
(6)联锁及讯号 联锁及声、光讯号在P&ID上亦要表示清楚。 (7)冲洗、吹扫 仪表的冲洗、吹扫要示出。 (8)成套设备 成套供应设备的供货范围要标明。对由制造厂成套供货范围内的仪表,要加标注,可在编号后加后缀“X”。
1.4其他 在P&ID中要将特殊的设计及安装要求标示出来,亦可作为注释单独列出,如开/停车联锁、再生要求、仪表与有关的管道阀的安装要求、特殊的专用管件等。
2.P&ID的设计过程 P&ID的设计过程是从无到有、从不完善到完善的过程。研究P&ID的设计过程,有利于提高其设计质量。
P&ID的设计,必须待工艺流程完全确定后(但不是工艺流程设计完全结束后)才能开始,否则容易造成大返工。
P&ID的设计一般要经过初步条件版、内部审核版、供建设单位批准版、设计版、施工版和竣工版等阶段后才能完成。
2.1 初步条件版(0版) P&ID设计过程中,系统专业需要具备必要的基础资料。这些资料在P&ID设计初期不可能全部具备,但有了主要部分即可开展工作。
P&ID的0版可以由系统工程师完成。也可由工艺工程师完成后移交给系统工程师,由系统工程师继续完成后面的一系列工作。此版P&ID属于工艺包设计的内容。
0版P&ID的主要作用,一是供配管专业进行装置布置和主要管道走向的研究使用;二是供给自控专业完善自控设计。在此版设计时,P&ID的设计者根据PFD和自己P&ID 设计 6 的专业知识进行仪表设计。关于控制方案,还应听取用户的意见。P&ID的0版应包括下列内容。
(1)设备 所有的设备(包括备用设备)及它们的名称和位号、驱动机类型。 (2)工艺管道 主要的工艺管道要注明管径和流向(通常1/2”以上),但管道编号可暂不标注。
(3)公用工程管道 与设备相接的公用工程管道应标出管径,蒸汽管要标出蒸汽压力。 (4)间断使用的管道 间断使用的管道要标注其用途(如开工用、停工用、事故处理用等), (5)管材 管道的材质要求可用管道等级或文字说明(如碳钢、不锈钢)标注;若暂时无条件标注时,可暂不标注;但对合金钢管道和高压管道则一定要注明所用材料。
(6)阀门 管道上的阀门在此阶段要尽量表示出来,并表明常开或常闭状态。 (7)设备的最低标高 对于有标高要求的设备,应标出其最低标高。 (8) 泄压系统 应表示清楚安全阀/呼吸阀(压力真空释放阀)出口是排往大气或排往火炬/废料处理系统。
(9)安全阀 要标出主要的安全阀/呼吸阀(压力真空系统释放阀),但并不要求注出尺寸和编号。
(10)调节阀 要画出全部调节阀,但不要求注出尺寸。 (l1)仪表