上海初一上册数学练习题及答案

合集下载

上海市人教版七年级上册数学期末试卷及答案

上海市人教版七年级上册数学期末试卷及答案

上海市人教版七年级上册数学期末试卷及答案.doc一、选择题1.如图,田亮同学用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,能正确解释这一现象的数学知识是( )A .垂线段最短B .经过一点有无数条直线C .两点之间,线段最短D .经过两点,有且仅有一条直线2.我国古代《易经》一书中记载了一种“结绳计数”的方法,一女子在从右到左依次排列的绳子上打结,满六进一,用来记录采集到的野果数量,下列图示中表示91颗的是( ) A . B .C .D .3.一个由5个相同的小正方体组成的立体图形如图所示,则从正面看到的平面图形是( )A .B .C .D . 4.9327-,3-,(3)--,化简后结果为3-的是( )A 9B 327-C .3-D .(3)-- 5.某地冬季某天的天气预报显示气温为﹣1℃至8℃,则该日的最高与最低气温的温差为( )A .﹣9℃B .7℃C .﹣7℃D .9℃ 6.一张普通A4纸的厚度约为0.000104m ,用科学计数法可表示为() m A .21.0410-⨯B .31.0410-⨯C .41.0410-⨯D .51.0410-⨯ 7.如图,∠ABC=∠ACB ,AD 、BD 、CD 分别平分△ABC 的外角∠EAC 、内角∠ABC 、外角∠ACF ,以下结论:①AD ∥BC ;②∠ACB=2∠ADB ;③∠ADC+∠ABD=90°;④∠BDC=∠BAC ;其中正确的结论有( )A .1个B .2个C .3个D .4个8.在下边图形中,不是如图立体图形的视图是( )A .B .C .D .9.某中学进行义务劳动,去甲处劳动的有30人,去乙处劳动的有24人,从乙处调一部分人到甲处,使甲处人数是乙处人数的2倍,若设应从乙处调x 人到甲处,则所列方程是( )A .2(30+x )=24﹣xB .2(30﹣x )=24+xC .30﹣x =2(24+x )D .30+x =2(24﹣x )10.下列计算正确的是( )A .3a +2b =5abB .4m 2 n -2mn 2=2mnC .-12x +7x =-5xD .5y 2-3y 2=2 11.a,b,c 三个数在数轴上的位置如图所示,则下列结论中错误的是( )A .a+b<0B .a+c<0C .a -b>0D .b -c<012.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为()A.100B.120C.135D.150二、填空题13.单项式2x m y3与﹣5y n x是同类项,则m﹣n的值是_____.14.已知x=3是方程(1)21343x m x-++=的解,则m的值为_____.15.|-3|=_________;16.因原材料涨价,某厂决定对产品进行提价,现有三种方案:方案一,第一次提价10%,第二次提价30%;方案二,第一次提价30%,第二次提价10%;方案三,第一、二次提价均为20%.三种方案提价最多的是方案_____________.17.若12xy=⎧⎨=⎩是方程组72ax bybx ay+=⎧⎨+=⎩的解,则+a b=_________.18.在一样本容量为80的样本中,已知某组数据的频率为0.7,频数为_____.19.如图,在数轴上点A,B表示的数分别是1,–2,若点B,C到点A的距离相等,则点C所表示的数是___.20.小明妈妈想检测小明学习“列方程解应用题”的效果,给了小明37个苹果,要小明把它们分成4堆. 要求分后,如果再把第一堆增加一倍,第二堆增加2个,第三堆减少三个,第四堆减少一半后,这4堆苹果的个数相同,那么这四堆苹果中个数最多的一堆为_____个.21.已知二元一次方程2x-3y=5的一组解为x ay b=⎧⎨=⎩,则2a-3b+3=______.22.众所周知,中华诗词博大精深,集大量的情景情感于短短数十字之间,或豪放,或婉约,或思民生疾苦,或抒发己身豪情逸致,文化价值极高.而数学与古诗词更是有着密切的联系.古诗中,五言绝句是四句诗,每句都是五个字;七言绝句是四句诗,每句都是七个字.有一本诗集,其中五言绝句比七言绝句多13首,总字数却反而少了20个字.问两种诗各多少首?设七言绝句有x首,根据题意,可列方程为______.23.线段AB=2cm,延长AB至点C,使BC=2AB,则AC=_____________cm.24.如图都是由同样大小的黑棋子按一定规律摆出的图案,第①个图案有4个黑棋子,第②个图案有9个黑棋子,第③个图案有14个黑棋子,…,依此规律,第n个图案有2019个黑棋子,则n=______.三、压轴题25.已知120AOB ∠︒= (本题中的角均大于0︒且小于180︒)(1)如图1,在AOB ∠内部作COD ∠,若160AOD BOC ∠∠︒+=,求COD 的度数;(2)如图2,在AOB ∠内部作COD ∠,OE 在AOD ∠内,OF 在BOC ∠内,且3DOE AOE ∠∠=,3COF BOF ∠=∠,72EOF COD ∠=∠,求EOF ∠的度数;(3)射线OI 从OA 的位置出发绕点O 顺时针以每秒6︒的速度旋转,时间为t 秒(050t <<且30t ≠).射线OM 平分AOI ∠,射线ON 平分BOI ∠,射线OP 平分MON ∠.若3MOI POI ∠=∠,则t = 秒.26.如图,已知数轴上点A 表示的数为6,B 是数轴上在A 左侧的一点,且A ,B 两点间的距离为10.动点P 从点A 出发,以每秒5个单位长度的速度沿数轴向左匀速运动,动点Q 从点B 出发,以每秒3个单位长度的速度沿数轴向左匀速运动.(1)设运动时间为t (t >0)秒,数轴上点B 表示的数是 ,点P 表示的数是 (用含t 的代数式表示);(2)若点P 、Q 同时出发,求:①当点P 运动多少秒时,点P 与点Q 相遇?②当点P 运动多少秒时,点P 与点Q 间的距离为8个单位长度?27.如图,P是定长线段AB上一点,C、D两点分别从P、B出发以1cm/s、2cm/s的速度沿直线AB向左运动(C在线段AP上,D在线段BP上)(1)若C、D运动到任一时刻时,总有PD=2AC,请说明P点在线段AB上的位置:(2)在(1)的条件下,Q是直线AB上一点,且AQ﹣BQ=PQ,求PQAB的值.(3)在(1)的条件下,若C、D运动5秒后,恰好有1CD AB2,此时C点停止运动,D点继续运动(D点在线段PB上),M、N分别是CD、PD的中点,下列结论:①PM﹣PN的值不变;②MNAB的值不变,可以说明,只有一个结论是正确的,请你找出正确的结论并求值.28.已知:A、O、B三点在同一条直线上,过O点作射线OC,使∠AOC:∠BOC=1:2,将一直角三角板的直角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O按逆时针方向旋转至图2的位置,使得ON落在射线OB 上,此时三角板旋转的角度为度;(2)继续将图2中的三角板绕点O按逆时针方向旋转至图3的位置,使得ON在∠AOC的内部.试探究∠AOM与∠NOC之间满足什么等量关系,并说明理由;(3)将图1中的三角板绕点O按5°每秒的速度沿逆时针方向旋转一周的过程中,当直角三角板的直角边OM所在直线恰好平分∠BOC时,时间t的值为(直接写结果).29.如图,数轴上有A、B两点,且AB=12,点P从B点出发沿数轴以3个单位长度/s的速度向左运动,到达A点后立即按原速折返,回到B点后点P停止运动,点M始终为线段BP的中点(1)若AP=2时,PM=____;(2)若点A表示的数是-5,点P运动3秒时,在数轴上有一点F满足FM=2PM,请求出点F 表示的数;(3)若点P从B点出发时,点Q同时从A点出发沿数轴以2.5个单位长度/s的速度一直..向右运动,当点Q的运动时间为多少时,满足QM=2PM.30.如图,在数轴上从左往右依次有四个点,,,A B C D ,其中点,,A B C 表示的数分别是0,3,10,且2CD AB =.(1)点D 表示的数是 ;(直接写出结果)(2)线段AB 以每秒2个单位长度的速度沿数轴向右运动,同时线段CD 以每秒1个单位长度的速度沿数轴向左运动,设运动时间是t (秒),当两条线段重叠部分是2个单位长度时.①求t 的值;②线段AB 上是否存在一点P ,满足3BD PA PC -=?若存在,求出点P 表示的数x ;若不存在,请说明理由.31.如图,数轴上有A 、B 、C 三个点,它们表示的数分别是25-、10-、10.(1)填空:AB = ,BC = ;(2)现有动点M 、N 都从A 点出发,点M 以每秒2个单位长度的速度向右移动,当点M 移动到B 点时,点N 才从A 点出发,并以每秒3个单位长度的速度向右移动,求点N 移动多少时间,点N 追上点M ?(3)若点A 以每秒1个单位长度的速度向左运动,同时,点B 和点C 分别以每秒3个单位长度和7个单位长度的速度向右运动.试探索:BC -AB 的值是否随着时间的变化而改变?请说明理由.32.如图,已知线段AB=12cm ,点C 为AB 上的一个动点,点D 、E 分别是AC 和BC 的中点.(1)若AC=4cm ,求DE 的长;(2)试利用“字母代替数”的方法,说明不论AC 取何值(不超过12cm ),DE 的长不变; (3)知识迁移:如图②,已知∠AOB=α,过点O 画射线OC ,使∠AOB:∠BOC=3:1若OD 、OE 分别平分∠AOC 和∠BOC ,试探究∠DOE 与∠AOB 的数量关系.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【详解】用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小,∴线段AB的长小于点A绕点C到B的长度,∴能正确解释这一现象的数学知识是两点之间,线段最短,故选C.【点睛】根据“用剪刀沿直线将一片平整的树叶剪掉一部分,发现剩下树叶的周长比原树叶的周长要小”得到线段AB的长小于点A绕点C到B的长度,从而确定答案.本题考查了线段的性质,能够正确的理解题意是解答本题的关键,属于基础知识,比较简单.2.B解析:B【解析】【分析】由于从右到左依次排列的绳子上打结,满六进一,所以从右到左的数分别进行计算,然后把它们相加即可得出正确答案.【详解】解:A、5+3×6+1×6×6=59(颗),故本选项错误;B、1+3×6+2×6×6=91(颗),故本选项正确;C、2+3×6+1×6×6=56(颗),故本选项错误;D、1+2×6+3×6×6=121(颗),故本选项错误;故选:B.【点睛】本题是以古代“结绳计数”为背景,按满六进一计数,运用了类比的方法,根据图中的数学列式计算;本题题型新颖,一方面让学生了解了古代的数学知识,另一方面也考查了学生的思维能力.3.A解析:A【解析】【分析】从正面看:共分3列,从左往右分别有1,1,2个小正方形,据此可画出图形.【详解】∵从正面看:共分3列,从左往右分别有1,1,2个小正方形,∴从正面看到的平面图形是,故选:A.【点睛】本题考查简单组合体的三视图,解题时注意:主视图,左视图,俯视图分别是从物体的正面,左面,上面看得到的图形.4.B解析:B【解析】【分析】由题意直接利用求平方根和立方根以及绝对值的性质和去括号分别化简得出答案.【详解】解:9,故排除A;327-=3-,选项B正确;C. 3-=3,故排除C;--=3,故排除D.D. (3)故选B.【点睛】本题主要考查求平方根和立方根以及绝对值的性质和去括号原则,正确掌握相关运算法则是解题关键.5.D解析:D【解析】【分析】这天的温差就是最高气温与最低气温的差,列式计算.【详解】解:该日的最高与最低气温的温差为8﹣(﹣1)=8+1=9(℃),故选:D.【点睛】本题主要考查有理数的减法法则:减去一个数等于加上这个数的相反数,这是需要熟记的内容.6.C解析:C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000104=1.04×10−4.故选:C.【点睛】本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.7.C解析:C【解析】①∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC,∵∠EAC=∠ACB+∠ABC,且∠ABC=∠ACB,∴∠EAD=∠ABC,∴AD∥BC,故①正确.②由(1)可知AD∥BC,∴∠ADB=∠DBC,∵BD平分∠ABC,∴∠ABD=∠DBC,∴∠ABC=2∠ADB,∵∠ABC=∠ACB,∴∠ACB=2∠ADB,故②正确.③在△ADC中,∠ADC+∠CAD+∠ACD=180°,∵CD平分△ABC的外角∠ACF,∴∠ACD=∠DCF,∵AD∥BC,∴∠ADC=∠DCF,∠ADB=∠DBC,∠CAD=∠ACB∴∠ACD=∠ADC,∠CAD=∠ACB=∠ABC=2∠ABD,∴∠ADC+∠CAD+∠ACD=∠ADC+2∠ABD+∠ADC=2∠ADC+2∠ABD=180°,∴∠ADC+∠ABD=90°∴∠ADC=90°−∠ABD,故③正确;④∵∠BAC+∠ABC=∠ACF,∴12∠BAC+12∠ABC=12∠ACF,∵∠BDC+∠DBC=12∠ACF,∴12∠BAC+12∠ABC=∠BDC+∠DBC,∵∠DBC=12∠ABC,∴12∠BAC=∠BDC,即∠BDC=12∠BAC.故④错误.故选C.点睛:本题主要考查了三角形的内角和,平行线的判定和性质,三角形外角的性质等知识,解题的关键是正确找各角的关系.8.C解析:C【解析】【分析】直接利用简单组合体的三视图进而判断得出答案.【详解】解:A选项为该立体图形的俯视图,不合题意;B选项为该立体图形的主视图,不合题意;C选项不是如图立体图形的视图,符合题意;D选项为该立体图形的左视图,不合题意.故选:C.【点睛】此题主要考查了简单组合体的三视图,正确掌握观察角度是解题关键.9.D解析:D【解析】【分析】设应从乙处调x人到甲处,根据调配完后甲处人数是乙处人数的2倍,即可得出关于x的一元一次方程,此题得解.【详解】设应从乙处调x人到甲处,依题意,得:30+x=2(24﹣x).故选:D.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解答本题的关键.10.C解析:C【解析】试题解析:A.不是同类项,不能合并.故错误.B. 不是同类项,不能合并.故错误.C.正确.D.222 532.y y y -=故错误.故选C.点睛:所含字母相同并且相同字母的指数也相同的项叫做同类项.11.C解析:C【解析】【分析】根据数轴上的数,右边的数总是大于左边的数,即可判断a 、b 、c 的符号,根据到原点的距离即可判断绝对值的大小,再根据有理数的加减法法则即可做出判断.【详解】根据数轴可知:a <b <0<c ,且|a |>|c |>|b |则A. a +b <0正确,不符合题意;B. a +c <0正确,不符合题意;C .a -b>0错误,符合题意;D. b -c<0正确,不符合题意;故选C.【点睛】本题考查了数轴以及有理数的加减,难度适中,熟练掌握有理数的加减法法则和利用数轴比较大小是解题关键.12.C解析:C【解析】【分析】首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.【详解】解:∵OB 平分∠COD ,∴∠COB=∠BOD=45°,∵∠AOB=90°,∴∠AOC=45°,∴∠AOD=135°.故选:C .【点睛】本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.二、填空题13.-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2xmy3与﹣5ynx是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案解析:-2.【解析】【分析】所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.【详解】解:∵单项式2x m y3与﹣5y n x是同类项,∴m=1,n=3,∴m﹣n=1﹣3=﹣2.故答案为:﹣2.【点睛】本题主要考查的是同类项的定义,熟练掌握同类项的概念是解题的关键.14.﹣.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+=,解得:m=﹣.故答案为:﹣.【点睛】本题考查一元一次方程的解,解题的解析:﹣83.【解析】【分析】把x=3代入方程得到关于m的方程,求得m的值即可.【详解】解:把x=3代入方程得1+1+mx(31)4=23,解得:m=﹣83.故答案为:﹣83.【点睛】本题考查一元一次方程的解,解题的关键是熟练运用一元一次方程的解的定义,本题属于基础题型.15.3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.解析:3【解析】分析:根据负数的绝对值等于这个数的相反数,即可得出答案.解答:解:|-3|=3.故答案为3.16.三【解析】【分析】由题意设原价为x,分别对三个方案进行列式即可比较得出提价最多的方案. 【详解】解:设原价为x,两次提价后方案一:;方案二:;方案三:.综上可知三种方案提价最多的是方解析:三【解析】【分析】由题意设原价为x ,分别对三个方案进行列式即可比较得出提价最多的方案.【详解】解:设原价为x ,两次提价后方案一:(110%)(130%) 1.43x x ++=;方案二:(130%)(110%) 1.43x x ++=;方案三:(120%)(120%) 1.44x x ++=.综上可知三种方案提价最多的是方案三.故填:三.【点睛】本题考查列代数式,根据题意列出代数式并化简代数式比较大小即可.17.3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把代入方程组得:,①+②得:3(a +b )=9,则a +b =3,故答案为:3.【解析:3【解析】【分析】把x 与y 的值代入方程组得到关于a 和b 的方程组,然后整体求出a +b 的值即可.【详解】解:把12x y =⎧⎨=⎩代入方程组得:2722a b b a +=⎧⎨+=⎩, ①+②得:3(a +b )=9,则a +b =3,故答案为:3.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.18.56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80解析:56【解析】【分析】由已知一个容量为80的样本,已知某组样本的频率为0.7,根据频数=频率×样本容量,可得答案【详解】样本容量为80,某组样本的频率为0.7,该组样本的频数=0.7×80=56故答案为:56【点睛】此题考查频率分布表,掌握运算法则是解题关键19.2+【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–,∴AB=1–(–)=1+,则点C表示的数为1+1+解析:2+2【解析】【分析】先求出点A、B之间的距离,再根据点B、C到点A的距离相等,即可解答.【详解】∵数轴上点A,B表示的数分别是1,–2,∴AB=1–(–2)=1+2,则点C表示的数为1+1+2=2+2,故答案为2【点睛】本题考查了数与数轴的对应关系,解决本题的关键是明确两点之间的距离公式,也利用了数形结合的思想.20.16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+解析:16【解析】【分析】本题有两个等量关系;原来的四堆之和=37,变换后的四堆相等,可根据这两个等量关系来求解.【详解】设第一堆为a 个,第二堆为b 个,第三堆为c 个,第四堆有d 个,a+b+c+d=37①;2a=b+2=c-3=2d ②; 第二个方程所有字母都用a 来表示可得b=2a-2,c=2a+3,d=4a ,代入第一个方程得a=4, ∴b=6,c=11,d=16,∴这四堆苹果中个数最多的一堆为16.故答案为16.【点睛】本题需注意未知数较多时,要把未知的四个量用一个量来表示,化多元为一元. 21.8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8解析:8【解析】【分析】根据二元一次方程解的定义可得2a-3b=5,继而整体代入即可求得答案.【详解】把x ay b=⎧⎨=⎩代入方程2x-3y=5得2a-3b=5,所以2a-3b+3=5+3=8,故答案为:8.【点睛】本题考查了二元一次方程的解,代数式求值,熟练掌握二元一次方程解的定义以及整体代入思想是解题的关键.22.28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,解析:28x-20(x+13)=20【解析】【分析】利用五言绝句与七言绝句总字数之间的关系得出等式进而得出答案.【详解】设七言绝句有x首,根据题意,可列方程为: 28x-20(x+13)=20,故答案为: 28x-20(x+13)=20.【点睛】本题主要考查一元一次方程应用,关键在于找出五言绝句与七言绝句总字数之间的关系. 23.6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.解析:6【解析】如图,∵AB=2cm,BC=2AB,∴BC=4cm,∴AC=AB+BC=6cm.故答案为:6.24.404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有解析:404【解析】【分析】仔细观察每一个图形中黑棋子的个数与图形序列号的关系,找到规律,利用规律求解即可.【详解】解:观察图1有5×1-1=4个黑棋子;图2有5×2-1=9个黑棋子;图3有5×3-1=14个黑棋子;图4有5×4-1=19个黑棋子;…图n 有5n-1个黑棋子,当5n-1=2019,解得:n=404,故答案:404.【点睛】本题考查探索与表达规律——图形类规律探究.能根据题中已给图形找出黑棋子的数量与序数之间的规律是解决此题的关键.三、压轴题25.(1)40º;(2)84º;(3)7.5或15或45【解析】【分析】(1)利用角的和差进行计算便可;(2)设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒,通过角的和差列出方程解答便可;(3)分情况讨论,确定∠MON 在不同情况下的定值,再根据角的和差确定t 的不同方程进行解答便可.【详解】解:(1))∵∠AOD+∠BOC=∠AOC+∠COD+∠BOD+∠COD=∠AOB+∠COD又∵∠AOD+∠BOC=160°且∠AOB=120°∴COD AOD BOC AOB ∠=∠+∠-∠160120=︒-︒ 40=︒(2)3DOE AOE ∠=∠,3COF BOF ∠=∠∴设AOE x ∠=︒,则3EOD x ∠=︒,BOF y ∠=︒则3COF y ∠=︒,44120COD AQD BOC AOB x y ∴∠=∠+∠-∠=︒+︒-︒EOF EOD FOC COD ∠=∠+∠-∠()()3344120120x y x y x y =︒+︒-︒+︒-︒=︒-︒+︒72EOF COD ∠=∠ 7120()(44120)2x y x y ∴-+=+- 36x y ∴+=120()84EOF x y ∴︒+︒︒∠=-=(3)当OI 在直线OA 的上方时,有∠MON=∠MOI+∠NOI=12(∠AOI+∠BOI ))=12∠AOB=12×120°=60°, ∠PON=12×60°=30°, ∵∠MOI=3∠POI , ∴3t=3(30-3t )或3t=3(3t-30),解得t=152或15; 当OI 在直线AO 的下方时,∠MON═12(360°-∠AOB)═12×240°=120°,∵∠MOI=3∠POI,∴180°-3t=3(60°-61202t-)或180°-3t=3(61202t--60°),解得t=30或45,综上所述,满足条件的t的值为152s或15s或30s或45s.【点睛】此是角的和差的综合题,考查了角平分线的性质,角的和差计算,一元一次方程(组)的应用,旋转的性质,有一定的难度,体现了用方程思想解决几何问题,分情况讨论是本题的难点,要充分考虑全面,不要漏掉解.26.(1)﹣4,6﹣5t;(2)①当点P运动5秒时,点P与点Q相遇;②当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【解析】【分析】(1)根据题意可先标出点A,然后根据B在A的左侧和它们之间的距离确定点B,由点P 从点A出发向左以每秒5个单位长度匀速运动,表示出点P即可;(2)①由于点P和Q都是向左运动,故当P追上Q时相遇,根据P比Q多走了10个单位长度列出等式,根据等式求出t的值即可得出答案;②要分两种情况计算:第一种是点P追上点Q之前,第二种是点P追上点Q之后.【详解】解:(1)∵数轴上点A表示的数为6,∴OA=6,则OB=AB﹣OA=4,点B在原点左边,∴数轴上点B所表示的数为﹣4;点P运动t秒的长度为5t,∵动点P从点A出发,以每秒5个单位长度的速度沿数轴向左匀速运动,∴P所表示的数为:6﹣5t,故答案为﹣4,6﹣5t;(2)①点P运动t秒时追上点Q,根据题意得5t=10+3t,解得t=5,答:当点P运动5秒时,点P与点Q相遇;②设当点P运动a秒时,点P与点Q间的距离为8个单位长度,当P不超过Q,则10+3a﹣5a=8,解得a=1;当P超过Q,则10+3a+8=5a,解得a=9;答:当点P运动1或9秒时,点P与点Q间的距离为8个单位长度.【点睛】在数轴上找出点的位置并标出,结合数轴求追赶和相遇问题是本题的考点,正确运用数形结合解决问题是解题的关键,注意不要漏解.27.(1)点P在线段AB上的13处;(2)13;(3)②MNAB的值不变.【解析】【分析】(1)根据C、D的运动速度知BD=2PC,再由已知条件PD=2AC求得PB=2AP,所以点P在线段AB上的13处;(2)由题设画出图示,根据AQ-BQ=PQ求得AQ=PQ+BQ;然后求得AP=BQ,从而求得PQ 与AB的关系;(3)当点C停止运动时,有CD=12AB,从而求得CM与AB的数量关系;然后求得以AB表示的PM与PN的值,所以MN=PN−PM=112AB.【详解】解:(1)由题意:BD=2PC∵PD=2AC,∴BD+PD=2(PC+AC),即PB=2AP.∴点P在线段AB上的13处;(2)如图:∵AQ-BQ=PQ,∴AQ=PQ+BQ,∵AQ=AP+PQ,∴AP=BQ,∴PQ=13 AB,∴13 PQ AB=(3)②MNAB的值不变.理由:如图,当点C停止运动时,有CD=12 AB,∴CM=14 AB,∴PM=CM-CP=14AB-5,∵PD=23AB-10,∴PN=1223(AB-10)=13AB-5,∴MN=PN-PM=112AB,当点C停止运动,D点继续运动时,MN的值不变,所以111212ABMNAB AB==.【点睛】本题考查了比较线段的长短.利用中点性质转化线段之间的倍分关系是解题的关键,在不同的情况下灵活选用它的不同表示方法,有利于解题的简洁性.同时,灵活运用线段的和、差、倍、分转化线段之间的数量关系也是十分关键的一点.28.(1)90°;(2)30°;(3)12秒或48秒.【解析】【分析】(1)依据图形可知旋转角=∠NOB,从而可得到问题的答案;(2)先求得∠AOC的度数,然后依据角的和差关系可得到∠NOC=60°-∠AON,∠AOM=90°-∠AON,然后求得∠AOM与∠NOC的差即可;(3)可分为当OM为∠BOC的平分线和当OM的反向延长为∠BOC的平分线两种情况,然后再求得旋转的角度,最后,依据旋转的时间=旋转的角度÷旋转的速度求解即可.【详解】(1)由旋转的定义可知:旋转角=∠NOB=90°.故答案为:90°(2)∠AOM﹣∠NOC=30°.理由:∵∠AOC:∠BOC=1:2,∠AOC+∠BOC=180°,∴∠AOC=60°.∴∠NOC=60°﹣∠AON.∵∠NOM=90°,∴∠AOM=90°﹣∠AON,∴∠AOM﹣∠NOC=(90°﹣∠AON)﹣(60°﹣∠AON)=30°.(3)如图1所示:当OM为∠BOC的平分线时,∵OM为∠BOC的平分线,∴∠BOM=∠BOC=60°,∴t=60°÷5°=12秒.如图2所示:当OM的反向延长为∠BOC的平分线时,∵ON为为∠BOC的平分线,∴∠BON=60°.∴旋转的角度=60°+180°=240°.∴t=240°÷5°=48秒.故答案为:12秒或48秒.【点睛】本题主要考查的是三角形的综合应用,解答本题主要应用了旋转的定义、直角三角形的定义以及角的和差计算,求得三角板旋转的角度是解题的关键.29.(1)5 ;(2)点F表示的数是11.5或者-6.5;(3)127t=或6t=.【解析】【分析】(1)由AP=2可知PB=12-2=10,再由点M是PB中点可知PM长度;(2)点P运动3秒是9个单位长度,M为PB的中点,则可求解出点M表示的数是2.5,再由FM=2PM可求解出FM=9,此时点F可能在M点左侧,也可能在其右侧;(3)设Q运动的时间为t秒,由题可知t=4秒时,点P到达点A,再经过4秒点P停止运动;则分04t ≤≤和48t <≤两种情况分别计算,由题可知即可QM=2PM=BP ,据此进行解答即可.【详解】(1)5 ;(2)∵点A 表示的数是5-∴点B 表示的数是7∵点P 运动3秒是9个单位长度,M 为PB 的中点∴PM=12PB=4.5,即点M 表示的数是2.5 ∵FM=2PM∴FM=9∴点F 表示的数是11.5或者-6.5(3)设Q 运动的时间为t 秒, 当04t ≤≤时,由题可知QM=2PM=BP ,故点Q 位于点P 左侧,则AB=AQ+QP+PB ,而QP=QM-PM=2PM-PM=12BP ,则可得12=2.5t+12⨯3t+3t=7t ,解得t=127; 当48t <≤时,由题可知QM=2PM=BP ,故点Q 位于点B 右侧,则PB=2QB ,则可得,()()123422.512t t --=-,整理得8t=48,解得6t =.【点睛】本题结合数轴上的动点问题考查了一元一次方程的应用,第3问要根据题干条件分情况进行讨论,作出图形更易理解.30.(1)16;(2)①t 的值为3或143秒;②存在,P 表示的数为314. 【解析】【分析】(1)由数轴可知,AB=3,则CD=6,所以D 表示的数为16,(2)①当运动时间是t 秒时,在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t, C 点表示的数为10-t ,D 点表示的数为16-t ,分情况讨论两条线段重叠部分是2个单位长度解答即可;②分情况讨论当t=3秒, t=143秒时,满足3BD PA PC -=的点P , 注意P 为线段AB 上的点对x 的值的限制.【详解】(1)16(2)①在运动过程中,B 点表示的数为3+2t,A 点表示的数为2t,C 点表示的数为10-t ,D 点表示的数为16-t.当BC =2,点B 在点C 的右边时,由题意得:32-10-2BC t t =+=(),解得:t =3,当AD=2,点A 在点D 的左边时,由题意得:16--22AD t t ==,解得:t =143. 综上,t 的值为3或143秒 ②存在,理由如下:当t=3时,A 点表示的数为6,B 点表示的数为9,C 点表示的数为7,D 点表示的数为13. 则13-94-6|-7|BD PA x PC x ====,,,-3BD PA PC =,()4--6|-7|x x ∴=, 解得:314x =或112, 又P 点在线段AB 上,则69x ≤≤314x ∴=. 当143t =时,A 点表示的数为283,B 点表示的数为373,C 点表示的数为163,D 点表示的数为343. 则37343816-1-|-|3333BD PA x PC x ====,,, -3BD PA PC =, ∴ 28161--|-|33x x ⎛⎫= ⎪⎝⎭, 解得:7912x =或176, 又283733x ≤≤, x ∴无解 综上,P 表示的数为314. 【点睛】本题考查了一元一次方程的应用以及数轴,解题的关键是:(1)由路程=速度×时间结合运。

