电子时钟电路设计
时钟电路的基本原理与设计方法

时钟电路的基本原理与设计方法时钟电路是现代电子设备中的重要组成部分,用来提供精确的时间信息。
它不仅在我们的日常生活中起着关键的作用,也在许多技术领域中被广泛应用。
本文将探讨时钟电路的基本原理与设计方法。
一、时钟电路的基本原理时钟电路的核心是一种稳定的振荡器。
振荡器可以产生一个周期性的信号,被称为时钟信号,用来同步电子设备中的各个功能模块。
在数字电子系统中,时钟信号决定了数据在各个组件之间的传输时机,保证系统的正常运行。
常见的时钟电路有晶体振荡器和RC振荡器。
晶体振荡器利用晶体的机械振荡特性产生时钟信号,具有高稳定性和准确性。
它的工作原理是将晶体与放大器和反馈电路相连接,通过反馈使晶体保持振荡。
RC振荡器则利用电容和电阻构成的振荡回路产生时钟信号,相对简单但稳定性较差。
二、时钟电路的设计方法时钟电路的设计需要考虑几个关键因素:频率稳定性、抖动和功耗。
频率稳定性是指时钟信号的频率变化程度,影响着数据传输的准确性。
为了提高频率稳定性,可以使用温度补偿技术、使用高质量的晶体材料和优化反馈电路。
抖动是指时钟信号周期内的波动,越小越好。
抖动过大会导致数据传输错误。
减小抖动的方法包括优化振荡回路、减小噪声和改善电源稳定性。
功耗在现代电子设备中至关重要。
为了降低功耗,可以使用低功耗晶体振荡器、优化电路结构和使用节能材料。
时钟电路的设计还需要考虑集成度和端口接口。
高集成度的时钟电路可以减小尺寸和功耗,提高信号质量。
端口接口要与其他数字电路兼容,确保可靠的数据传输。
三、时钟电路的应用时钟电路在各个领域都有着广泛的应用。
在计算机中,时钟电路用于同步处理器和内存,确保数据的准确传输。
在通信系统中,时钟电路用于同步不同设备之间的工作。
在测量设备中,时钟电路用于精确测量和同步数据。
在消费电子产品中,时钟电路用于控制音频和视频的播放。
时钟电路在现代技术发展中具有重要地位。
随着电子设备的不断进化,对时钟电路的要求也越来越高。
设计师们不断努力创新,提出新的设计方法和技术,以满足不同应用需求。
3)晶振器件构成的时钟电路设计

3)晶振器件构成的时钟电路设计晶振器件是一种常见的电子元件,被广泛应用于各种电子设备中的时钟电路设计。
它通过利用晶体的振荡特性来产生稳定的时钟信号,为电子设备提供精确的时间参考。
本文将详细介绍晶振器件构成的时钟电路的设计原理和步骤,帮助读者了解和掌握这一重要的电路设计技术。
在时钟电路设计中,晶振器件是起到主要作用的元件。
它通常由一个晶片和两个引线组成。
晶片是由一块具有特殊晶体结构的材料制成的,当施加电压时,晶片会产生固定频率的机械振动。
这个频率是由晶片的物理特性和尺寸决定的,晶振器件的制造商会在产品规格中明确标注。
时钟电路的设计通过合理选择晶振器件的类型和参数来获得所需的时钟频率。
首先,需要确定时钟的工作频率,一般以赫兹(Hz)为单位表示。
在选择晶振器件时应该确保其振荡频率与所需频率非常接近,以保证时钟信号的精确性。
此外,还要考虑晶振器件的尺寸、功耗等因素,以便适应所设计的电子设备。
一旦确定了晶振器件的类型和参数,接下来是时钟电路的连接和布线设计。
时钟电路主要由晶振器件、电容和连接线组成。
晶振器件的引线需要正确地连接到其他电子元件,以确保时钟信号的正确传输。
同时,电容在时钟电路中起到稳定电压和过滤杂散信号的作用。
因此,在布线设计中要合理安排电容的位置和连接方式,以确保时钟电路的稳定性和可靠性。
除了基础的连接和布线设计,时钟电路的设计还需要考虑抗干扰、电源电压等其他因素。
时钟信号往往会受到外部干扰的影响,如电磁信号、杂散信号等。
为了减少这些干扰对时钟信号的影响,可以采取屏蔽措施,如在时钟电路周围添加金属屏蔽罩等。
此外,时钟电路还需要稳定的电源电压,以确保时钟信号的准确和可靠。
综上所述,晶振器件构成的时钟电路设计是一项重要的电子技术,它为电子设备提供准确的时间参考。
在设计时,需要合理选择晶振器件的类型和参数、正确连接和布线、考虑抗干扰和电源电压等因素。
通过合理设计时钟电路,可以提高电子设备的性能和可靠性。
LED电子钟制作