沪科版数学七年级上册综合训练-50题含答案

沪科版数学七年级上册综合训练-50题含答案

2023年2月9日初中数学作业学校:___________姓名:___________班级:___________考号:___________一、填空题1.长方体和正方体都有________个面,________条棱,________个顶点.【答案】6128【分析】试题分析:根据长方体和正方体的特征即可得到结果.长方体和正方体由6个面,12条棱,8个顶点.考点:本题考查的是长方体和正方体的特征点评:解答本题的关键是熟记长方体和正方体由6个面,12条棱,8个顶点.【详解】请在此输入详解!2.一个两位数,个位数字是x,十位数字比个位数字大3,则这个两位数是_________.【答案】11x+30【分析】先表示出十位上的数字,再根据数的表示方法列式即可.【详解】解:∵个位数字是x,十位数字比个位数字大3,∵十位数字是x+3,这个两位数为:10(x+3)+x=1130x+;故答案为:1130x+.【点睛】本题考查了列代数式,是基础题,主要是数的表示方法,要注意数位上的数字乘以数位.3.将方程112128x x+-=去分母时,方程两边同乘最小的正整数m,则式子2019m-的值是________.4.化简:5(x -2y)-4(x -2y)=___. 【答案】x -2y【分析】原式去括号合并即可得到结果.【详解】原式=5x −10y −4x +8y =x −2y .故答案为x−2y.【点睛】本题考查整式的加减.5.如果关于x 的方程4232x m x -=+和23x x =-的解相同,那么m=________.6.计算:﹣x 2﹣2x 2=___.【答案】23x -【分析】直接利用合并同类项法则计算即可,合并同类项法则是:字母和字母的指数不变,系数相加.【详解】解:﹣x 2﹣2x 223x =-,故答案为:23x -【点睛】本题主要考查合并同类项,熟练掌握合并同类项法则是解题的关键. 7.30︒的余角是________°.【答案】60︒【分析】从余角的定义出发:两个角和为90︒,则这两个角互余;由此可得解.【详解】解:由两个角和为90︒,则这两个角互余可得:︒-︒=︒903060故答案为60︒.【点睛】本题考查余角的定义;关键在于知道两个角和为90︒,则这两个角互余.8.一个整数具有下列特征:∵它在数轴上表示的点位于原点左边;∵它大于3-;∵它是负偶数,则这个数是__.【答案】2--,负偶数几个特点,即可求出答案.【分析】根据原点左边,大于3【详解】解:∵在数轴上表示的点位于原点左边,∵此数一定是负数,∵它大于3-,∵此数一定在0和3-之间,∵是负偶数,∵这个数是:2-,故答案为:2-.【点睛】本题主要考查数轴上有理数的特点,理解和掌握数轴上有理数的位置关系是解题的关键.9.已知圆柱底面半径为4cm,母线长为10cm,则其侧面展开图的面积是________ 2cm.【答案】80π【分析】根据圆柱的侧面积等于2πrl计算即可.【详解】2π×4×10=80π.故答案为80π.【点睛】本题考查了圆柱的侧面积的计算,牢记圆柱的侧面积公式是解答本题的关键.如果圆柱的底面半径为r,母线长为l,那么圆柱的侧面积等于2πrl.10.当x=____时,代数式﹣2x+1的值是0.【答案】【详解】试题分析:根据题意列出方程,求出方程的解即可得到x的值.解:根据题意得:﹣2x+1=0,移项合并得:2x=1,解得:x=,故答案为 考点:解一元一次方程. 11.如果单项式323a x y +与单项式14b xy --的和还是单项式,那么b a 的值是______.【答案】8-【分析】先根据题意判断出单项式323a x y +与单项式14b xy --是同类项,从而依据同类项概念得出a 、b 的值,继而代入计算可得.【详解】解:∵单项式323a x y +与单项式14b xy --的和还是单项式,∵单项式323a x y +与单项式14b xy --是同类项,则31a +=,21b =-,解得2a =-,3b =,∵()328b a =-=-,故答案为:8-.【点睛】本题主要考查了同类项的定义,解题的关键是掌握同类项的概念:所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项.12.定义一种新运算:,那么_________. 【答案】2【详解】试题分析:根据题意可把这种新运算转化为一般的有理数运算,中相当于a=4,b=-1,所以=1+1=2. 考点:有理数的运算.13.比较大小:38°15′_____38.15°(选填“>”“<”“=”).【答案】>【分析】先统一单位得38.15°=38°9′,,再比较大小即可得.【详解】∵0.15°=0.15×60′=9′,∵38.15°=38°9′,∵38°15′>38°9′,即38°15′>38.15°,故答案为:>.【点睛】本题考查了角的比较,解题的关键是统一单位.14.当k =_____时,代数式x 2+|3k |xy ﹣4y 2﹣xy ﹣8中不含xy 项.15.12010-的相反数是_________;若5a =,则=a __________.16.已知关于x ,y 的方程组23,32 1.x y k x y k +=⎧⎨+=+⎩①②,的解的和是k -,则k =________.17.如图,已知::3:2:4AB BC CD =,E 、F 分别是AB 和CD 中点,且 5.5cm EF =,则AD =________.【答案】9cm##9厘米18.数轴上点A表示数﹣1,点B表示数2,该数轴上的点C满足条件CA=2CB,则点C表示的数为_____.∵CA =2CB ,∵CB =AB =3,∵OC =OB +BC =2+3=5,∵点C 表示的数为5;故答案为:1或5.【点睛】此题考查了数轴的问题,解题的关键是分两种情况根据数轴的性质求解. 19.已知5x y +=,2xy =,计算322xy x y --=______. 【答案】-4【分析】将322xy x y --变形为()32+xy x y -,代入求值即可.【详解】解:322xy x y --()=32+2xy x y -()32+xy x y =-当5x y +=,2xy =时,原式3225=4=⨯-⨯-.故答案为4-.【点睛】本题考查了代数式的变形,能正确的变形并且能整体代入即可得到答案. 20.当2a 3(b 4)++-取得最小值时,(a+1)b 的值是__________21.如图,这是一个运算程序示意图,不论输入x 的值为多大,输出y 的值总是一个定值(不变的值),则a+b=_________【答案】3.【分析】首先根据运算程序示意图,得到运算的代数式,再根据输出值为定值,可知代数式的值与x 无关,则合并后的代数式中x 的系数为0,据此可得a+b 的值.【详解】由程序示意图可得:()()33532=-+-+=-++⎡⎤⎣⎦y x a b x a b x∵y 为定值,∵代数式()32-++⎡⎤⎣⎦a b x 的值与x 无关∵()3=0-+a b ,∵=3a b + 故答案为:3.【点睛】本题考查运算程序图和代数式值的无关问题,理解输出值为定值即代数式的值与x 无关是解题的关键.22.观察:从2开始,连续的偶数相加,它们的和的情况如图所示,则162+164+166+…+400的值为________.【答案】33 720【分析】观察算式可找出其中的规律,然后依据规律进行计算即可.【详解】∵1个最小的连续偶数相加时,S=1×(1+1),2个最小的连续偶数相加时,S=2×(2+1),3个最小的连续偶数相加时,S=3×(3+1),…∵n 个最小的连续偶数相加时,S=n (n+1);∵162+164+166+…+400=(2+4+6+…+400)-(2+4+6+…+160),=200×201-80×81,=40200-6480,=33720.故答案为:33720【点睛】本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.23.若关于x的一元一次不等式组有解,则m的取值范围为.24.如图,是一个数表,现用一个长方形在数表中任意框出4个数,则当a______.+++=时,=80a b c d【答案】17【分析】根据方框的数的关系用a表示出b、c、d,然后列出方程求解即可.【详解】解:由图可知,b=a+1,c=a+5,d=a+6,∵a+b+c+d=80,∵a+(a+1)+(a+5)+(a+6)=80,解得:a=17.故答案为:17.【点睛】本题主要考查数字变化规律,一元一次方程的应用,观察图形得到a、b、c、d四个数之间的关系是解题的关键.25.如果方程134aax-+=是关于x的一元一次方程,则a的值为______.26.苏果超市一件商品原价100元,提高20%销售,在今年国庆期间搞促销,打折优惠后价格为84元,这件商品打________折.【答案】7【详解】试题分析:解:设这件商品打x折,根据题意可得:100(1+20%)x=84,解方程得:x=0.7,所以这件商品打7折.考点:一元一次方程的应用点评:首先设这件商品打x折,列出关于x的一元一次方程,解一元一次方程求出结果.27.已知|x|=5,y2=9,且|x﹣y|=y﹣x,则x﹣y=_____.【答案】-8或-2【分析】根据绝对值的性质和有理数的乘方求出x、y,再根据负数的绝对值等于它的相反数判断出x-y<0,可确定x值,然后求解即可.【详解】∵|x|=5,y2=9,∵x=±5,y=±3,∵|x﹣y|=y﹣x,∵x<y,∵x=-5,当x=-5,y=3时,x-y=-5-3=-8,当x=-5,y=-3时,x-y=-5-(-3)=-2,故答案为-8或-2【点睛】本题考查了有理数的减法,绝对值的性质,有理数的乘方,判断出x 、y 的对应情况并熟记运算法则和性质是解题的关键.28.如图,直线AB 与CD 相交于点O ,OE 平分AOC ∠,若2445EOC '∠=︒,则∠BOE 的度数为_________;BOD ∠度数为__________.【答案】 15515'︒ 4930'︒【详解】试题解析:∵OE 平分∵AOC ,∵EOC='2445︒,∵∵AOC=2∵EOC='2445︒×2='4930︒.由对顶角相等可知:∵BOD=∵AOC='4930︒.∵∵BOC=180°-∵BOD=180°-'4930︒='13030︒.∵BOE ∠=∵BOC+∵EOC='13030︒+'2445︒='15515︒故答案为'15515︒;'4930︒.二、解答题29.已知|a |=3,|b |=3,a 、b 异号,求a +b 的值.【详解】解:3a =,互为相反数,【点睛】本题考查了相反数的定义,解答本题的关键是绝对值相等,符号相反的两个30.某工程队修一条隧道,计划每天修600米,20天完成,而实际每天多修25%,实际可以提前几天完成?(用比例解)【答案】提前4天【分析】根据实际完成的效率比上计划的效率列出比例式,解比例式即可求解.【详解】解:设实际可以提前x 天完成.31.解方程组25 323 x yx y-=-⎧⎨+=⎩【答案】13 xy=-⎧⎨=⎩【分析】∵×2+∵即可消去y求得x的值,然后把x的值代入∵即可求得y的值,从而得到方程组的解.【详解】解:25 323 x yx y-=-⎧⎨+=⎩①②∵×2+∵得,7x=-7∵x=-1,把x=-1代入∵得,y=3,∵方程组的解为:13 xy=-⎧⎨=⎩.【点睛】本题主要考查解二元一次方程组的能力,解题的关键是熟练掌握加减消元法. 32.如图,图1的瓶子是由上、下相通的圆柱体组成的,里面盛满了水,如果将这个瓶子中的水全部倒入图2的圆柱体杯子中,那么需要多少个这样的杯子?33.某便利店在周年店庆活动中,用800元购进了A 、B 两种瓶装果汁饮料共210瓶,这两种饮料的进价、售价如图所示:(1)这两种饮料各购进多少瓶?(2)若该便利店按售价售完这批饮料,获得的利润是多少元?(3)如果这批饮料是在一天之内按照售价销售完成的,除了进货成本,便利店每天的其他销售费用是0.2元/瓶,那么便利店销售这批饮料所获得的利润是多少? 【答案】(1)A 种饮料购进100瓶,B 种饮料购进110瓶(2)680元(3)638元【分析】(1)设A 种饮料购进x 瓶,则B 种饮料购进(210x -)瓶,根据题意列出一元一次方程,解方程即可求解;(2)根据利润等于售价减去成本,列式进行计算即可求解;(3)根据利润等于售价减去成本再减去其他销售费用是0.2元/瓶,列式进行计算即可求解.【详解】(1)解:设A 种饮料购进x 瓶,则B 种饮料购进(210x -)瓶,根据题意得:2.55(210x x +-)=800,解得100x =,210210100110x ∴-=-=,A ∴种饮料购进100瓶,B 种饮料购进110瓶;(2)61008110800⨯+⨯-600880800=+-680=(元),∴该便利店按售价售完这批饮料,获得的利润是680元;(3)610081108002100.2638⨯+⨯--⨯=(元),∴便利店销售这批饮料获得的利润是638元.【点睛】本题考查了一元一次方程的应用,有理数的混合运算的应用,根据题意列出方程与算式是解题的关键.34.某检修小组乘一辆汽车沿一条东西向公路检修线路,约定向东为正,某天从地出发到收工时,行走记录如下:(单位:km)+15,-2,+5,-3,+8,-3,-1,+11,+4,-5,-2,+7,-3,+5(1)请问:收工时检修小组距离A有多远?在A地的哪一边?(2)若检修小组所乘的汽车每一百千米平均耗油8升,则汽车从A地出发到收工大约耗油多少升?【答案】(1)收工时检修小组在A地的东边,距离A地36千米;(2)汽车站从A地出35.计算:(1)-14 -5+30-2(2)-8÷(-2)×1 4【答案】(1)9;(2)1【分析】(1)根据有理数的加减法运算法则进行计算即可;(2)根据有理数的乘除法运算法则进行计算即可.36.问题背景数轴是一个非常重要的数学工具,它使数和数轴上的点建立起一一对应的关系,揭示了数点之间的内在联系,它是“数形结合”的基础,我们知道40|4|=-,它的几何意义是数轴上表示4的点与原点(即表示0的点)之间的距离,又如式子73-,它的几何意义是数轴上表示数7的点与表示数3的点之间的距离,即若点A 、B 在数轴上分别表示有理数a 、b ,则A 、B 之间的距离可表示为a b -.问题探究(1)若31x -=,则x = .(2)若31x x -=+,则x = .(3)若318x x -++=,则x = .问题解决(4)若在数轴上有两个点M 、N ,它们在数轴上的点表示的数分别为m 、n ,满足9|52|m m ++-=且|23|6n n n ++++-的值最小,则两个点M 、N 之间的距离是 .【答案】(1)4x =或2x =(2)1x =(3)5x =或3x =-(4)5或4【分析】(1)根据绝对值的意义得出31x -=或31x -=-,求出x 的值即可;37.平面直角坐标系xOy 中, A (a ,0),B (4,b ),且a 、b 满足032b a +--=.(1)填空:=a ,b = ;(2)如图1,在x 轴上有点C ,,当6ABC S =时,求点C 的坐标;(3)如图2,将线段BA 平移得到线段OD ,P (n ,1-)是线段OD 上一点,求n 的值.ODN OPM S S S =+梯形(1123122⨯⨯=⨯⨯-解得23n =-.38.抗击新冠肺炎疫情期间,全国上下万众一心为武汉捐赠物资.某物流公司运送捐赠物资,已知用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨.(1)求1辆A 型车和1辆B 型车都装满货物一次可分别运货多少吨?(2)该物流公司现有80吨货物需要运送,计划同时租用A 型车a 辆,B 型车b 辆(每种车辆至少1辆且A 型车数量少于B 型车),一次运完,且恰好每辆车都装满货物.若A 型车每辆需租金100元/次,B 型车每辆需租金120元/次,请你设计出所有租车方案并选出最省钱的租车方案,求出此时最少租车费.【答案】(1)1辆A 型车装满货物一次可运货3吨,1辆B 型车装满货物一次可运货4吨;(2)共有2种租车方案,方案1:租用4辆A 型车,1辆17型车;方案2:租用8辆A 型车,4辆14型车;方案1最省钱,此时最少租车费为2440元【分析】(1)设1辆A 型车装满货物一次可运货x 吨,1辆B 型车装满货物一次可运货y 吨,根据“用2辆A 型车和1辆B 型车装满货物一次可运货10吨;用1辆A 型车和2辆B 型车装满货物一次可运货11吨”,即可得出关于 x ,y 的二元一次方程组,解之即可得出结论;(2)根据一次运货31吨,即可得出关于a ,b 的二元一次方程,结合a ,b 均为非负整数,即可得出各租车方案,利用总租车费用=每辆车的租车费用×租车数量,可分别求出各租车方案所需租车费用,比较后即可得出结论.39.解方程组:(1)(2).【答案】(1);(2).【详解】试题分析:(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.解:(1), ∵×2﹣∵得:3y=15,即y=5,把y=5代入∵得:x=,则方程组的解为;(2)方程组整理得:,∵×2+∵得:11x=22,即x=2,把x=2代入∵得:y=3,则方程组的解为. 考点:解二元一次方程组.40.已知数轴上的点A ,B ,C ,D 所表示的数分别是a ,b ,c ,d ,且()()22141268+++=----a b c d .(1)求a ,b ,c ,d 的值;(2)点A ,C 沿数轴同时出发相向匀速运动,103秒后两点相遇,点A 的速度为每秒4个单位长度,求点C 的运动速度;(3)A ,C 两点以(2)中的速度从起始位置同时出发,向数轴正方向运动,与此同时,D 点以每秒1个单位长度的速度向数轴正方向开始运动,在t 秒时有2BD AC =,求t 的值;(4)A ,C 两点以(2)中的速度从起始位置同时出发相向匀速运动,当点A 运动到点C 起始位置时,迅速以原来速度的2倍返回;到达出发点后,保持改后的速度又折返向点C 起始位置方向运动;当点C 运动到点A 起始位置时马上停止运动.当点C 停止运动时,点A 也停止运动.在此运动过程中,A ,C 两点相遇,求点A ,C 相遇时在数轴上对应的数(请直接写出答案).41.李伟从家里骑摩托车到火车站,若每小时行驶30千米,则比火车开车时间早到15分钟;若每小时行驶18千米,则比火车开车时间迟到15分钟,那么李伟家到火车站的路程为多少千米?42.观察下列单项式:x -,23x ,35x -,47x ,⋅⋅⋅,1937x -,2039x ,⋅⋅⋅写出第n 个单项式,为了解决这个问题,特提供下面的解题思路.(1)这组单项式的系数依次为多少?系数符号的规律是什么?系数绝对值规律是什么? (2)这组单项式的次数的规律是什么?(3)根据上面的归纳,你可以猜想出第n 个单项式是什么? (4)请你根据猜想,写出第2018个,第2019个单项式.【答案】(1) 这组单项式的系数依次为1-,3,5-,7,…,-37,39…;奇次项的系数符号为负号,偶此项的系数符号为正号;系数绝对值为:21n -;(2) 单项式的次数的规律是从1开始的连续自然数;(3)第n 个单项式是:()()121nn n x --;(4)第2018个单项式是20184035x ,第2019个单项式是20194037x -【分析】(1)根据单项式系数的定义可写出单项式的系数;观察所给单项式,可直接得出系数符号的规律以及系数绝对值的规律;(2)观察所给单项式,可知次数的规律是从1开始的连续自然数; (3)根据系数符号的规律、系数绝对值的规律和次数的规律,总结即可; (4)利用(3)中所求即可得出答案.【详解】解:(1)观察所给单项式可知:这组单项式的系数依次为1-,3,5-,7,…,-37,39…;奇次项的系数符号为负号,偶此项的系数符号为正号;系数绝对值为:21n -;(2)这组单项式的次数的规律是从1开始的连续自然数;(3)根据系数符号的规律、系数绝对值的规律和次数的规律可知,第n 个单项式是:()()121nn n x --;(4)由规律可知:第2018个单项式是20184035x ,第2019个单项式是20194037x -.【点睛】此题主要考查了单项式的变化规律问题,得出次数与系数的变化规律是解题关键.43.计算与化简:(1)22|18(3)2|4-+---⨯÷; (2)2141()(6)7()492-⨯-+÷-.44.计算:(1)35116()824⨯+- (2) 3242(2)(3)3--÷⨯-=56.【点睛】本题考查了有理数的混合运算,解题的关键是熟练掌握有理数混合运算的运算法则.以及利用乘法分配律进行计算.45.(1)如图,点C 在线段AB 上,线段6cm 4cm AC BC ==,,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.(2)对于(1),如果叙述为:“已知线段6cm 4cm AC BC ==,,点C 在直线AB 上,点M 、N 分别是AC 、BC 的中点,求线段MN 的长.”,结果会有变化吗?如果有,画出图形,求出结果.时,注意“线段”,“直线”等关键词,注意分类讨论是解题的关键. 46.解方程组(1)20328x y x y -=⎧⎨+=⎩;(2)7423624x y x y +=⎧⎨-=⎩.【答案】(1)21x y =⎧⎨=⎩;(2)23x y =⎧⎨=-⎩. 【分析】(1)方程组中的两个方程相加,采用加减消元法即可先消去y ,求解x 后再求解y ;(2)方程组中上下两个方程分别乘以3和乘以2,运用加减消元法即可先消去y ,求解x 后再求解y.【详解】(1)20?328? x y x y -=⎧⎨+=⎩①②,∵+∵得:4x=8,即x=2, 将x=2代入∵得:y=1,则方程组的解为21x y =⎧⎨=⎩;(2)742?3624? x y x y +=⎧⎨-=⎩①②,∵×3+∵×2得:27x=54,即x=2, 将x=2代入∵得:y=﹣3, 则方程组的解为23x y =⎧⎨=-⎩.【点睛】本题考查了运用加减消元法解二元一次方程组.47.小明想调查小区居民对“节约用水知识”的了解情况,600份调查表的统计结果如下:(1)请你计算出每一种类别的人数占总调查人数的百分比(填在以上空格中);(2)请画出反映此调查结果的扇形统计图;(3)从统计图中你能得出什么结论?说说你的理由.【答案】(1)40%、25%、20%、15%;(2)扇形统计图如图所示:;(3)答案不唯一,合理即可【分析】(1)由每个的人数除以总人数,再乘以100%,即可求得结果;(2)由各自的百分数乘以360°,即可得到每个小扇形的圆心角的度数,然后作扇形统计图即可;(3)根据扇形统计图的特征即可得到答案.【详解】(1)了解节水知识并有节水意识人数的百分比:,不了解节水知识但有节水意识人数的百分比:,了解节水知识但没有节水意识人数的百分比:,不了解节水知识也没有节水意识人数的百分比:;(2)各类人数对应扇形所对应圆心角:了解节水知识并有节水意识:,不了解节水知识但有节水意识:,了解节水知识但没有节水意识:,不了解节水知识也没有节水意识:,扇形统计图如图所示:;(3)答案不唯一,合理即可,如:没有节水意识的人数较多,但不足一半.【点睛】解答本题的关键是熟练掌握扇形统计图的特征:扇形统计图直接反映部分占总体的百分比大小.。

上海市七年级数学上册第二章《整式的加减》经典测试(含答案解析)

上海市七年级数学上册第二章《整式的加减》经典测试(含答案解析)