LED电子钟制作材料准备:1. Arduino开发板2.LED显示屏3.时钟芯片模块(如DS1302)4.电阻、电容等基础元件5.面包板、跳线等连接器材步骤一:连接电路1. 将LED显示屏连接到Arduino开发板的数字引脚,接线电阻用于限流保护。
2. 将时钟芯片模块连接到Arduino开发板的数字引脚,其中包括时钟、日期、秒等输入输出引脚。
步骤二:编程2.在IDE软件中,编写程序来控制LED显示屏和时钟芯片。
3. 使用Arduino编程语言,通过使用时钟芯片的函数库,可以获取当前的时间、日期和秒,并将其显示在LED显示屏上。
步骤三:实现时钟功能1.在程序中,编写一个循环函数,用于不断获取当前的时间,然后将其显示在LED显示屏上。
2. 使用Arduino的延时函数,可以设置每秒钟更新显示屏上的时间。
3.可以通过在程序中添加按钮处理代码,来实现调整时间和日期的功能。
步骤四:增加附加功能1.可以在LED显示屏上显示其他信息,如温度、湿度等。
2.可以添加闹钟功能,通过编写相应的代码来触发闹钟功能。
3.可以设计多种模式的显示屏样式,并通过按钮来切换。
步骤五:调试和优化1.测试程序的正确性和稳定性,查找可能的错误和问题,并进行修复。
2.根据实际需求和用户反馈,优化和改进程序功能和显示效果。
3.可以通过添加外壳和外部电源来实现外观美观和长时间运行。
总结:通过以上步骤,我们可以制作一个简单的LED电子钟。
我们可以根据自己的需求和兴趣来增加功能和改进设计。
使用Arduino开发板和相应的元件,可以让我们快速实现各种创意和想法。
祝你成功制作出自己的LED电子钟!。
基于8086的电子时钟设计

基于8086的电子时钟设计概述:电子时钟是一种利用电子技术实现时间显示的装置。
本文将介绍基于8086微处理器的电子时钟的设计方案,包括硬件设计和汇编语言编程。
1.硬件设计:(1)8086微处理器:选择适合的8086微处理器芯片,并进行相应的引脚连接。
8086微处理器是16位的,具有高性能和大容量寻址能力。
(2)时钟电路:设计一个稳定的时钟电路,可以使用定时器或石英晶体振荡器,通过一个合适的预分频器产生高频时钟信号。
(3)显示器件:选择合适的显示器件,如LED数码管或液晶显示屏。
这些显示器件需要提供合适的接口电路,以便与8086微处理器进行通信。
(4)键盘电路:设计一个键盘电路,用于设置和调整时钟的时间。
键盘电路需要提供合适的接口电路,以便与8086微处理器进行通信。
2.汇编语言编程:使用汇编语言编程,可以通过对8086微处理器内部的寄存器和存储器进行操作,实现电子时钟的功能。
(1)初始化:在程序开始时,对相关的寄存器和存储器进行初始化,包括时钟计数器、时分秒寄存器、显示器接口等。
(2)时钟计数器:利用定时器或石英晶体振荡器产生的高频信号,通过适当的预分频器产生时钟计数器的时钟信号。
在程序中对时钟计数器进行相应的设置和控制,实现时钟的精确计时。
(3)时分秒寄存器:通过键盘电路输入时、分和秒的数值,将其存储到相应的寄存器中。
通过程序控制这些寄存器,实现时钟数值的更新和显示。
(4)显示器接口:利用合适的接口电路,将8086微处理器输出的数码信号转换为相应的显示信号,显示在数码管或液晶显示屏上。
通过程序控制接口电路,实现时钟数值的实时显示。
3.功能实现:(1)时间设置:通过键盘电路,输入时、分和秒的数值,将其存储到寄存器中,实现时间的设置。
(2)时间显示:通过程序控制,将寄存器中存储的时、分和秒的数值显示在数码管或液晶显示屏上,实现时间的实时显示。
(3)闹钟功能:通过键盘电路设置闹钟的时间,通过程序判断当前时间和闹钟的时间是否相等,如果相等,则触发相应的闹钟响铃。
51单片机的电子时钟设计