1.在代数式a2+1,﹣3,x2﹣2x,π,1x中,是整式的有()A.2个B.3个C.4个D.5个C 解析:C【分析】单项式和多项式统称为整式,分母中含有字母的不是整式.【详解】解:a2+1和 x2﹣2x是多项式,-3和π是单项式,1x不是整式,∵单项式和多项式统称为整式,∴整式有4个.故选择C.【点睛】本题考查了整式的定义.2.下面用数学语言叙述代数式1a﹣b,其中表达正确的是()A.a与b差的倒数B.b与a的倒数的差C.a的倒数与b的差D.1除以a与b的差C 解析:C【分析】根据代数式的意义,可得答案.【详解】用数学语言叙述代数式1a﹣b为a的倒数与b的差,故选:C.【点睛】此题考查了代数式,解决问题的关键是结合实际,根据代数式的特点解答.3.某公司今年2月份的利润为x万元,3月份比2月份减少8%,4月份比3月份增加了10%,则该公司4月份的利润为(单位:万元)()A.(x﹣8%)(x+10%)B.(x﹣8%+10%)C.(1﹣8%+10%)x D.(1﹣8%)(1+10%)x D解析:D【分析】首先利用减小率的意义表示出3月份的利润,然后利用增长率的意义表示出4月份的利润.【详解】解:由题意得3月份的产值为(1﹣8%)x,4月份的产值为(1﹣8%)(1+10%)x.故选:D.【点睛】本题考查了列代数式,正确理解增长率以及下降率的定义是关键.4.如图,下列各三角形中的三个数之间均具有相同的规律,根据此规律,最后一个三角形中y与n之间的关系是()A.y=2n+1 B.y=2n+n C.y=2n+1+n D.y=2n+n+1B解析:B【详解】∵观察可知:左边三角形的数字规律为:1,2,…,n,右边三角形的数字规律为:2,22,…,2n,n+,下边三角形的数字规律为:1+2,2+, (2)22∴最后一个三角形中y与n之间的关系式是y=2n+n.故选B.【点睛】考点:规律型:数字的变化类.5.有一组单项式如下:﹣2x,3x2,﹣4x3,5x4……,则第100个单项式是()A.100x100B.﹣100x100C.101x100D.﹣101x100C解析:C【分析】由单项式的系数,字母x的指数与序数的关系求出第100个单项式为101x100.【详解】由﹣2x,3x2,﹣4x3,5x4……得,单项式的系数的绝对值为序数加1,系数的正负为(﹣1)n,字母的指数为n,∴第100个单项式为(﹣1)100(100+1)x100=101x100,故选C.【点睛】本题综合考查单项式的概念,乘方的意义,数字变化规律与序数的关系等相关知识点,重点掌握数字的变化与序数的关系.6.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22D解析:D【分析】观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【点睛】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.7.下列计算正确的是()A.﹣1﹣1=0 B.2(a﹣3b)=2a﹣3b C.a3﹣a=a2D.﹣32=﹣9D解析:D【分析】根据有理数的减法、去括号、同底数幂的乘方即可解答.【详解】解:A.﹣1﹣1=﹣2,故本选项错误;B.2(a﹣3b)=2a﹣6b,故本选项错误;C.a3÷a=a2,故本选项错误;D.﹣32=﹣9,正确;故选:D.【点睛】本题考查了去括号和简单的提取公因式,掌握去括号时符号改变规律是解决此题的关键. 8.化简2a-[3b-5a-(2a-7b)]的值为()A.9a-10b B.5a+4bC.-a-4b D.-7a+10b A解析:A【解析】2a-[3b-5a-(2a-7b)]=2a-(3b-5a-2a+7b)=2a-(10b-7a)=2a-10b+7a=9a-10b,故选A.【点睛】本题考查去括号,合并同类项,解题的关键是按运算的顺序先去括号,然后再进行合并同类项.9.下列去括号正确的是()A.112222x y x y⎛⎫=⎭-⎪⎝---B.()12122x y x y++=+-C .()16433232x y x y --+=-++ D .()22x y z x y z +-+=-+ D 解析:D【分析】 根据整式混合运算法则和去括号的法则计算各项即可. 【详解】 A. 112222x y x y ⎛⎫ =⎭-⎪⎝--+,错误; B. ()12122x y x y ++=++,错误; C. ()136433222x y x y --+=-+-,错误; D. ()22x y z x y z +-+=-+,正确;故答案为:D .【点睛】本题考查了整式的混合运算,掌握整式混合运算法则和去括号的法则是解题的关键. 10.下列式子:222,32,,4,,,22ab x yz ab c a b xy y m x π+---,其中是多项式的有( ) A .2个B .3个C .4个D .5个A解析:A【分析】几个单项式的和叫做多项式,结合各式进行判断即可.【详解】 22a b ,3,2ab ,4,m -都是单项式; 2x yz x+分母含有字母,不是整式,不是多项式; 根据多项式的定义,232ab c xy y π--,是多项式,共有2个.故选:A .【点睛】本题考查了多项式,解答本题的关键是理解多项式的定义.注意:几个单项式的和叫做多项式.11.下列变形中,正确的是( )A .()x z y x z y --=--B .如果22x y -=-,那么x y =C .()x y z x y z -+=+-D .如果||||x y =,那么x y = B 解析:B【分析】根据去括号法则、等式的基本性质以及绝对值的性质逐一判断即可.A :()x z y x z y --=-+,选项错误;B :如果22x y -=-,那么x y =,选项正确;C :()x y z x y z -+=--,选项错误;D :如果||||x y =,那么x 与y 互为相反数或二者相等,选项错误;故选:B.【点睛】本题主要考查了去括号法则、等式的基本性质与绝对值性质,熟练掌握相关概念是解题关键.12.已知 2x 6y 2和﹣3x 3m y n 是同类项,则9m 2﹣5mn ﹣17的值是( )A .﹣1B .﹣2C .﹣3D .﹣4A 解析:A【分析】根据同类项是字母相同且相同字母的指数也相同,可得m ,n 的值,根据代数式求值,可得答案.【详解】由题意,得3m =6,n =2.解得m =2,n =2.9m 2﹣5mn ﹣17=9×4﹣5×2×2﹣17=﹣1,故选:A .【点睛】本题考查同类项的定义,同类项定义中的两个“相同”:所含字母相同;相同字母的指数相同,是易混点,还有注意同类项定义中隐含的两个“无关”:①与字母的顺序无关;②与系数无关.13.若关于x ,y 的多项式2237654x y mxy xy -++化简后不含二次项,则m =( ) A .17 B .67 C .-67D .0B 解析:B【分析】将原式合并同类项,可得知二次项系数为6-7m ,令其等于0,即可解决问题.【详解】解:∵原式=()2236754x y m xy +-+, ∵不含二次项,∴6﹣7m =0, 解得m =67. 故选:B .本题考查了多项式的系数,解题的关键是若不含二次项,则二次项系数6-7m=0. 14.已知m ,n 是不相等的自然数,则多项式2m n m n x x +-+的次数是( )A .mB .nC .m n +D .m ,n 中较大者D 解析:D【分析】由于多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数,因为m ,n 均为自然数,而2m n +是常数项,据此即可确定选择项.【详解】因为2m n +是常数项,所以多项式2m n m n x x +-+的次数应该是,m n x x 中指数大的,即m ,n 中较大的,故答案选D.【点睛】本题考查的是多项式的次数,解题关键是确定2m n +是常数项.15.有20个数排成一行,对于任意相邻的三个数,都有中间的数等于前后两数的和.如果第一个数是0,第二个数是2,这20个数的和是( )A .2B .﹣2C .0D .4A 解析:A【分析】根据题意可以写出这组数据的前几个数,从而发现数字的变化规律,再利用规律求解.【详解】解:由题意可得,这列数为:0,2,2,0,﹣2,﹣2,0,2,2,…,∴这20个数每6个为一循环,且前6个数的和是:0+2+2+0+(﹣2)+(﹣2)=0, ∵20÷6=3…2,∴这20个数的和是:0×3+(0+2)=2.故选:A .【点睛】本题考查了数字的变化规律,正确理解题意,发现题目中数字的变化规律:每6个数重复出现是解题的关键.1.如果一个多项式与另一多项式223m m -+的和是多项式231m m +-,则这个多项式是_________.【分析】根据题意列出算式利用整式的加减混合运算法则计算出结果【详解】解:设这个多项式为A 则A=(3m2+m-1)-(m2-2m+3)=3m2+m-1-m2+2m-3=2m2+3m-4故答案为2m2+解析:2234m m +-【分析】根据题意列出算式,利用整式的加减混合运算法则计算出结果.【详解】解:设这个多项式为A,则A=(3m 2+m-1)-(m 2-2m+3)=3m 2+m-1-m 2+2m-3=2m2+3m-4,故答案为2m2+3m-4.【点睛】本题考查了整式的加减运算,掌握整式的加减混合运算法则是解题的关键.2.某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为__元.08a【解析】试题分析:根据题意得:a•(1+20)×90=108a;故答案为108a考点:列代数式解析:08a【解析】试题分析:根据题意得:a•(1+20%)×90%=1.08a;故答案为1.08a.考点:列代数式.3.关于x的二次三项式的一次项的系数为5,二次项的系数是-3,常数项是-4.按照x的次数逐渐减小排列,这个二次三项式为____.-3x2+5x-4【分析】由于多项式是由单项式组成的而多项式的次数是多项式中次数最高的项的次数而关于x的二次三项式的二次项系数是-3一次项系数是5常数项是-4根据前面的定义即可确定这个二次三项式【详解析:-3x2+5x-4【分析】由于多项式是由单项式组成的,而多项式的次数是“多项式中次数最高的项的次数”,而关于x的二次三项式的二次项系数是-3,一次项系数是5,常数项是-4,根据前面的定义即可确定这个二次三项式.【详解】∵关于x的二次三项式,二次项系数是-3,∴二次项是-3x2,∵一次项系数是,∴一次项是5x,∵常数项是-4,∴这个二次三项式为:-3x2+5x-4.故答案为:-3x2+5x-4【点睛】本题考查了多项式的知识,多项式是由单项式组成的,本题首先要确定是由几个单项式组成,要记住常数项也是一项,单项式前面的符号也应带着.4.将代数式4a2b+3ab2﹣2b3+a3按a的升幂排列的是_____.﹣2b3+3ab2+4a2b+a3【分析】找出a的次数的高低后由低到高排列即可得出答案【详解】可得出﹣2b3+3ab2+4a2b+a3【点睛】本题考查了代数式中的次数熟悉掌握次数的概念和细心是解决本解析:﹣2b3+3ab2+4a2b+a3.【分析】找出a的次数的高低后,由低到高排列即可得出答案.【详解】可得出﹣2b3+3ab2+4a2b+a3.【点睛】本题考查了代数式中的次数,熟悉掌握次数的概念和细心是解决本题的关键.5.礼堂第一排有a个座位,后面每排都比第一排多1个座位,则第n排座位有________________.【分析】有第1排的座位数看第n排的座位数是在第1排座位数的基础上增加几个1即可【详解】解:∵第一排有个座位∴第2排的座位为a+1第3排的座位数为a+2…第n排座位有(a+n-1)个故答案为:(a+n解析:a n1+-【分析】有第1排的座位数,看第n排的座位数是在第1排座位数的基础上增加几个1即可.【详解】解:∵第一排有a个座位,∴第2排的座位为a+1,第3排的座位数为a+2,…第n排座位有(a+n-1)个.故答案为:(a+n-1).【点睛】考查列代数式;得到第n排的座位数与第1排座位数的关系式的规律是解决本题的关键.6.一列数a1,a2,a3…满足条件a1=12,a n=111na--(n≥2,且n为整数),则a2019=_____.-1【分析】依次计算出a2a3a4a5a6观察发现3次一个循环所以a2019=a3【详解】a1=a2==2a3==﹣1a4=a5==2a6==﹣1…观察发现3次一个循环∴2019÷3=673∴a20解析:-1【分析】依次计算出a2,a3,a4,a5,a6,观察发现3次一个循环,所以a2019=a3.【详解】a 1=12,a 2=111-2 =2,a 3=11-2 =﹣1,a 4=11=1--12(),a 5=111-2=2,a 6=11-2=﹣1… 观察发现,3次一个循环,∴2019÷3=673,∴a 2019=a 3=﹣1,故答案为﹣1.【点睛】本题考查了数字的规律变化,要求学生通过观察数字,分析、归纳并发现其中的规律,并应用规律解决问题是解题的关键.7.已知在没有标明原点的数轴上有四个点,且它们表示的数分别为a 、b 、c 、d .若|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,则|b ﹣c |=___.7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值从而可以求得|b ﹣c|的值【详解】∵|a ﹣c|=10|a ﹣d|=12|b ﹣d|=9∴c ﹣a=10d ﹣a=12d ﹣b=9∴(c ﹣a )﹣(d ﹣a )+(d解析:7【分析】根据数轴和题目中的式子可以求得c ﹣b 的值,从而可以求得|b ﹣c |的值.【详解】∵|a ﹣c |=10,|a ﹣d |=12,|b ﹣d |=9,∴c ﹣a =10,d ﹣a =12,d ﹣b =9,∴(c ﹣a )﹣(d ﹣a )+(d ﹣b )=c ﹣a ﹣d +a +d ﹣b=c ﹣b=10﹣12+9=7.∵|b ﹣c |=c ﹣b ,∴|b ﹣c |=7.故答案为:7.【点睛】本题考查了数轴、绝对值以及整式的加减,解答本题的关键是明确数轴的特点,可以将绝对值符号去掉,求出相应的式子的值.8.仅当b =______,c =______时,325x y 与23b c x y 是同类项。

上海七年级数学试卷【含答案】

上海七年级数学试卷【含答案】

上海七年级数学试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是质数?A. 21B. 23C. 27D. 302. 如果一个三角形的两边长分别是8厘米和15厘米,那么第三边的长度可能是多少厘米?A. 3厘米B. 23厘米C. 17厘米D. 27厘米3. 下列哪个数是偶数?A. 101B. 102C. 103D. 1044. 下列哪个数是奇数?A. 151B. 152C. 153D. 1545. 下列哪个数是合数?A. 31B. 32C. 33D. 34二、判断题(每题1分,共5分)1. 任何偶数乘以偶数都是偶数。

()2. 任何奇数乘以奇数都是奇数。

()3. 任何偶数乘以奇数都是偶数。

()4. 任何奇数乘以偶数都是奇数。

()5. 任何偶数除以偶数都是整数。

()三、填空题(每题1分,共5分)1. 2 + 3 = _____。

2. 5 × 6 = _____。

3. 9 4 = _____。

4. 15 ÷ 5 = _____。

5. 7 + 8 = _____。

四、简答题(每题2分,共10分)1. 请写出三个质数。

2. 请写出三个合数。

3. 请写出三个偶数。

4. 请写出三个奇数。

5. 请写出三个立方数。

五、应用题(每题2分,共10分)1. 一个长方形的长是10厘米,宽是5厘米,求这个长方形的面积。

2. 一个正方形的边长是6厘米,求这个正方形的面积。

3. 一个三角形的底是8厘米,高是5厘米,求这个三角形的面积。

4. 一个圆的半径是4厘米,求这个圆的面积。

5. 一个长方体的长是10厘米,宽是5厘米,高是3厘米,求这个长方体的体积。

六、分析题(每题5分,共10分)1. 小明有一些红色和蓝色的球,红色球的数量是蓝色球的两倍。

如果小明有10个红色球,那么他有多少个蓝色球?2. 小华有一些糖果,他给了小明一些糖果后,还剩下10个糖果。

如果小华原来有20个糖果,那么他给了小明多少个糖果?七、实践操作题(每题5分,共10分)1. 请用直尺和圆规画一个边长为5厘米的正方形。

最新上海初一上册数学练习题及答案优秀名师资料

最新上海初一上册数学练习题及答案优秀名师资料

上海初一上册数学练习题及答案精品文档上海初一上册数学练习题及答案x?21. 当x____时,分式的值为负。

x答案:0 32. 当x____时,分式2x?1的值为负数。

1答案:x??3. 一个分数,分母比分子大3,若分母加1后,那么分数的值为答案:1,求原来的分数。

24. 用价值100元的甲种涂料与价值240元的乙种涂料配置成一种新涂料,新涂料每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价多少元,答案: 17元/千克a2?b2?c2?2bc?________________.. 化简:2a?b2?c2?2ab答案:6. 如果分式a?b?c a?b?c4的值是整数,则整数x可取____________. x?2答案:-201346x2?xy?2y27. 如果x-3y=0,求2的值. x?xy?y2答案:28. 已知 a?1 / 9精品文档1) 则a?21?3, a1?__________a142) 则a?4?__________ a133) 计算 a?3的值.a答案: 1)a2?112??2?32?2?7aa11222??2?7?2?474aa1121??3??182aaa2) a4?3)a?3注:本题考察了立方和差的公式,一定要牢记.10. 随着微电子制造技术的不断进步,半导体材料的精细加工尺寸大幅度缩小.目前已经能够在35平方毫米的芯片上集成5,000,000个元件.那么一个元件大约占_________________平方毫米.先化简:-6a?35?,然后从2,-2,3,1四个数中,选取2a?4a?2一个你认为合适的数作为a的值代入求值.答案:略12. a、b范围是__________时,分式答案:a?b单项式-?a2b4的系数是___________ 答案:-派21. ??? 1?2,则m=__________.23. 如果a=2,b=3,c=433,那么把a、b、c按照从大到2 / 9精品文档小排列。

沪科版数学七年级上册综合训练50题(含答案)

沪科版数学七年级上册综合训练50题(含答案)

沪科版数学七年级上册综合训练50题(填空、解答题)一、填空题1.用正三角形、正四边形和正六四边形按如图所示的规律拼图案,则第n 个图案中正三角形的个数为_____.2.数轴上表示-2的点先向右移动3个单位,再向左移动5个单位,则此时该点表示的数是___.3.一个角是 25°30′,则它的补角为____________度. 4.若13n ab +-与143m a b -的和仍是单项式,则m n =_______.5.关于x 的一元一次方程(2m ﹣6)x ﹣2=0 ,x =1是一元一次方程的解,则m =_____.6.下列各数:12,﹣(﹣3),﹣|﹣4|,0,﹣22,﹣0.01,(﹣1)3,属于负数的有_________个.7.近似数7.2765精确到0.01是______.8.若α与β互余,且α=35°18′,则β=___________. 9.单项式3223a x π-的系数是__________,次数是__________.10.若是同类项,则= ,= .11.有下列判断:①两点确定一条直线,①直线上任意两点都可以表示这条直线;①三点确定一条直线;①过一点有无数条直线,其中错误的是_____(填序号)12.已知x ,y 满足方程345254x y x y +=⎧⎨+=⎩,则x -y 的值为_______;13.在CCTV “开心辞典”栏目中,主持人问这样一道题目:“a 是最小的正整数,b 是最大的负整数,c 是绝对值最小的有理数,请问:a ,b ,c 三数之和是____________.”14.若单项式12m xy +与单项式2313n x y -是同类项,则m n -=__________.15.为了了解5000件商品的质量问题,从中任意抽取100件商品进行试验在这个问题中,样本容量是__________.16.有一个密码系统,其原理为下面的框图所示当输出为-3时,则输入的x=______.17.已知132n x y +-与34y x 是同类项,则n 的值是__________.18.已知代数式22a a -的值是3,则代数式2542a a +-的值为__________. 19.若a ,b 互为相反数,且0ab ≠,c 、d 互为倒数,m 是数轴上到原点的距离为2的点表示的数,则322()3b a b cd m a ⎛⎫++-+ ⎪⎝⎭的值为___________.20.如图所示,点A 在点O 的北偏东50°方向,点B 在点O 的南偏东30°方向上,则AOB ∠=______.21.如图,在长方形ABCD 中,8cm AB =,9cm BC =,点E 是AD 上一点,2AE DE =,点P 从点B 出友,以1cm/s 的速度从点B —C —D —E 匀速运动,设点P运动的时间为ts ,当PCE 的面积为6cm 2时,则t =________.22.大于133-而小于2的所有整数的和是__________.23.规定符号⊗的意义为2a b ab a ⊗=-,那么34-⊗=_________. 24.若13x 2y m 与2x n y 6是同类项,则m+n=______.25.明明带了a 元去书店买了一套《四大名著》,每本名著售价b 元,一套有4本,还剩_______元.如果150a =,36.45b =元,还剩_______元. 26.用“>”或“<”或“=”填空:(1)﹣|﹣9|_____﹣(﹣9); (2)34-_____78-.27.用“①”定义一种新运算:对于任意有理数a 和b ,规定23a b ab a =+☆.如:213133112=⨯+⨯=☆,则()32-=☆_________.28.长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为___ (结果保留π). 29.下图是一个无盖的长方体盒子的展开图(重叠部分不计),根据图中数据,则该无盖长方体盒子的容积为__.二、解答题30.化简并求值:2(3)4(31)4a b b a ---+--.其中53a b +=. 31.计算: (1(2)|13.32.我们定义一种新运算:*2a b a b ab =-+(等号右边为通常意义的运算): (1)计算()2*3-的值; (2)解方程:132x x *=*. 33.解方程组:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩.34.为了了解学校图书馆上个月借阅情况,管理老师从学生对艺术、经济、科普及生活四类图书借阅情况进行了统计,并绘制了下列不完整的统计图,请根据图中信息解答下列问题:(1)上个月借阅图书的学生有多少人?扇形统计图中“经济”部分的圆心角度数是多少?(2)把条形统计图补充完整;(3)从借阅情况分析,如果要添置这四类图书3600册,请你估算“科普”类图书应添置多少册合适?35.先化简,再求值:()22222232324x y xy x y xy xy xy ⎡⎤+---+-⎣⎦,其中2x =,=3y -.36.先化简,再求值:(1)﹣a 2b +(ab 2﹣3a 2b )﹣2(ab 2﹣2a 2b ),其中a =2,b =1; (2)2(a 2﹣b )+3a 2﹣2(a 2+12b ),其中(a 2+m ﹣1)2+|b +m +2|=0.37.有20筐白菜,以每筐25千克为标准,超过或不足的数分别用正、负数来表示.记录如下:(1)这20筐中,最重的一筐比最轻的一筐重 _____千克 (2)与标准重量比较,总计超过或不足多少千克? (3)若售价1.8元,则出售这筐可卖多少元?38.八年级(1)班的学习委员亮亮对本班每位同学每天课外完成数学作业的时间进行了一次统计,并根据收集的数据绘制了如图的统计图(不完整),请你根据图中提供的信息,解答下面的问题:(注:每组数据包括最大值,不包括最小值.)(1)这个班的学生人数为______人; (2)将图①中的统计图补充完整;(3)完成课外数学作业的时间的中位数在______时间段内;(4)如果八年级共有学生500名,请估计八年级学生课外完成数学作业时间超过1.5小时的有多少名?39.在做解方程练习时,有一个方程“y 125-=y +■”,题中■处不清晰,李明问老师,老师只是说:“■是一个有理数,该方程的解与当x =2时整式5(x ﹣1)﹣2(x ﹣2)﹣4的值相同.”依据老师的提示,请你帮李明找到“■”这个有理数,并求出方程的解. 40.计算:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫--- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭; (2)-3-3510.225⎡⎤⎛⎫-+-⨯÷- ⎪⎢⎥⎝⎭⎣⎦;(3)114332⎛⎫- ⎪⎝⎭ ×(-2)-221÷32⎛⎫- ⎪⎝⎭;(4)2711150(6)9126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2.41.解方程组:32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩.42.10个互不相等的有理数,每9个的和都是“分母为22的既约真分数(分子与分母无公约数的真分数)”,则这10个有理数的和为___.43.先化简再求值:22223[22( 1.5)]3,3,2x y xy xy x y xy xy x y ---++=-=-其中 44.计算: (1)111410233535⎛⎫-+-- ⎪⎝⎭; (2)()12524236⎛⎫-⨯-+ ⎪⎝⎭.45.在机器人大赛中,机器人沿一条直线爬行.规定向右爬行为正,向左爬行为负,机器人爬行5次,爬行的路程依次为:(单位:厘米)8,4,12,5,10--+-+. (1)机器人最后离出发点多少厘米?在出发点的左边还是右边?(2)若机器人爬行的速度不变,共用了8分钟,问机器人的爬行的速度是多少? 46.如图,438624,AOB BOC '∠=︒∠=,,OD 为AOC ∠的平分线,求BOD ∠的度数47.(1)计算:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭(2)如图,OD 平分AOC ∠,75BOC ∠=︒,15BOD ∠=︒.求AOB ∠的度数.48.解下列方程: (1)13(2)5x x --=- (2)213136x x---=-.参考答案:1.42n +##24n +【分析】由题意可知:每个图案中正三角形的个数都比上一个图案中正三角形的个数多4个,由此规律得出答案即可.【详解】解:第一个图案正三角形个数为624+=; 第二个图案正三角形个数为244224+++⨯=; 第三个图案正三角形个数为2244234+⨯++⨯=; …;第n 个图案正三角形个数为21442442n n n +⨯+++(﹣)==. 故答案为:42n +.【点睛】此题考查图形的变化规律,找出图形之间的数字运算规律,得出规律,解决问题. 2.-4【详解】试题分析:在数轴上向右移动几个单位则加上几个单位,向左移动几个单位则减去几个单位. -2+3-5=-4. 考点:数轴上点的表示 3.154.5【分析】利用补角的意义“两角之和等于180°,那么这两个角互为补角,其中一个角叫做另一个角的补角”.直接列式计算即可. 【详解】1802530'15430'154.5︒-︒=︒=︒. 故答案为:154.5.【点睛】本题考查了补角的概念,如果两个角的和等于180°,就说这两个角互为补角. 4.9【分析】根据同类项的定义可得11m -=,14n +=,解方程可得m 、n 的值,再代入代数式m n 求值即可.【详解】由题意得:11m -=,14n +=, 解得:2m =,3n =, 把2m =,3n =代入m n 中得:239=,故答案为:9.【点睛】本题考查了单项式的定义、同类项等知识,关键是掌握同类项的定义. 5.4【分析】将x =1代入原方程求解即可. 【详解】解:将x =1代入(2m ﹣6)x ﹣2=0,2620m --=,解得:4m =,故答案为:4.【点睛】本题考查一元一次方程的解,熟练掌握解一元一次方程是解题关键. 6.4【分析】根据正负数的定义便可直接解答,即大于0的数为正数,小于0的数为负数,0既不是正数也不是负数.【详解】解:12是正数,﹣(﹣3)=3是正数,﹣|﹣4|=﹣4是负数,0既不是正数也不是负数,﹣22=﹣4是负数,﹣0.01是负数,(﹣1)3=﹣1是负数, 负数共4个. 故答案为:4【点睛】此题考查了正数与负数,解答此题的关键是:正确理解正、负数的概念,区分正、负数的关键就是看它的值是大于0还是小于0,不能只看前面是否有负号. 7.7.28【分析】利用四舍五入法解答,即可求解. 【详解】解:近似数7.2765精确到0.01是7.28. 故答案为:7.28【点睛】本题主要考查运用“四舍五入”法求一个数的近以数,解题的关键是要看清精确到哪一位,就根据它的下一位上数是否满5,再进行四舍五入. 8.5442'︒【分析】根据互为余角的两个角的和等于90°列式计算即可得解. 【详解】①α与β互余,且α=35°18′, ①9035185442β=︒-︒=︒''. 故答案为:5442︒'.【点睛】本题考查了余角和补角,熟记余角的概念是解题的关键.9.23π-5【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】根据单项式定义得:单项式3223a xπ-的系数是23π-,次数是5.故答案为:23π-;5.【点睛】本题考查了单项式.确定单项式的系数和次数时,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.10.3;1【详解】试题分析:解:因为是同类项,所以n=1,3m=9,所以n=1,m=3.考点:同类项的定义点评:本题主要考查了同类项的定义.我们把所含字母相同,相同字母的指数也相等的项叫做同类项.11.①.【分析】根据直线的性质,相交线的定义对各选项分析判断后利用排除法求解.【详解】①两点确定一条直线,故正确;②直线上任意两点都可以表示这条直线,故正确;③三点确定一条直线或三条直线,故错误;④过一点可以作无数条直线,故正确.故答案为③.【点睛】本题考查了直线的性质,熟记两点确定一条直线是解题的关键.12.1【分析】方程组中两个方程相加即可求出x-y的值.【详解】345254x yx y+=⎧⎨+=⎩中的第一个方程减去第二个方程得:x-y=1,故答案为1.【点睛】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两个方程都成立的未知数的值. 13.0【分析】先求出a ,b ,c 的值,再把它们相加即可. 【详解】解:由题意,得:a =1,b =-1,c =0, 故a +b +c =1-1+0=0. 故答案为:0.【点睛】此题主要考查的是绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0. 14.1-【分析】所含字母相同,并且相同字母的指数也相同的项叫做同类项.【详解】①单项式12m xy +与单项式2313n x y -是同类项①2113n m -=⎧⎨+=⎩,解得32n m =⎧⎨=⎩ ①231m n -=-=-. 故答案为:1-.【点睛】本题考查了同类项的概念.注意同类项与字母的顺序无关. 15.100【分析】一个样本包括的个体数量叫做样本容量.【详解】解:要了解5000件商品的质量问题,从中任意抽取100件商品进行试验,在这个问题中,样本包括的个体数量是100,所以样本容量是100. 故答案为100.【点睛】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.样本容量是样本中包含的个体的数目,不能带单位. 16.-4.5【分析】根据题意得到式子2x+6=-3即可求解. 【详解】根据题意得2x+6=-3 解得x=-4.5 故填:-4.5.【点睛】此题主要考查代数式求值,解题的关键是根据题意列出式子求解.17.3【分析】根据同类项的概念可得关于n 的一元一次方程,求解方程即可得到n 的值.【详解】解:①132n x y +-与34y x 是同类项,①n +1=4,解得,n =3,故答案为:3.【点睛】本题考查了同类项,解决本题的关键是判断两个项是不是同类项,只要两看,即一看所含有的字母是否相同,二看相同字母的指数是否相同.18.-1【分析】由已知条件得到(a 2-2a )的值后,代入代数式求值.【详解】223a a -=,∴原式()2522a a =--561=-=-,故答案为1-.【点睛】本题考查了整式的运算,要会把a 2-2a 看作一个整体,然后整体代入计算. 19.0【分析】根据题意得出012a b cd m +===,,或2m =-,然后整体代入代数式求解即可. 【详解】解:①a ,b 互为相反数,且0ab ≠,c 、d 互为倒数,m 是数轴上到原点的距离为2的点表示的数,①012a b cd m +===,,或2m =-, ①1b a=-, ①322()3b a b cd m a ⎛⎫++-+ ⎪⎝⎭()324103-=+-+ 0=,故答案为:0.【点睛】题目主要考查相反数、倒数的定义及数轴上的点到原点的距离,求代数式的值等,理解题意,综合运用这些基础知识点是解题关键.20.100°.【分析】直接利用方位角结合平角的性质得出答案.【详解】解:如图所示:因为点A在点O的北偏东50°方向所以①NOA=50°;因为点B在点O的南偏东30°方向上所以①SOB=30°则①AOB=180°-①NOA-①SOB=100°.故答案为:100°.【点睛】题考查了方位角的意义和角的和差.用方位角描述方向时,通常以正北或正南方向为角的始边,以对象所处的射线为终边.21.152或13或372【分析】分三种情况:当点P在BC边上时,当点P在CD边上时,当点P在DE边上时,分别利用三角形面积公式求解即可.【详解】解:①长方形ABCD,①AD=BC=9cm,CD=AB=8cm,①AE=2DE,①AE=6cm,DE=3cm,当点P在BC边上时,如图,S△PCE=12PC AB=12(9-t)×8=6,解得:t=152;当点P在CD边上时,S△PCE=12PC DE⋅=12(t-9)×3=6,解得:t=13;当点P在DE边上时,S△PCE=12PE CD⋅=12(9+8+3-t)×8=6,解得:t=372;综上,当PCE的面积为6cm2时,则点P运动的时间为152s或13s或372s.故答案为:152或13或372【点睛】本题考查长方形的性质,三角形面积,一元一次方程的应用,分类讨论思想的应用是解题的关键.22.-5【分析】找出绝对值大于133-而小于2的所有的整数,求出之和即可.【详解】大于133-而小于2的所有的整数为-3,-2,-1,0,1,则所有整数之和为-3-2-1+0+1=-5.故答案为:-5.【点睛】此题考查了有理数的加法,以及绝对值,熟练掌握运算法则是解本题的关键. 23.-21【详解】解:34-⊗=-3×4-(-3)2=-21.故答案为:-2124.8【详解】①13x 2y m 与2x n y 6是同类项, ①n =2,m =6.①n +m =8.故答案为8.25. 4a b - 4.2【分析】用总钱数减去买名著的钱数就是剩下的钱数,然后把a=150,b=36.45,代入含有字母的式子,即可求出还剩下的钱数.【详解】解:根据题意,则买完一套名著剩下的钱为:4a b -;当150a =,36.45b =元时,①4150436.45 4.2a b -=-⨯=(元);故答案为:4a b -;4.2;【点睛】做这类用字母表示数的题目时,解题关键是根据已知条件,把未知的数用字母正确的表示出来,然后根据题意列式计算即可得解.26. < >【分析】(1)先化简绝对值、去括号,再根据有理数的大小比较法则即可得;(2)根据有理数的大小比较法则即可得.【详解】(1)99--=-,()99--=, 则()99--<--;(2)346788=<, 则8347->-; 故答案为:<,>.【点睛】本题考查了绝对值、去括号、有理数的大小比较法则,熟练掌握有理数的大小比较法则是解题关键.27.21.【分析】根据新定义,用3和-2分别代替公式中的a,b 正确计算即可.【详解】①对于任意有理数a 和b ,规定23a b ab a =+☆,①()32-=☆3×2(2)-+3×3=21,故应该填21.【点睛】本题考查了新定义知识,准确理解新定义公式的意义是解题的关键.28.32π【分析】分情况讨论,分绕长为2或是4的边旋转,再根据圆柱的体积公式即可解【详解】由题意,旋转构成一个圆柱的体积为π×22×4=16π或π×24×2=32π,故答案为32π【点睛】圆柱的体积公式是底面积与高的积.29.6000cm 3【分析】根据图形找出长方体的长宽高即可解题.【详解】解:由图可知长方体的长为30cm,宽为20cm,高为10cm,①长方体的容积=302010⨯⨯=6000 cm 3.【点睛】本题考查了立体图形的体积,中等难度,读图能力,由平面图形找到长方体的长宽高是解题关键.30.102a b --,6-.【分析】先去括号,再计算整式的加减,然后将53a b +=代入求值即可得.【详解】解:原式2641244a b b a =-+-+-102a b =--,将53a b +=代入得:原式2(5)236a b =-+=-⨯=-.【点睛】本题考查了整式加减中的化简求值,熟练掌握整式的加减运算法则是解题关键. 31.(1)4(2)-4a =(a≥0)a ,3a =,和绝对值的意义计算.解:(1=2-(-2)=4.(2)|13=-4.32.(1)1;(2)2x =-【分析】(1)由题中所给定义新运算可直接代入求解;(2)根据题中所给定义新运算可列出方程,然后求解即可.【详解】解:(1)由题意得:()()()2*3223231-=⨯--+⨯-=;(2)由题意得:16312x x x x -+=-+ 移项,得13162x x x x -++-=-, 合并同类项,得552x =-, 系数化为1,得2x =-.【点睛】本题主要考查一元一次方程的解法,熟练掌握一元一次方程的解法是解题的关键.33.6113x y z =⎧⎪=-⎨⎪=⎩.【分析】①﹣①得出2y =-22,求出y =﹣11,把y =﹣11代入①,即可求得x =6,再把x =6,y =-11代入①进而求得z =3即可.【详解】解:2201160x y z x y z x y ++=-⎧⎪-+=⎨⎪+=⎩①②③ ①-①得,2y =-22,解得y =-11.把y =-11代入①中,得11x +6×(-11)=0,解得x =6.把x =6,y =-11代入①中,得6-11+z =-2,解得z =3.①原方程组的解为6113x y z =⎧⎪=-⎨⎪=⎩.【点睛】本题考查了三元一次方程组的解法,利用了消元的思想,解决本题的关键是消元,消元的方法有:代入消元法与加减消元法.34.(1)240人、60º;(2)40人,图见解析;(3)600册【分析】(1)、用借“生活”类的书的人数除以它所占的百分比即可得到调查的总人数;然后用360°乘以借阅“经济”的人数所占的百分比得到“经济”部分的圆心角度;(2)、先计算出借阅“科普”的学生数,然后补全条形统计图;(3)、利用样本估计总体,用样本中“科普”类所占的百分比乘以3600即可.【详解】解:(1)、上个月借阅图书的学生总人数为60÷25%=240(人);扇形统计图中“经济”部分的圆心角度数=360°×40240=60°; (2)、借阅“科普”的学生数=240﹣100﹣60﹣40=40(人),条形统计图为:(3)、3600×40240=600(册), 估计“科普”类图书应添置600册合适. 【点睛】本题考查了条形统计图,扇形统计图,用样本估计总体,读懂统计图,从不同的统计图中得到必要的信息是解题关键.35.22106x y xy xy --+,-204【分析】先根据整式的加减:合并同类项化简整式,再将x 、y 的值代入求解即可.【详解】()22222232324x y xy x y xy xy xy ⎡⎤+---+-⎣⎦()22222232324x y xy x y xy xy xy =+-+-+-2222223644x y xy x y xy xy xy =+--+-22106x y xy xy =--+当2x =,=3y -时原式()()()22231023623=-⨯--⨯⨯-+⨯⨯- 1218036=--204=-.【点睛】本题考查了整式的化简求值,熟记整式的加减法则是解题关键.36.(1)-2;(2)9【分析】(1)先根据整式的混合运算顺序和运算法则化简原式,再将a 、b 的值代入计算可得;(2)先根据整式的混合运算顺序和运算法则化简原式,再由非负数性质得出a 2=1﹣m ,b =2﹣m ,代入计算可得.【详解】解:(1)原式=﹣a 2b +ab 2﹣3a 2b ﹣2ab 2+4a 2b=﹣ab 2;当a =2,b =1时,原式=-2×12=﹣2.(2)原式=2a 2﹣2b +3a 2﹣2a 2﹣b=3a 2﹣3b ,①(a 2+m ﹣1)2+|b +m +2|=0,①a 2+m ﹣1=0,b +m +2=0①3a 2﹣3b =3(1﹣m )﹣3(﹣m ﹣2)=9.【点睛】此题主要考查整式的运算,解题的关键是熟知整式的加减运算法则.37.(1)5.5(2)10千克(3)918元【详解】试题分析:(1)根据正负数的意义列式计算即可得解;(2)根据图表数据列出算式,然后计算即可得解;(3)求出20筐白菜的质量乘以单价,计算即可得解.试题解析:(1)最轻的是-3,最重的是2.5,2.5-(-3)=2.5+3=5.5(千克)答:最重的一筐比最轻的一筐重5.5千克;故答案为5.5.(2)(-3)×1+(-2)×4+(-1.5)×2+0×1+1×4+2.5×8=-3-8-3+0+4+20=-14+24=10(千克) 答:与标准重量比较,20筐白菜总计超过10千克;(3)25×20+10=500+10=510(千克),510×1.8=918(元).故出售这20筐白菜可卖918元.考点:正数和负数.38.(1)40;(2)补图见解析;(3)1~1.5;(4)125名.【分析】(1)利用1~1.5小时的频数和百分比即可求得总数;(2)根据总数可计算出时间在0.5~1小时的人数,从而补全图形;(3)根据中位数的定义得到完成作业时间的中位数是第20个数和第21个数的平均数,而0.5-1有12人,1-1.5有18人,即可得到中位数落在1-1.5h内;(4)用七年级共有的学生数乘以完成作业时间超过1.5小时的人数所占的百分比即可.【详解】解:(1)(1)根据题意得:该班共有的学生是:1845%=40(人);这个班的学生人数为40人;(2)0.5~1小时的人数是:40×30%=12(人),如图:(3)共有40名学生,完成作业时间的中位数是第20个数和第21个数的平均数,即中位数在1-1.5小时内;(4)①超过1.5小时有10人,占总数的1025% 40=.①25%500125⨯=答:估计八年级学生课外完成数学作业时间超过1.5小时的有125名.【点睛】本题考查了条形统计图:条形统计图反映了各小组的频数,并且各小组的频数之和等于总数.也考查了扇形统计图、中位数的概念.39.“■”这个有理数为65-,方程的解为:y=1【分析】利用“该方程的解与当x=2时整式5(x−1)−2(x−2)−4的值相同”求出方程的解;再将方程的解代入y125-=y+■中求得■.【详解】解:当x=2时,整式5(x−1)−2(x−2)−4=5×(2−1)−2×(2−2)−4=1.①方程的解与当x=2时整式5(x−1)−2(x−2)−4的值相同,①方程的解为:y=1.当y=1时,y125-=y+■.①1125-=+■解得:■=65 -.答:“■”这个有理数为65-,方程的解为:y=1.【点睛】本题主要考查了一元一次方程的解,求代数式的值.利用方程的解的意义,将方程的解去替换未知数的值是解题的关键.40.(1)-12;(2) 11425;(3) 323;(4)1.【分析】根据有理数混合运算法则即可解题.【详解】解:(1)514166÷×÷8357⎛⎫⎛⎫⎛⎫---⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=53167×÷81456⎛⎫⎛⎫⎛⎫-⨯--⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭=1 2 -;(2)-3-3510.225⎡⎤⎛⎫-+-⨯÷-⎪⎢⎥⎝⎭⎣⎦=-3-221 5252 -+⨯()=-3-(-5+1125)=-3+5-1125=2-1125=14 125;(3)114332⎛⎫-⎪⎝⎭×(-2)-221÷32⎛⎫-⎪⎝⎭=(13732-)×(-2)823-⨯-()=53-+163=113=323; (4)()271115069126⎡⎤⎛⎫--+⨯- ⎪⎢⎥⎝⎭⎣⎦÷(-7)2 =[50-(79)36⨯+(1112)36⨯-(16)36⨯]÷49 =(50-28+33-6)÷49 =49÷49=1.【点睛】本题考查了有理数的混合运算,属于简单题,熟悉有理数运算法则和运算优先级是解题关键.41.211x y z =⎧⎪=-⎨⎪=⎩【分析】由①+①×3可得31711x y +=-④,再由由①-①可得1y =-,然后把1y =-分别代入①,①,即可求解.【详解】解: 32823154x y y z x y z -=⎧⎪+=⎨⎪+-=-⎩①②③ 由①+①×3得:31711x y +=-④,由①-①得:1919y -=,解得:1y =-,把1y =-代入①得:2x =,把1y =-,代入①得 :1z =,所以原方程组的解为211x y z =⎧⎪=-⎨⎪=⎩【点睛】本题主要考查了解三元一次方程组,熟练掌握三元一次方程组的解法是解题的关键.42.59【分析】这10个有理数,每9个相加,一共得出另外10个数,由于原10个有理数互不相等,可以轻易得出它们相加后得出的另外10个数也是互不相等的,而这10个数根据题意都是分母22的既约真分数,而满足这个条件的真分数正好有10个,分别是13579131517192122222222222222222222、、、、、、、、、,它们每一个都是原来10个有理数其中9个相加的和,那么,如果再把这10个以22为分母的真分数相加,得出来的结果必然是原来的10个有理数之和的9倍,即可求出10个有理数之和.【详解】解:由题意得:分母为22的既约真分数有13579131517192122222222222222222222、、、、、、、、、 ①135791315171921522222222222222222222+++++++++= ①10个有理数之和为5599÷= 故答案为:59. 【点睛】本题主要考查来了有理数的加法和除法,准确地理解题意,得出正确的数量关系是求解的关键.43.2xy xy +,6-【分析】先利用乘法分配率计算小括号,然后再算中括号,最后合并得到最简结果,将x 与y 的值代入计算,即可求出值.【详解】解:()2222322 1.53x y xy xy x y xy xy ⎡⎤⎣⎦---++()222232233x y xy xy x y xy xy =--+++222232233x y xy xy x y xy xy =--++- 2xy xy =+当3,2x y =-=-时原式()()()()23232+=---- 126=-+6=-;【点睛】此题考查了整式的加减混合运算、去括号法则,合并同类项法则和代数式求值,熟练掌握公式及法则是解本题的关键.44.(1)4;(2)16-.【分析】(1)利用有理数加减法的交换律与结合律进行计算即可得;(2)利用有理数乘法的分配律进行计算即可得.【详解】(1)原式111410323355⎛⎫=+--- ⎪⎝⎭, 111410323355⎛⎫⎛⎫=--+ ⎪ ⎪⎝⎭⎝⎭, 73=-,4=;(2)原式()()()125242424236=-⨯--⨯+-⨯, 121620=-+-,420=-,16=-.【点睛】本题考查了有理数加减法的交换律与结合律、有理数乘法的分配律,熟练掌握有理数的运算法则和运算律是解题关键.45.(1)机器人最后离出发点5厘米,在出发点的右边;(2)4.875(厘米/分)【分析】(1)直接把5次爬行的数据相加,再根据有理数的加减混合运算规则计算出结果即可;(2)求出各数据的绝对值的和,再根据速度=路程÷时间解答.【详解】(1)-8-412-5105++=,所以机器人最后离出发点5厘米,在出发点的右边;(2)机器人爬行的总路程为841251039++++=厘米,所以速度为39÷8=4.875(厘米/分)【点睛】本题主要考查有理数的加减运算,第二问要利用爬行过的路程的绝对值的和求解,这是学生容易出错的地方.46.21°42′【分析】首先求得①AOC 的度数,根据角平分线的定义求得①AOD ,然后根据①BOD=①AOD-①AOB 求解.【详解】①①AOB=43°,①BOC=86°24′,①①AOC=43°+86°24′=129°24′,①OD 平分①AOC ,①①AOD=12①AOC=129°24′÷2=64°42′, ①①BOD=①AOD- ①AOB=64°42′-43°=21°42′.【点睛】本题考查了角度的计算,正确理解角平分线的定义,求得①AOD 是关键. 47.(1)9-;(2)45︒.【分析】(1)先计算有理数的乘方、将除法转化为乘法、小数化为分数,再计算有理数的乘法与加减法即可得;(2)先根据角的和差可得60COD ∠=︒,再根据角平分线的定义可得60AOD COD ∠=∠=︒,然后根据角的和差即可得.【详解】(1)解:()535112 2.5147⎛⎫---÷-- ⎪⎝⎭ ()55187142=---⨯-- 55922=-+- 9=-;(2)解:75BOC ∠=︒,15BOD ∠=︒,751560COD BOC BOD ∴∠=∠-∠=︒-︒=︒,①OD 平分AOC ∠,①60AOD COD ∠=∠=︒,①601545AOB AOD BOD ∠=∠-∠=︒-︒=︒.【点睛】本题考查了含乘方的有理数混合运算、与角平分线有关的角度计算,熟练掌握各运算法则和角平分线的定义是解题关键.48.(1)3x =;(2)15x =- 【分析】(1) 根据解一元一次方程的步骤求解即可;(2)根据解一元一次方程的步骤求解即可.【详解】(1)去括号得:1365x x -+=-,移项得:3561x x --=---,合并同类项得:412x -=-,系数化为1得:3x =(2)去分母得:()()22136x x ---=-,去括号得:4236x x --+=-,移项、合并同类项得:5=1x -,系数化为1得:1=5x -. 【点睛】此题考查了解一元一次方程,解题的关键是熟练掌握解一元一次方程的步骤.。