51单片机的电子时钟设计一、引言随着科技的发展和人们对时间的准确度的要求日益提高,电子时钟成为了人们生活中不可缺少的一部分。
本文将介绍一种基于51单片机的电子时钟设计。
二、硬件设计1.主控部分本设计使用了51单片机作为主控芯片,51单片机具有丰富的接口资源和强大的处理能力,非常适合用于电子时钟的设计。
2.显示部分采用了数码管显示屏作为显示部分。
为了提高显示的清晰度,我们选用了共阳数码管。
使用4位数码管即可显示时、分和秒。
3.时钟部分时钟部分由振荡器和RTC电路构成。
振荡器提供时钟脉冲信号,RTC 电路实现对时钟的准确计时。
4.按键部分按键部分采用矩阵按键,以实现对时间的设置和调整。
三、软件设计1.系统初始化在系统初始化阶段,需要对硬件进行初始化设置。
包括对I/O口的配置,定时器的初始化等。
2.时间设置用户可以通过按键设置当前的时间。
通过矩阵按键扫描,检测到用户按下了设置键后,进入时间设置模式。
通过按下加减键,可以增加或减少时、分、秒。
通过按下确认键,将设置的时间保存下来。
3.时间显示在正常运行模式下,系统将会不断检测当前的时间,并将其显示在数码管上。
通过对时钟模块的调用,可以获取当前的时、分、秒并将其显示出来。
4.闹钟功能在时间设置模式下,用户还可以设置提醒闹钟的功能。
在设定时间到来时,系统会发出蜂鸣器的声音,提醒用户。
四、测试与验证完成软硬件设计后,进行测试与验证是必不可少的一步。
通过对硬件的连线接触检查和软件的功能测试,可以确保整个设计的正确性和可靠性。
五、总结通过本次设计,我对51单片机的使用和原理有了更清晰的认识,同时也对电子时钟的设计和制作有了更深入的了解。
电子时钟作为一种常见的电子产品,在我们的日常生活中发挥了重要的作用。
这次设计过程中,我遇到了许多问题,但通过查阅资料并与同学一起探讨,最终解决了问题。
相信通过不断的学习和实践,我可以在未来的设计中取得更好的成果。
电子电路中的时钟与定时电路设计

电子电路中的时钟与定时电路设计引言:在电子设备中,时钟和定时电路是至关重要的组成部分。
时钟电路提供精确的时间基准,而定时电路可用于在特定时间触发某些操作。
本文将详细介绍时钟和定时电路的设计步骤和相关概念。
一、时钟电路设计步骤:1. 确定时钟需求:首先要确定需求,如时钟频率、精度、输出格式等。
根据具体应用,选择恰当的设计参数。
2. 选择时钟发生器:根据时钟需求,选择适合的时钟发生器。
常用的时钟发生器包括晶振、震荡电路等。
3. 设计稳压电源:稳定的电源是时钟电路的基础。
设计适当的稳压电源电路,确保时钟电路正常运行。
4. 设计时钟电路:根据选择的时钟发生器和需求,设计时钟电路。
时钟电路一般包括振荡电路、分频电路和计数电路等。
确保时钟电路稳定、可靠。
5. 引入误差校正:由于各种原因,时钟电路可能存在一定误差。
根据实际情况,设计相应的误差校正电路,提高时钟的准确性。
6. 时钟电路测试和调整:完成设计后,对时钟电路进行测试和调整,确保时钟能够按照设计要求正常工作。
二、定时电路设计步骤:1. 确定定时需求:首先要明确定时的具体需求,如定时周期、触发条件等。
根据需求选择合适的定时器种类。
2. 选择定时器:根据定时需求,选择适合的定时器。
常用的定时器有555定时器、集成计时电路等。
3. 设计定时电路:根据选择的定时器和需求,设计定时电路。
定时电路包括触发电路、计时电路和控制电路等。
4. 引入触发条件:根据定时需求,设计合适的触发条件电路。
触发条件电路可以是按键触发、光电传感器触发等。
5. 测试定时电路:完成设计后,对定时电路进行测试。
检查电路的定时准确性和稳定性,确保能够按照需求正常工作。
三、常见问题与解决方案:1. 时钟电路的频率不稳定:检查时钟发生器是否选择合适,稳压电源是否标定准确,振荡电路是否存在损耗等。
2. 定时电路无法按需工作:检查触发条件电路是否正常工作,定时器和计时电路是否设定正确。
3. 时钟或定时电路误差较大:引入误差校正电路,根据实际情况校准电路。
如何设计一个简单的时钟电路