沪科版七年级数学上册全册综合测试(含答案)

沪科版七年级数学上册全册综合测试(含答案)

七年级数学综合测试一.选择题(共10小题,满分30分,每小题3分)1.在平面直角坐标系中,下列各点位于x轴上的是()A.(1,﹣2)B.(3,0)C.(﹣1,3)D.(0,﹣4)2.下列平面图形中,不是轴对称图形的是()A.B.C.D.3.如图所示的是一辆汽车行驶的速度(千米/时)与时间(分)之间的变化图,下列说法正确的是()A.时间是因变量,速度是自变量B.汽车在1~3分钟时,匀速运动C.汽车最快的速度是30千米/时D.汽车在3~8分钟静止不动4.下列命题中,逆命题为真命题的是()A.对顶角相等B.邻补角互补C.两直线平行,同位角相等D.互余的两个角都小于90°5.在△ABC中,∠A是钝角,下列图中画BC边上的高线正确的是()A.B.C.D.6.如果ab>0,bc<0,则一次函数y=﹣x+的图象的大致形状是()A.B.C.D.7.甲车从A地到B地,乙车从B地到A地,乙车先出发先到达,甲乙两车之间的距离y(千米)与行驶的时间x(小时)的函数关系如图所示,则下列说法中不正确的是()A.甲车的速度是80km/hB.乙车的速度是60km/hC.甲车出发1h与乙车相遇D.乙车到达目的地时甲车离B地10km8.如图,△ABC中,∠ACB=90°,∠A=30o,顶点C在直线b上,若a∥b,∠1=92°,则∠2的度数为()A.28°B.30°C.32°D.46°9.如图,在平面直角坐标系中,A点坐标为(8,0),点P从点O出发以1个单位长度/秒的速度沿y轴正半轴方向运动,同时点Q从点A出发以1个单位长度/秒的速度沿x轴负半轴方向运动,设点P、Q运动的时间为t(0<t<8)秒,以PQ为斜边,向第一象限内作等腰Rt△PBQ,连接OB.下列四个说法:①OP+OQ=8;②B点坐标为(4,4);③四边形PBQO的面积为16;④PQ>OB.其中正确的说法()A.4B.3C.2D.110.正方形A1B1C1A2,A2B2C2A3,A3B3C3A4,…,按如图所示的方式放置,点A1A2A3,…和点B1B2B3,…分别在直线y=x+1和x轴上,则点C2020的纵坐标是()A.22020B.22019C.22020﹣1D.22019﹣1二.填空题(共7小题,满分28分,每小题4分)11.在函数y=中,自变量x的取值范围是12.如图,△ABC中,∠A=96°,D是BC延长线上的一点,∠ABC与∠ACD(△ACB的外角)的平分线交于A1点,则∠A1=度;如果∠A=α,按以上的方法依次作出∠BA2C,∠BA3C…∠BA n C(n为正整数),则∠A n=度(用含α的代数式表示).13.在平面直角坐标系中,点M(a﹣3,a+4),点N(5,9),若MN∥y轴,则a=.14.要制作一个周长是20cm的等腰三角形,写出底边长y与一腰长x的函数关系式(写出自变量的取值范围):.15.若直线y=(m2﹣4m+1)x+(2m+1)与直线y=﹣2x+3平行.则m的值为.16.如图所示,等边△ABC的边长为4,点D是BC边上一动点,且CE=BD,连接AD,BE,AD与BE相交于点P,连接PC.则线段PC的最小值等于.17.已知:如图△ABC中,∠B=50°,∠C=90°,在射线BA上找一点D,使△ACD为等腰三角形,则∠BCD的度数为.三.解答题(共2小题,满分16分,每小题8分)18.(8分)如图,点C在线段BD上,且AB⊥BD,DE⊥BD,AC⊥CE,BC=DE.求证:AB=CD.19.(8分)如图,△ABC和△EBD中,∠ABC=∠DBE=90°,AB=CB,BE=BD,连接AE,CD,AE与CD交于点M,AE与BC交于点N.(1)求证:AE=CD;(2)求证:AE⊥CD;(3)连接BM,有以下两个结论:①BM平分∠CBE;②MB平分∠AMD.其中正确的有(请写序号,少选、错选均不得分).四.解答题(共1小题,满分10分,每小题10分)20.(10分)如图,已知△ABC在方格纸中,每个小正方形的边长为1个单位长度.(1)△A1B1C1与△ABC关于y轴对称,请你在图中画出△A1B1C1;(2)将△ABC向下平移8个单位后得到△A2B2C2,请你在图中画出△A2B2C2;请分别写出A2、B2、C2的坐标;(3)y轴上存在点M,使得MB+MC的值最小,请直接写出该最小值.五.解答题(共1小题,满分12分,每小题12分)21.(12分)如图,在四边形ABCD中,∠D=∠B=90°,点O为BD的中点,且OA平分∠BAC.(1)求证:OC平分∠ACD;(2)求证:OA⊥OC;(3)求证:AB+CD=AC.六.解答题(共1小题,满分12分,每小题12分)22.(12分)甲、乙两人相约周末登花果山,甲、乙两人距地面的高度y(米)与登山时间x(分)之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)甲登山上升的速度是每分钟米,乙在A地时距地面的高度b为米;(2)若乙提速后,乙的登山上升速度是甲登山上升速度的3倍,请求出乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式;(3)登山多长时间时,甲、乙两人距地面的高度差为70米?七.解答题(共1小题,满分12分,每小题12分)23.(12分)在△ABC中,∠BAC=90°,AB=AC,AD⊥BC于点D.过射线AD上一点M 作BM的垂线,交直线AC于点N.(I)如图1,点M在AD上,若∠N=15°,BC=2,则线段AM的长为;(2)如图2,点M在AD上,求证:BM=NM;(3)若点M在AD的延长线上,则AB,AM,AN之间有何数量关系?直接写出你的结论,不证明.参考答案一.选择题(共10小题,满分30分,每小题3分)1.解:∵在x轴上的点的纵坐标是0,∴在x轴上的点为:(3,0).故选:B.2.解:A、不是轴对称图形,本选项正确;B、是轴对称图形,本选项错误;C、是轴对称图形,本选项错误;D、是轴对称图形,本选项错误.故选:A.3.解:速度是因变量,时间是自变量,故选项A不合题意;汽车在1~3分钟时,速度在增加,故选项B不合题意;汽车最快速度是30千米/时,故选项C符合题意;汽车在3~8分钟,匀速运动,故选项D不合题意;故选:C.4.解:A、对顶角相等的逆命题是相等的角是对顶角,逆命题是假命题;B、邻补角互补的逆命题是互补的角是邻补角,逆命题是假命题;C、两直线平行,同位角相等逆命题是同位角相等,两直线平行,逆命题是真命题;D、互余的两个角都小于90°的逆命题是都小于90°的角互余,逆命题是假命题;故选:C.5.解:过点A作直线BC的垂线段,即画BC边上的高,所以画法正确的是D.故选:D.6.解:根据题意,ab>0,bc<0,则>0,<0,∴在一次函数y=﹣x+中,有﹣<0,<0,故其图象过二三四象限,分析可得D符合,故选:D.7.解:根据图象可知甲用了(3.5﹣1)小时走了200千米,所以甲的速度为:200÷2.5=80km/h,故选项A说法正确;由图象横坐标可得,乙先出发的时间为1小时,两车相距(200﹣140)=60km,故乙车的速度是60km/h,故选项B说法正确;140÷(80+60)=1(小时),即甲车出发1h与乙车相遇,故选项C说法正确;200﹣(200÷60﹣1)×80=km,即乙车到达目的地时甲车离B地km,故选项D 说法中不正确.故选:D.8.解:如图所示,∵∠1是△ADE的外角,∴∠ADE=∠1﹣∠A=92°﹣30°=62°,∵a∥b,∴∠ACF=∠ADE=62°,又∵∠ACB=90°,∴∠2=90°﹣62°=28°,故选:A.9.解:由题意知AQ=OP=t,∵A点坐标为(8,0),∴OA=OQ+AQ=8,故①正确;过点B作BD⊥OA于点D,BE⊥OP于点E,∵∠BEP=∠BDO=∠DOE=90°,∴∠EBD=90°,∵△PBQ为等腰直角三角形,∴∠PBQ=90°,PB=BQ,∴∠EBP=∠DBQ,∴△PBE≌△QBD(AAS),∴BE=BD,PE=DQ,∴四边形ODBE为正方形,∵OP+OQ=8,∴OD=OE=4,则②正确;∵△PBE≌△QBD,∴S△PBE=S△QBD,∴四边形PBQO的面积=正方形ODBE的面积,故③正确;当点Q运动到点D,点P运动到点E,有PQ=OB,故④不正确.故选:B.10.解:当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1A2为正方形,∴点C1的纵坐标为1,当x=1时,y=x+1=2,∴点A2的坐标为(1,2).∵A2B2C2A3为正方形,∴点C2的纵坐标为2.同理,可知:点A3的坐标为(3,4),点C3的纵坐标为4.∴点∁n的纵坐标为2n﹣1∴点C2020的纵坐标为22019.故选:B.二.填空题(共7小题,满分28分,每小题4分)11.解:根据题意,得:x﹣2≠0且x+1≥0,解得x≥﹣1且x≠2,故答案为:x≥﹣1且x≠2.12.解:∵∠ABC与∠ACD(△ACB的外角)的平分线交于A1点,∴∠A1BC=∠ABC,∠A1CA=∠A1CD=∠ACD,∴∠A1=180°﹣(∠A1BC+∠A1CB)=180°﹣(∠ABC+∠ACD+∠ACB)=180°﹣[∠ABC+(∠ABC+∠A)+∠ACB]=180°﹣[∠ABC+∠ACB+∠A]=180°﹣[180°﹣∠A+∠A]=∠A.∵∠A=96°,∴∠A1=48°.∵∠A=α,依此类推可知∠A n=α度.13.解:∵MN∥y轴,∴点M(a﹣3,a+4)与点N(5,9)的横坐标相同,∴a﹣3=5,∴a=8.故答案为:8.14.解:∵等腰三角形的腰长为x,底边长为y,周长为20,∴y=20﹣2x,∵2x>﹣2x+20,∴自变量x的取值范围是5<x<10,故答案为:y=20﹣2x,(5<x<10).15.解:∵直线y=(m2﹣4m+1)x+(2m+1)与直线y=﹣2x+3平行.∴m2﹣4m+1=﹣2,且2m+1≠3,解得m=3,故答案为3.16.解:∵△ABC是等边三角形,∴AB=AC=BC=4,∠ABC=∠BAC=∠ACB=60°,∵CE=BD,∠ABC=∠BCE=60°,AB=BC,∴△ABD≌△BCE(SAS)∴∠BAD=∠CBE,∵∠ABP+∠CBP=∠ABC=60°,∴∠ABP+∠BAD=60°,∴∠APB=120°,如图:作等腰三角形AOB,使OA=OB,∠AOB=120°,连接OC,OP,∵∠APB=120°,∴点P在以点O为圆心,OB为半径的圆上,∵CP≥OC﹣OP,∴当点O,点P,点C共线时,PC有最小值,∵OA=OB,∠AOB=120°,∴∠ABO=30°,∴∠CBO=90°,∵OA=OB,BC=CA,OC=OC,∴△AOC≌△BOC(SSS)∴∠ACO=∠BCO=30°,∴CO=2OB,∵OC2﹣OB2=BC2,∴3OB2=16∴OB=,∴OC=∴PC的最小值=﹣=,故答案为:.17.解:如图,有三种情形:①当AC=AD时,∠BCD=20°.②当CD′=AD′时,∠BCD′=50°.③当AC=AD″时,∠BCD″=110°故答案为20°或50°或110°.三.解答题(共2小题,满分16分,每小题8分)18.证明:∵AB⊥BD,ED⊥BD,AC⊥CE,∴∠ACE=∠ABC=∠CDE=90°,∴∠ACB+∠ECD=90°,∠ECD+∠CED=90°,∴∠ACB=∠CED.在△ABC和△CDE中,,∴△ABC≌△CDE(ASA),∴AB=CD.19.(1)证明:∵∠ABC=∠DBE,∴∠ABC+∠CBE=∠DBE+∠CBE,即∠ABE=∠CBD,在△ABE和△CBD中,,∴△ABE≌△CBD,∴AE=CD.(2)∵△ABE≌△CBD,∴∠BAE=∠BCD,∵∠NMC=180°﹣∠BCD﹣∠CNM,∠ABC=180°﹣∠BAE﹣∠ANB,又∠CNM=∠ANB,∵∠ABC=90°,∴∠NMC=90°,∴AE⊥CD.(3)结论:②理由:作BK⊥AE于K,BJ⊥CD于J.∵△ABE≌△CBD,∴AE=CD,S△ABE=S△CDB,∴•AE•BK=•CD•BJ,∴BK=BJ,∵作BK⊥AE于K,BJ⊥CD于J,∴BM平分∠AMD.不妨设①成立,则△CBM≌△EBM,则AB=BD,显然不可能,故①错误.故答案为②.四.解答题(共1小题,满分10分,每小题10分)20.解:(1)△AB1C1如图所示;(2)△A2B2C2如图所示;A2(0,﹣2),B2(﹣6,﹣5),C2(﹣3,﹣7).(3)连接BC1交y轴于M,连接CM,此时CM+MB的值最小,最小值=BC1==.五.解答题(共1小题,满分12分,每小题12分)21.证明:(1)过点O作OE⊥AC于E,∵∠ABD=90゜,OA平分∠BAC,∴OB=OE,∵点O为BD的中点,∴OB=OD,∴OE=OD,∴OC平分∠ACD;(2)在Rt△ABO和Rt△AEO中,,∴Rt△ABO≌Rt△AEO(HL),∴∠AOB=∠AOE,同理求出∠COD=∠COE,∴∠AOC=∠AOE+∠COE=×180°=90°,∴OA⊥OC;(3)∵Rt△ABO≌Rt△AEO,∴AB=AE,同理可得CD=CE,∵AC=AE+CE,∴AB+CD=AC.六.解答题(共1小题,满分12分,每小题12分)22.解:(1)甲登山上升的速度是:(300﹣100)÷20=10(米/分钟),b=15÷1×2=30.故答案为:10;30;(2)当0≤x<2时,y=15x;当x≥2时,y=30+10×3(x﹣2)=30x﹣30.当y=30x﹣30=300时,x=11.∴乙登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y=;(3)甲登山全程中,距地面的高度y(米)与登山时间x(分)之间的函数关系式为y =10x+100(0≤x≤20).当10x+100﹣(30x﹣30)=70时,解得:x=3;当30x﹣30﹣(10x+100)=70时,解得:x=10;当300﹣(10x+100)=70时,解得:x=13.答:登山3分钟、10分钟或13分钟时,甲、乙两人距地面的高度差为70米.七.解答题(共1小题,满分12分,每小题12分)23.解:(1)∵∠N=15°,∠BMN=∠BAN=90°,∴∠ABM=15°,∵AB=AC,∠BAC=90°,AD⊥BC,∴∠ABC=∠C=45°,BD=CD,∴∠MBD=∠ABD﹣∠ABM=45°﹣15°=30°.∴DM=.∴﹣1.故答案为:﹣1;(2)过点M作AD的垂线交AB于点E,∵∠BAC=90°,AB=AC,AD⊥BC,∴∠NAB=90°,∠BAD=45°,∴∠AEM=90°﹣45°=45°∠BAD,∴EM=AM,∠BEM=135°,∵∠NAB=90°,∠BAD=45°,∴∠NAD=135°,∴∠BEM=∠NAD,∵EM⊥AD,∴∠AMN+∠EMN=90°,∵MN⊥BM,∴∠BME+∠EMN=90°,∴∠BME=∠AMN,在△BEM和△NAM中,,∴△BEM≌△NAM(ASA),∴BM=NM;(3)数量关系是:AB+AN=AM.证明:过点M作AD的垂线交AB于点E,同(2)可得△AEM为等腰直角三角形,∴∠E=45°,AM=EM,∵∠AME=∠BMN=90°,∴∠BME=∠AMN,在△BEM和△NAM中,,∴△BEM≌△NAM(AAS),∴BE=AN,∴AM.。

沪教版数学七年级上册专题知识训练100题-含答案

沪教版数学七年级上册专题知识训练100题-含答案

沪教版数学七年级上册专题知识训练100题含答案(单选、多选、解答题)一、单选题 1.分式23x -有意义的条件是( ) A .x >3 B .x <3 C .x ≠0 D .x ≠32.计算()()222211aa a +++的结果为( )A .1B .2C .11a + D .21a +3.下列各组中的两项,不是同类项的是( ) A .2a -和2a B .3a bc 和3ba c C .23x 和33x D .2m n 和23m n -【答案】C【分析】根据同类项的定义,所含字母相同,相同字母的指数也分别相同判断即可得出答案.【详解】解:A. 2a -和2a ,是同类项,此选项不符合题意;B. 3a bc 和3ba c ,是同类项,此选项不符合题意;C. 23x 和33x ,所含字母指数不相同,不是同类项,此选项符合题意;D. 2m n 和23m n -,是同类项,此选项不符合题意; 故选:C .【点睛】本题考查的知识点是同类项,掌握同类项的定义是解此题的关键. 4.下列约分中,正确的是( ) A .222142xy x y =B .0x yx y+=- C .632x x x=D .21x y x xy x+=+5.计算3()a a ⋅-的结果是( ) A .3a B .3a - C .4a D .4a -【答案】D【分析】根据同底数幂的乘法运算法则,运算求解即可.【详解】解:根据同底数幂的乘法运算法则可得:334()a a a a a ⋅-=-=- 故选:D .【点睛】此题主要考查了同底数幂的乘法运算,解题的关键是熟练掌握相关运算法则.6.计算()32a a ⋅-的结果是( )A .6aB .6a -C .5aD .5a -【答案】D【分析】利用同底数幂的乘法的法则进行求解即可. 【详解】解:a 3•(-a 2)=-a 3+2 =-a 5. 故选:D .【点睛】本题主要考查同底数幂的乘法,解答的关键是对同底数幂的乘法的法则的掌握与运用.7.下列运算正确的是( ) A .a +2a =3a 2 B .a 2•a 3=a 5 C .(ab )3=ab 3 D .(﹣a 3)2=﹣a 6 【答案】B【分析】利用合并同类项、幂的乘方、积的乘方以及同底数幂的乘法的计算法则进行计算即可.【详解】解:A.a +2a =3a ,因此选项A 不符合题意; B .a 2•a 3=a 2+3=a 5,因此选项B 符合题意; C.(ab )3=a 3b 3,因此选项C 不符合题意; D.(﹣a 3)2=a 6,因此选项D 不符合题意; 故选:B .【点睛】本题考查了合并同类项、幂的乘方、积的乘方以及同底数幂的乘法,正确的计算是解题的关键.8.用代数式表示“a 的3倍与b 的平方的差”正确的是( ) A .()23a b - B .()23a b -C .()23a b -D .23a b -【答案】D【分析】本题考查列代数式,主要要明确题中给出的文字语言包含的运算关系,先求倍数,然后求平方,最后求差,即:23a b -. 【详解】a 的3倍与b 的平方的差为23a b -. 故选:D .【点睛】列代数式的关键是正确理解题中给出的文字语言关键词,比如该题题中的“倍”、“平方的差”尤其要弄清“平方的差”和“差的平方”的区别. 9.若,23m n a a ==,则2m n a - 的值是( ) A .1 B .12C .34D .43【答案】D【详解】试题解析:2,3,m n a a ==10.下列各组整式中是同类项的是( ) A .3a 与3b B .22a b 与2a b - C .2ab c -与25b c - D .2x 与2x【答案】B【分析】根据同类项的概念逐项判断即可.【详解】解:A 、3a 与3b 所含字母不相同,不是同类项; B 、22a b 与2a b -是同类项;C 、2ab c -与25b c -所含字母不相同,不是同类项;D 、2x 与2x 相同字母的指数不相同,不是同类项; 故选:B .【点睛】本题考查的是同类项的概念,掌握所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项是解题的关键. 11.计算m 3÷m 3结果是( ) A .m 6 B .m C .0 D .1【答案】D 【分析】根据同底数幂的除法运算法则计算即可. 【详解】333301m m m m -÷===故选:D 【点睛】本题考查同底数幂的除法运算及零指数幂,即同底数幂相除,底数不变,指数相减,熟练掌握运算法则是解题的关键.12.已知342n x y +和212m x y +-是同类项,则式子2019()m n +的值是( ) A .1 B .1-C .0D .20191-【答案】B【分析】先根据同类项的定义求出m 和n 的值,再把求得的m 和n 的值代入所给代数式计算即可.【详解】解:∵342n x y +和212m x y +-是同类项, ∵2m+1=3,n+4=2,∵m=1,n=-2,∵2019()m n +=20191(12)-=-. 故选B .【点睛】本题考查了利用同类项的定义求字母的值,熟练掌握同类项的定义是解答本题的关键,所含字母相同,并且相同字母的指数也相同的项,叫做同类项,根据相同字母的指数相同列方程求解即可.13.设(2)(3)A x x =--,(1)(4)B x x =--,则A 、B 的关系为( ) A .A >B B .A <B C .A =B D .无法确定【答案】A【分析】利用作差法进行解答即可.【详解】解∵∵()()()()2314A B x x x x -=-----= x 2-5x +6-(x 2-5x +4)= x 2-5x +6-x 2+5x -4=2>0, ∵A >B . 故选:A .【点睛】本题考查了整式的混合运算,熟练运用作差法比较大小是解决问题的关键. 14.下列计算正确的是( ) A .527a a a ÷= B .428a a a ⋅= C .32a a a -=D .231a a a÷=15.小华利用计算器计算0.0000001295×0.0000001295时,发现计算器的显示屏上显示如下图的结果,对这个结果表示正确的解释应该是( ).A.1.677025×10—14B.1.677025×1014C.(1.677025×10)—14D.1.677025×10×(—14)【答案】A【详解】试题分析:0.0000001295×0.0000001295,=0.00000000000001677025,=1.677025×10-14.故选A.考点:计算器—有理数.16.下列计算正确的有几个()∵∵∵∵A.0个B.1个C.2个D.3个17.公园内有一段矩形步道,其地面使用灰色与白色两种全等的等腰直角三角形地砖铺列,如图所示,若其中灰色等腰直角三角形地砖排列总共有80个.则步道上总共使用白色等腰直角三角形地砖()A.40个B.80个C.84个D.164个【答案】C【分析】观察图形,左右各1个白色等腰直角三角形,第一行和第二行看成一个白色与一个灰色相间构成一个平行四边形,最后多一个白色,则总共白色比灰色多4个,据此求解即可【详解】解:∵观察图形可知:左右各1个白色等腰直角三角形,第一行和第二行看成一个白色与一个灰色相间构成一个平行四边形,最后多一个白色,∵若其中灰色等腰直角三角形地砖排列总共有80个,则步道上总共使用白色等腰直角三角形地砖为84个 故选C【点睛】本题考查了图形类规律,找到规律是解题的关键. 18.下列分解因式正确的是( ) A .222(1)x xy x x x y --=-- B .223(23)xy xy y y xy x -+-=--- C .2()()()x x y y x y x y ---=- D .23(1)3x x x x --=--【答案】C【分析】根据提取公因式法分解因式进而分别判断得出即可. 【详解】解:A 、2x 2-xy -x =x (2x -y -1),故此选项错误; B 、-x 2+2xy -3y=-y (xy -2x +3),故此选项错误; C 、x (x -y )-y (x -y )=(x -y )2,故此选项正确; D 、x 2-x -3无法因式分解,故此选项错误; 故选:C .【点睛】此题主要考查了提取公因式法分解因式,正确提取公因式是解题关键. 19.下列计算正确的是( ) A .236(3)27a a = B .325()a a = C .3412a a a ⋅= D .632a a a ÷=【答案】A【分析】根据同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,逐项判断即可.【详解】解:∵236327a a ()=,∵选项A 符合题意;∵326a a ()=,∵选项B 不符合题意; ∵347a a a ⋅=, ∵选项C 不符合题意; ∵633a a a ÷=, ∵选项D 不符合题意. 故选:A .【点睛】此题主要考查了同底数幂的除法的运算方法,同底数幂的乘法的运算方法,以及幂的乘方与积的乘方的运算方法,要熟练掌握. 20.多项式是一个完全平方式,则的值是______ A .1 B .-1C .D .【答案】C【详解】试题分析:由题意知,多项式是完全平方式,所以=,故选C考点:完全平方式点评:本题属于对完全平方式的基本知识的理解以及运用 21.下列运算正确的是( ) A .2233a a -= B .()110a a a -⋅=≠C .()222436-=-ab a bD .()222a b a b +=+【答案】B【分析】根据同底数幂的乘法的运算法则、完全平方公式、积的乘方的运算法则、合并同类项法则解答即可.【详解】解:A 、22232a a a -=,原计算错误,故此选项不符合题意. B 、11(0)-⋅=≠a a a ,原计算正确,故此选项符合题意; C 、2224(3)9ab a b -=,原计算错误,故此选项不符合题意; D 、222()2a b a ab b +=++,原计算错误,故此选项不符合题意; 故选:B .【点睛】此题考查了同底数幂的乘法的运算法则、完全平方公式、积的乘方的运算法则、合并同类项法则,熟练掌握同底数幂的乘法的运算法则、完全平方公式、积的乘方的运算法则、合并同类项法则是解本题的关键.22.苹果的单价为a 元/千克,香蕉的单价为b 元/千克,买2千克苹果和3千克香蕉共需( ) A .()a b +元 B .()32a b +元C .()5a b +元D .()23a b +元【答案】D【分析】用买2千克苹果的钱数加上3千克香蕉的钱数即可. 【详解】解:∵买2千克苹果需要2a 元,买3千克香蕉需要3b 元, ∵买2千克苹果和3千克香蕉共需(2a +3b )元. 故选D .【点睛】此题考查列代数式,理解题意,明确数量关系是解决问题的关键. 23.下列计算正确的是( ) A .235a a a += B .235a a a ⋅= C .623a a a ÷=D .()325a a =【答案】B【分析】根据合并同类项法则,同底数幂乘法和除法法则,幂的乘方运算法则逐项进行判断即可.【详解】解:A 、2a 与3a 不属于同类项,不能合并,故A 不符合题意; B 、235a a a ⋅=,故B 符合题意; C 、624a a a ÷=,故C 不符合题意;D 、236a a =(),故D 不符合题意.故选:B .【点睛】本题主要考查了整式的运算,解题的关键是熟练掌握合并同类项法则,同底数幂乘法和除法法则,幂的乘方运算法则. 24.若分式242x x -+的值为0,则x 的值为( )A .2B .2-C .2±D .4【答案】A【分析】根据分式的值为零的条件可以求出x 的值. 【详解】由题意得:240x -=,且2x +≠0, ∵x =2, 故选A .【点睛】若分式的值为零,需同时具备两个条件:(1)分子为0;(2)分母不为0.这两个条件缺一不可.25.已知a-b=5,ab=-2,则代数式a 2+b 2-1的值是( ) A .16 B .18C .20D .28【答案】C【分析】由于(a -b )2=a 2+b 2-2ab ,故a 2+b 2=(a -b )2+2ab ,从而求出原式的值 .【详解】∵(a -b )2=25,2ab =-4, ∵a 2+b 2=(a -b )2+2ab =25-4=21, ∵原式=21-1=20, 故答案选C .【点睛】本题主要考查了完全平方公式以及整体代入思想的利用,熟记公式结构是解题的关键.26.下列计算正确的是()A.(a+b)(a﹣2b)=a2﹣2b2B.(a﹣12)2=a2﹣14C.﹣2a(3a﹣1)=﹣6a2+a D.(a﹣2b)2=a2﹣4ab+4b227.下列图案中,不是中心对称图形的是()A.B.C.D.【答案】B【分析】利用中心对称图形的性质,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心,进而判断得出即可.【详解】A、是中心对称图形,故A选项错误;B、不是中心对称图形,故B选项正确;C、是中心对称图形,故C选项不正确;D、是中心对称图形,故D选项错误;故选B.【点睛】此题主要考查了中心对称图形的定义,正确把握定义是解题关键.28.如图是一个由7个同样的立方体叠成的几何体,则这一几何体的三视图中,既是轴对称图形又是中心对称图形的是()A .俯视图B .主视图C .俯视图和左视图D .主视图和俯视图 【答案】A【详解】画出三视图,由此可知俯视图既是轴对称图形又是中心对称图形,故选A.29.一块长方形土地的长为4×108 dm ,宽为3×103 dm ,则这块土地的面积为( )A .12×1024 dm2B .1.2×1012 dm2C .12×1012 dm2D .12×108 dm2【答案】B【详解】根据长方形的面积公式可得:这块土地的面积为4×108×3×103 =12×1011= 1.2×1012 dm 2.故选B.30.下列计算正确的是( ) A .43232105a b c a bc ab c ÷=B .()22a bc abc a ÷=C .()2296332x y xy xy x y -÷=-D .()()222565323a b a c a b c -÷-=--式除以单项式就是用多项式的每一项去除以单项式,熟练掌握多项式除以单项式的运算法则是解题的关键.二、多选题31.下列分式变形正确的是()A.2233y y-=-B.66y yx x-=-C.3344x xy y=--D.8833x xy y--=-32.下列变形不正确的是()A.a b a bc c-++=-B.a ab c b c-=---C.a b a ba b a b-++=---D.a b a ba b a b--+=-+-不等于零的整式,分式的值不变. 33.下列运算中,正确的是( ) A .2(93)B .(3)3-+=C .2(32)62x x +=+D .32a a a -=【答案】AD【分析】根据有理数的乘方,相反数以及整式的加减运算,对选项逐个判断即可. 【详解】解:A 、2(93),选项正确,符合题意;B 、(3)3-+=-,选项错误,不符合题意;C 、2(32)64x x +=+,选项错误,不符合题意;D 、32a a a -=,选项正确,符合题意; 故选AD【点睛】此题考查了有理数的乘方,相反数以及整式的加减运算,熟练掌握相关运算法则是解题的关键.34.下列各式从左到右的变形不正确的是( )A .1212x y x y -+ =22x y x y -+ B .0.220.22x b a ba b a b ++=++C .11x x x y x y+--=-- D .a b a ba b a b+-=-+35.下列两个多项式相乘,能用平方差公式的是( )A .(﹣2a +3b )(2a +3b )B .(﹣2a +3b )(﹣2a ﹣3b )C .(2a +3b )(﹣2a ﹣3b )D .(﹣2a ﹣3b )(2a ﹣3b )【答案】ABD【分析】根据平方差公式的结构对各选项分析判断后利用排除法求解.【详解】解:A 、(-2a +3b )(2a +3b )=9b 2-4a 2能用平方差公式,故本选项符合题意; B 、(-2a +3b )(-2a -3b )=4a 2-9b 2能用平方差公式,故本选项符合题意; C 、(2a +3b )(-2a -3b )不能用平方差公式,故本选项不符合题意; D 、(-2a -3b )(2a -3b )=9b 2-4a 2能用平方差公式,故本选项符合题意; 故选:ABD .【点睛】本题主要考查平方差公式:(1)两个两项式相乘;(2)有一项相同,另一项互为相反数,熟记公式结构是解题的关键. 36.在下列说法中,其中正确的是( ) A .a -表示负数; B .多项式22222a b a b ab -++-的是四次四项式;C .单项式12ab π的系数为12;D .若a a =-,则a 为非正数.37.若多项式23(2)36x m x --+能用完全平方公式进行因式分解,则m 的值为( ) A .2 B .2-C .6D .6-【答案】BC【分析】完全平方式:222a ab b ±+,根据完全平方式的特点建立方程即可得到答案. 【详解】解: 多项式23(2)36x m x --+能用完全平方公式进行因式分解,∴ 23(2)36x m x --+ 22266,x x =±⨯+()3212m ∴--=或()3212m --=-,2m ∴=-或6,m =故选:BC .【点睛】本题考查的是利用完全平方公式分解因式,完全平方式的特点,掌握完全平方式的特点是解题的关键.38.下列语句中正确的选项有( ) A .关于一条直线对称的两个图形一定重合; B .两个能重合的图形一定关于某条直线对称 C .一个轴对称图形不一定只有一条对称轴; D .两个轴对称图形的对应点一定在对称轴的两侧 【答案】AC【分析】认真阅读4个选项提供的已知条件,根据轴对称的性质,对题中条件进行一一分析,得到正确选项.【详解】解:A 、关于一条直线对称的两个图形一定能重合,正确; B 、两个能重合的图形全等,但不一定关于某条直线对称,错误; C 、一个轴对称图形不一定只有一条对称轴,正确;D 、两个轴对称图形的对应点不一定在对称轴的两侧,还可以在对称轴上,错误. 故选:AC .【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,找着每个问题的正误的具体原因是正确解答本题的关键.39.下列分式变形不正确的是( ) A .mn=22(1)(1)m x n x ++B .25y +=25xx y+ C .xx y --=+x x yD .xx y --=x x y--40.将下列多项式因式分解,结果中含有因式a +1的是( ) A .a 2﹣1 B .a 2+a C .a 2﹣a ﹣2 D .(a +2)2﹣2(a +2)+1 【答案】ABCD【分析】根据因式分解法把四个选项分解因式,即可求出答案. 【详解】解:A 、21(1)(1)a a a -=+-,故A 符合题意; B 、2(1)a a a a +=+,故B 符合题意; C 、22(1)(2)a a a a --=+-,故C 符合题意; D 、222(2)2(2)1(21)(1)a a a a +-++=+-=+,故D 符合题意;故选ABCD .【点睛】本题考查因式分解法,解题的关键是熟练运用因式分解法,本题属于基础题型.41.若228,82a b a b -=+=,则a b +的值为( ) A .10- B .20- C .20 D .10【答案】AD【分析】根据完全平方公式的变形先求得2ab 的值,进而求得()2a b +的值,即可求解. 【详解】228,82a b a b -=+=,()222282264a b a ab b ab ∴-=-+=-=,218ab ∴=,()22228218100a b a ab b ∴+=++=+=,10a b ∴+=±.故选AD .【点睛】本题考查了完全平方公式的变形,求得2ab 的值是解题的关键. 42.下列各式由等号左边变到右边变错的有( ) A .a ﹣(b ﹣c )=a ﹣b ﹣cB .(x 2+y )﹣2(x ﹣y 2)=x 2+y ﹣2x +y 2C .﹣(a +b )﹣(﹣x +y )=﹣a +b +x ﹣yD .﹣3(x ﹣y )+(a ﹣b )=﹣3x +3y +a ﹣b . 【答案】ABC【分析】根据整式的加减计算法则进行逐一判断即可得到答案. 【详解】解:A. a ﹣(b ﹣c )=a ﹣b +c ,故此选项符合题意; B. (x 2+y )﹣2(x ﹣y 2)=x 2+y ﹣2x +2y 2,故此选项符合题意; C. ﹣(a +b )﹣(﹣x +y )=﹣a -b +x ﹣y ,故此选项符合题意; D. ﹣3(x ﹣y )+(a ﹣b )=﹣3x +3y +a ﹣b ,故此选项不符合题意; 故选ABC .【点睛】本题主要考查了整式的加减运算,解题的关键在于能够熟练掌握相关计算法则.43.下列各式中,计算正确的是( )A .()22325xy x xy xy x --=-B .2334248a b ab a b ⋅=C .()2352105x x y x xy -=-D .2(4)(3)12x x x -+=-【答案】ABC【分析】先去括号,再合并同类项判断,A 把系数与同底数幂分别相乘判断,B 把单项式乘以多项式的每一项,再把所得的积相加判断,C 由多项式乘以多项式的法则判断,D 从而可得答案.【详解】解:()22232325,xy x xy xy x xy xy x --=-+=-故A 符合题意;2334248a b ab a b ⋅=,故B 符合题意;()2352105x x y x xy -=-,故C 符合题意;22(4)(3)341212x x x x x x x -+==-+---,故D 不符合题意;故选:.ABC【点睛】本题考查的是整式的加减运算,单项式乘以单项式,单项式乘以多项式,多项式乘以多项式,掌握以上运算的运算法则是解题的关键.44.下列计算错误的是( ) A .a 5÷a 2=a 7 B .﹣a 2•a =﹣a 3 C .(m 2n )3=mn 3 D .(﹣m 2)5=﹣m 10【答案】AC【分析】分别计算后判断即可.【详解】解:A. a 5÷a 2=a 3,该选项计算错误,符合题意; B. ﹣a 2•a =﹣a 3,该选项计算正确,不符合题意; C. (m 2n )3=m 6n 3,该选项计算错误,符合题意; D. (﹣m 2)5=﹣m 10,该选项计算正确,不符合题意; 故选:AC .【点睛】本题考查同底数幂的乘除法,幂的乘方和积的乘方.熟练掌握相关公式能分别计算是解题关键.45.下列式子是分式的有( ) A .6πB .25abC .+m nmD .5b ca-+46.若关于x 的多项式9x 2﹣kx +1是一个完全平方式,则k 的值是( ) A .3 B .-3 C .6 D .-6【答案】CD【分析】根据完全平方公式进行变形,注意乘积项是正负两个. 【详解】解:∵9x 2-kx +1是一个完全平方式, ∵9x 2-kx +1=()2229231131x x x ±⨯⨯+=± ∵6k =±故选CD.【点睛】本题考查的是完全平方公式的变形,关键是找到公式中的a、b所代表的数,易错点是乘积项系数k应有正负两个.47.在下列现象中,是平移现象的是()A.方向盘的转动B.电梯的上下移动C.保持一定姿势滑行D.钟摆的运动【答案】BC【分析】要根据平移的性质,判断是否是平移现象,平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形).【详解】解:A、方向盘的转动,是旋转,不是平移;B、电梯的上下移动是平移;C、保持一定姿势滑行是平移;D、钟摆的运动是旋转,不是平移.故选:BC.【点睛】本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状和大小,学生易混淆图形的平移与旋转或翻转而误选.48.将从1开始的正整数按一定规律排列如下表:在形如阴影部分所示的方框中,三个数的和可能是()A.84B.3000C.2013D.2018【答案】AC【分析】设中间的数为x,则左边的数为x-1,右边的数为x+1,这三个数的和为3x,首先可判断所给的数是否为3的倍数,再判断这三个数是否在同一行,即可作出判断.【详解】设中间的数为x,则左边的数为x-1,右边的数为x+1,这三个数的和为3x;由于84、300、2013均是3的倍数,2018则不是3的倍数,故D不合题意;由3x=84,得x=28,则此三个数分别为27、28、29,显然符合题意,即方框中三个数的和可以是84;由3x=3000,得x=1000,则此三个数分别为999、1000、1001,因1000÷8=125,则方框中间的数1000出现在最左边,不合题意;由3x=2013,得x=671,则此三个数分别为670、671、672,因671=83×8+7,672=84×8,故此三个可在方框中,符合题意,即方框中三个数的和可以是2013;故选:AC.【点睛】本题是规律探索问题,根据三个数的特点得出其和的规律,考查了归纳能力.三、填空题49.代数式22 4x x +--在实数范围内有意义,则实数x的取值范围是________________.50.分式值为0的条件是分子________而分母________.【答案】等于0不等于0【详解】根据分式的值为0需满足两个条件一是分子等于0,二是分母不等于0即可得出答案.解:因为分式的值等于0,所以这个分式的分子等于0且分母不等于0.故答案为等于0;不等于0.51.若3x=4,9y=6,则3x-2y的值为______.52.计算:21 3.1431 3.14⨯-⨯=________.【答案】-31.4【分析】运用提公因式法计算即可【详解】解:()21 3.1431 3.14 3.14213131.4⨯-⨯=-=-故答案为:-31.4【点睛】本题考查了提公因式法进行简便运算,熟练掌握法则是解决此题的关键53.多项式2142x x ⎛⎫--+ ⎪⎝⎭去括号得______________. 【答案】2442x x -+-##2442x x --54.如果分式22m --的值大于0,那么m 的取值范围是__________.55.分式11x +有意义的条件是__________. 【答案】x≠﹣1【分析】根据分式有意义,分母不等于零,列不等式求解即可.【详解】解:由题意得:x +1≠0,解得:x≠﹣1,故答案为:x≠﹣1【点睛】本题考查分式有意义的条件,解题的关键是从以下三方面透彻理解分式的概念:分式无意义时,分母为零;分式有意义时,分母不为零;分式的值为零时,分子为零且分母不为零.56.单项式:表示数或字母的________的式子叫做单项式,特别地,单独的一个数或一个字母也是单项式. 【答案】积【详解】试题解析:表示数或字母的积的式子叫做单项式.故答案为积.57.某工厂有职工宿舍m 间,如果每6个人住一个房间,只有一间没住满,没住满的房间住4人,则该工厂有______名职工.(用含m 的式子表示) 【答案】()62m -【分析】用()1m -个住满的房间的人数加上没有住满的房间的人数,计算即可得解.【详解】解:该工厂职工共有:()()61462m m -+=-(名).故答案为:()62m -.【点睛】本题考查了列代数式,比较简单,要注意有一个房间的人数是4.58.单项式2332a b c -的系数是_______,次数是_______,多项式2321a b ab -+的次数是_____.59.若xm +n =18,xm =3,求xn 的值为_____.【答案】6【分析】同底数幂相乘,底数不变指数相加,根据同底数幂的乘法法则进行逆用进行求解.【详解】解:∵xm +n =xm •xn =18,xm =3,∵xn =18÷xm =18÷3=6.故答案为:6. 【点睛】本题主要考查同底数幂乘法法则,解决本题的关键是要熟练掌握同底数幂乘法法则.60.计算:11+a a a -=_____61.已知()23150x y -+-=,则5648x y x y +--=___________.62.在实数范围内分解因式:21x x +-=_________________________.解本题的关键.63.已知1113a b -=,则ab b a-的值是______.64.若24,8,m n a b ==则4612m n -+=___________65.计算:(-12)-2+(3.14-π)0=__________.则是解答此题的关键.66.若三角形的一边长为21a +,这边上的高为21a -,则此三角形的面积为____________67.若a 、b 互为相反数,c 、d 互为倒数,则()2a b 2cd +-=_______.【答案】-2【分析】利用相反数,倒数的性质确定出a+b ,cd 的值,代入原式计算即可求出值.【详解】解:根据题意得:a+b=0,cd=1,则原式=0-2=-2.故答案为:-2.【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.68.观察下面给定的一列分式:3x y ,52x y -,73x y ,94x y -,……(其中0y ≠).根据你发现的规律,给定的这列分式中的第7个分式是_________.69.已知210x x --=,则3222021x x -++的值是______. 【答案】2022【分析】先根据已知式子得到230x x x --=即可推出3221x x -+=,然后整体代入所求式子即可.【详解】解:∵210x x --=,∵230x x x --=,∵32210x x -+-=,∵3221x x -+=,∵3222021120212022x x -++=+=,【点睛】本题主要考查了代数式求值,利用整体代入的思想求解是解题的关键.70.()()353.510410⨯⨯⨯的结果用科学记数法表示为_____________. 【答案】91.410⨯【分析】先计算()()353.510410⨯⨯⨯得到,再根据科学记数法的表示方法即可得到答案.【详解】()()353.510410⨯⨯⨯=81410⨯=91.410⨯.【点睛】本题考查科学记数法和指数幂的运算,解题的关键是掌握科学记数法和指数幂的运算.71.计算:32(1263)3a a a a -+÷______. 【答案】2421a a -+【分析】根据多项式除以单项式的法则计算即可.【详解】解:()32212633421a a a a a a -+÷=-+故答案为2421a a -+【点睛】本题考查多项式除单项式的运算, 多项式除单项式先用多项式的每一项除以单项式,再把所得的商相加.72.已知132n x y +与43x y 是同类项,则n 的值是_________.【答案】3【分析】根据同类项的定义列方程求解即可.【详解】解:由同类项的定义得:n +1=4,解得n =3,故答案为:3.【点睛】本题考查同类项的定义,掌握含有的字母相同且相同字母的指数也相同的项是同类项是解决问题的关键.73.多项式39x -,29x -与269x x -+的公因式为______.【答案】3x -【分析】根据公因式定义,对各选项整理然后即可选出有公因式的项.【详解】解:因为3x ﹣9=3(x ﹣3),x 2﹣9=(x +3)(x ﹣3),x 2﹣6x +9=(x ﹣3)2, 所以多项式3x ﹣9,x 2﹣9与x 2﹣6x +9的公因式为(x ﹣3).【点睛】此题考查的是公因式的定义,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.在提公因式时千万别忘了“﹣1”.74.用同样大小的黑色棋子按如图所示的规律摆放,摆第1个图形需要7枚棋子,摆第2个图形需要12枚棋子,…,按照这样的规律摆下去,摆第n个图形需要_____枚棋子.【答案】5n+2.【详解】试题分析:由图形可看出后面的图形比它的前一个图形多5个棋子,而第n 个图形就比第一个图形多5×(n﹣1)个棋子,加上7整理即可得出结论.解:通过观察图形∵∵∵∵,发现后面的图形比它的前一个图形多5个棋子,而第一个图形有7个棋子,∵第n个图形中的棋子数为7+5+5+…+5=7+5×(n﹣1)=2+5+5n﹣5=5n+2.故答案为5n+2.考点:规律型:图形的变化类.5,3-,点A关于x轴的对称点为点B,则点B的坐标是______.75.点A的坐标为()5,3【答案】()【分析】根据关于x轴对称横坐标不变纵坐标互为相反数即可得解;5,3-,【详解】∵点A的坐标为()5,3;∵关于x轴的对称点为点B()5,3.故答案是()【点睛】本题主要考查了关于x轴对称点的坐标,准确计算是解题的关键.76.将正整数按如图所示的规律排列下去,若用有序数对(m,n)表示第m排,从右到左第n个数,如(3,2)表示整数5,则(10,4)表示整数是________.【答案】52.【详解】试题分析:根据图中所揭示的规律可知,1+2+3+4+5+6+7+8+9+10=55,所以(10,4)表示整数应该是从第10排从右到左由大到小,从55开始数,第4个应是52,所以(10,4)表示的数是52.考点:规律探究题.77.用大小相同的棋子按如下规律摆放图形,第2022个图形的棋子数为___________.【答案】6069【分析】先根据图形和对应的棋子个数找到规律,总结出一般特征,再代入求解. 【详解】解:第1个图形有6个棋子,第2个图形有9个棋子,第3个图形有12个棋子,第4个图形有15个棋子,……,依次增加3个棋子,所以第n 个图形有()33n +个棋子,2022n =时,3202236069⨯+=,即第2022个图形的棋子数为6069.故答案为:6069.【点睛】本题考查了图形的变化类,找图形的变化规律是解题的关键.78.观察下面一列有规律的数123456,,,,,,3815243548, 根据这个规律可知第n 个数是______(n 是正整数)考点:规律型:数字的变化类.四、解答题79.化简:223247a a a a -+- 【答案】279a a -【分析】合并同类项,即可求解.【详解】解:223247a a a a -+-()()223427a a a a =++--279a a =- .【点睛】本题主要考查了整式的加减混合运算,熟练掌握合并同类项法则是解题的关键.80.因式分解:(1)a 3﹣4a(2)m 3n ﹣2m 2n+mn 【答案】(1)a (a+2)(a ﹣2);(2)mn (m ﹣1)2【分析】(1)首先提取公因式a ,进而利用平方差公式分解因式即可;(2)首先提取公因式mn ,进而利用完全平方公式分解因式即可.【详解】解:(1)a 3﹣4a =a (a 2﹣4) =a (a +2)(a −2);(2)m 3n ﹣2m 2n +mn=mn (m 2﹣2m +1)=mn (m ﹣1)2.【点睛】本题考查了因式分解,熟练运用因式分解中的提公因式法和公式法是解题的关键.81.下列各式中,哪些是整式?哪些是分式?两者有什么区别?112,2,,,,3,522x y m x y a x y a a x---+.母,若含有字母则是分式,若不含有字母则是整式.【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.82.因式分解:(1)()()22a m b m -+-(2)322a a a -+ 【答案】(1)(m -2)(a +b );(2)a (a -1)2【分析】(1)利用提公因式法分解因式;(2)综合利用提公因式法和公式法分解.(1)解:()()22a m b m -+-=(m -2)(a +b );(2)322a a a -+=a (a 2-2a +1)=a (a -1)2.【点睛】此题考查了因式分解,正确掌握因式分解的方法:提公因式法和公式法并熟练运用是解题的关键.83.求代数式的值:(1)222235372-++-x y xy xy x y xy ,其中x y 、满足()2210x y ++-=.(2)2225()()3()()6(4)a b a b a b a b a b +-+-+-+--,其中52a b a b +=-=-,.【答案】(1)221022--x y xy xy ,48(2)()()22560a b a b +--,【分析】(1)根据合并同类项化简代数式,根据非负数的性质求得,x y 的值,代入即84.先化简21111x xxx x⎛⎫--+÷⎪++⎝⎭,再从1-,0,1选取一个你最喜欢数作为x的值代入求值.85.计算(1)23211 a aa a-+-++(2)2211 12---÷+a aa a a()()(211a aa a++-21aa++21a-86.我们知道111122=-⨯,1112323=-⨯,1113434=-⨯,……那么178=⨯______.120212022=⨯______.用含有n的式子表示你发现的规律:______.并依此计算11112021 ++++2021++120212023+⋯+-87.课堂上老师给大家出了这样一道题:“当x =2019时,求代数式()322232x x y x y ---()3232x xy y -++()3233x x y y -++的值”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上海初一上册数学练习题及答案
x?21. 当x____时,分式的值为负。

x
答案:0 3
2. 当x____时,分式2x?1的值为负数。

1答案:x??
3. 一个分数,分母比分子大3,若分母加1后,那么分数的值为
答案:1,求原来的分数。

2
4. 用价值100元的甲种涂料与价值240元的乙种涂料配置成一种新涂料,新涂料每千克的售价比甲种涂料每千克的售价少3元,比乙种涂料每千克的售价多1元,求这种新涂料每千克售价多少元?
答案: 17元/千克
a2?b2?c2?2bc?________________.. 化简:2a?b2?c2?2ab
答案:
6. 如果分式a?b?c a?b?c4的值是整数,则整数x可取____________. x?2
答案:-201346
x2?xy?2y2
7. 如果x-3y=0,求2的值. x?xy?y2
答案:2
8. 已知 a?
1)则a?21?3, a1?__________a
142)则a?4?__________ a
133)计算 a?3的值.a
答案: 1)
a2?112??2?32?2?7aa
11222??2?7?2?474aa
1121??3??182aaa2) a4?3)a?3
注:本题考察了立方和差的公式,一定要牢记.
10. 随着微电子制造技术的不断进步,半导体材料的精细加工尺寸大幅度缩小.目前已经能够在35平方毫米的芯片上集成5,000,000个元件.那么一个元件大约占_________________平方毫米.先化简:-6a?35?,然后从2,-2,3,1四个数中,选取2a?4a?2
一个你认为合适的数作为a的值代入求值.
答案:略
12. a、b范围是__________时,分式
答案:a?b
单项式-?a2b
4的系数是___________ 答案:-

21. 1?2,则m=__________.
23. 如果a=2,b=3,c=433,那么把a、b、c按照从大到
小排列。

答案略
24. ?0,求代数式
提示: x?4,y?
26. 利用乘法公式计算:2010?2009?2011
答案略
27. 有一条铁丝长a米,第一次用去了一半少b米,第二次用去了剩余的一半多b米第一次用后剩余多少米?
2)第二次用后这条铁丝还剩余多少米?
22x?2
答案略
28. 已知圆的直径为d, 用含d的代数式表示圆的面积。

应为_______________. 答案略
29. 利用因式分解计算
a2?b2?c2?2bc?________________.. 化简:2a?b2?c2?2ab
答案:
6. 如果分式a?b?c a?b?c4的值是整数,则整数x可取____________. x?2
答案:-201346
x2?xy?2y2
7. 如果x-3y=0,求2的值.x?xy?y
答案:2
8. 已知 a?
1)则a?21?3, a1?__________a
142)则a?4?__________ a
133)计算 a?3的值.a
答案: 1)
a2?1122??2?3?2?7aa
1122??2?72?2?474aa
1121??3??182aaa2) a4?3)a?3
注:本题考察了立方和差的公式,一定要牢记.
10. 随着微电子制造技术的不断进步,半导体材料的精细加工尺寸大幅度缩小.目前已经能够在35平方毫米的芯片上集成5,000,000个元件.那么一个元件大约占_________________平方毫米.先化简:-6a?35?,然后从2,-2,3,1四个数中,选取2a?4a?2
一个你认为合适的数作为a的值代入求值.
12. a、b范围是__________时,分式
答案:a?b
第一次用后剩余多少米?
2)第二次用后这条铁丝还剩余多少米?
28. 已知圆的直径为d, 用含d的代数式表示圆的面积。

应为_______________.
25521?2,则m=__________.442222008的值. x?2
29. 利用因式分解计算
一、填空题 1.计算:3= .计算:= 。

.用科学记数法表示:?0.000102
4.计算:?。

.分解因式:a?5a?6
6.分解因式:12a3b?27ab3?_________________________.
2
?1?
7.计算:??
?2?
?3。

8.当x___________时,分式9.计算:
x
有意义. x?2
ab
?
a2?b2b2?a2
10.方程
2
?1的解是。

x?1
2
3
y?y?
11.计算:=。

?2ax?4x
12.已知:如图,在正方形ABCD中,点E在边BC上,将△DCE绕点D按顺时针方
F
向旋转,与△DAF重合,那么旋转角等于_________度. 13.五角星是一个旋转对称图形,它至少旋转_______度后,能与自身重合. 14.在所学过的图形中,请你写出一个是旋转对称而不是中心对称的图形。

这个图形的名称是:。

15.长、宽分别为a、b的长方形硬纸片拼成一个“带孔”正方形,试利用面积的不同表示方法,写出一个等式______________________.
C E
A
B
二、选择题 16.下列等式中,从左到右的变形是因式分解的是
x2?5x?3?x?3; 2?4x2?12x?9;17.分式
?x2?3x?10; x2?4x?3?.
y1x,,的最简公分母是x3y24xy
24xy2
12xy2
12xy
6xy2
18.下列图形中,是中心对称图形的是正三角形
等腰梯形
正五边形
正六边形
19.从甲到乙的图形变换,判断全正确的是甲
翻折,旋转,平移;平移,翻折,旋转;

甲乙


翻折,平移,旋转;平移,旋转,翻折。

20.下列图案都是由字母“m”经过变形、组合而成的.其中不是中心对称图形的是
三、简答题
21.计算:2?2.22.因式分解:x2?2x?1?y2
x?553b2a2
??)?4.解方程:223.计算:,把
11a?2
??化简后求值。

a?2a2
第25题图
写一对中心对称的三角形:_________________________.
四作图题7.请把图中的中心对称图形补画完整。

28.已知四边形ABCD,如果点D、C关
于直线MN对称,画出直线MN;
画出四边形ABCD关于直线MN的对称图形.
五、解答题
29.如图,已知Rt△ABC中,∠C=90°,BC=4,AC=4,现将△ABC沿CB方向平移到△A’B’C’的位置,若平移距离为3。

求△ABC与△A’B’C’的重叠部分的面积;
若平移距离为x,求△ABC与△A’B’C’的重叠部分的面积y,则y与
x有怎样关系式。

附加题:
D
A。

相关文档
最新文档