如何设计一个简单的时钟电路时钟电路是电子设备中常见的组成部分,用于显示当前的时间。
设计一个简单的时钟电路需要考虑时钟信号的产生和显示方式,下面将介绍一种基于集成电路的简单时钟电路设计。
一、时钟信号的产生时钟信号是驱动时钟电路工作的基础,通常使用震荡器产生稳定的时钟脉冲信号。
1. 选用震荡器常用的震荡器有晶体震荡器和RC震荡器。
晶体震荡器具有高稳定性和较低的频率漂移,适合用于时钟电路。
选择一个适当的晶体震荡器作为时钟信号的源。
2. 确定时钟频率根据具体需求,确定时钟信号的频率。
常见的时钟频率有1Hz(每秒钟一个脉冲)、1kHz(每秒1000个脉冲)等。
根据具体应用需求选择一个适当的频率。
3. 连接震荡器和其他电路将震荡器的输出连接到时钟电路中需要时钟信号的部分。
例如,如果需要驱动一个7段LED显示器显示时间,则将时钟信号连接到该显示器的时钟输入端。
二、时钟显示方式的设计时钟电路的设计还需考虑如何将时钟信号显示出来,常见的显示方式有数码管、LCD等。
1. 数码管显示数码管是较为常见的时钟显示方式,通过控制数码管的段选和位选,可以显示出时、分、秒等时间信息。
选择适合的数码管,根据时钟信号的变化,依次更新数码管的显示内容。
2. LCD显示LCD显示器具有较大的显示面积和较好的可读性,可以用于显示更多的时间信息。
选择适合的LCD显示模组,通过控制LCD的驱动电路,根据时钟信号的变化更新LCD的显示内容。
三、电路连接与控制根据时钟电路的具体设计,将各个组成部分连接起来,并设计电路的控制逻辑。
1. 连接震荡器和显示器将震荡器的输出连接到数码管或LCD的时钟输入端,保证时钟信号能够驱动显示器按照设定的频率进行更新。
2. 设计时钟控制逻辑时钟电路需要考虑时间的累加和显示的更新。
通过计数器、状态机等方式设计时钟的控制逻辑,保证时钟的计时准确性和显示的正确性。
四、供电和外部接口设计好时钟电路后,还需提供电源和外部接口,以使时钟电路能够正常工作和方便使用。
电子技术数字时钟报告电路原理图

电子技术课程设计报告设计题目:数字电子时钟班级:学生姓名:学号:指导老师:完成时间:一.设计题目:数字电子时钟二.设计目的:1.熟悉集成电路的引脚安排和各芯片的逻辑功能及使用方法;2.了解数字电子钟的组成及工作原理 ;3.熟悉数字电子钟的设计与制作;三、设计任务及要求用常用的数字芯片设计一个数字电子钟,具体要求如下:1、以24小时为一个计时周期;2、具有“时”、“分”、“秒”数字显示;3、数码管显示电路;4、具有校时功能;5、整点前10秒,数字钟会自动报时,以示提醒;6、用PROTEUS画出电路原理图并仿真验证;四、设计步骤:电路图可分解为:1.脉冲产生电路;2.计时电路;3.显示电路;4校时电路;5整点报时电路;1.脉冲电路是由一个555定时器构成的一秒脉冲,即频率为1HZ;电路图如下:2.计时电路即是计数电路,通过计数器集成芯片如:74LS192 、74LS161、74LS163等完成对秒脉冲的计数,考虑到计数的进制,本设计采用的是74LS192;秒钟个位计到9进10时,秒钟个位回0,秒钟十位进1,秒钟计到59,进60时,秒钟回00,分钟进1;分钟个位计到9进10时,分钟个位回0,分钟十位进1,分钟计到59,进60时,分钟回00,时钟进1;时钟个位记到9进10时,时钟个位回0,时钟十位进1,当时钟计数到23进24时,时钟回00.电路图如下:3.显示电路是完成各个计数器的计数结果的显示,由显示译码器和数码管组成,译码器选用的是4511七段显示译码器,LED数码管选用的是共阴极七段数码管,数码管要加限流电阻,本设计采用的是400欧姆的电阻;电路图如下:4.校时电路通过RS触发器及与非门和与门对时和分进行校准,电路图如下:5.整点报时电路即在时间出现整点的前几秒,数值时钟会自动提醒,本设计采用连续蜂鸣声;根据要求,电路应在整点前10秒开始整点报时,也就是每个小时的59分50秒开始报时,元器件有两个三输入一输出的与门,一个两输入一输出的与门,发生器件选择蜂鸣器;具体电路图如下:六.设计用到的元器件有:与非门74LS00,与门74LS08,74LS11,7段共阴极数码管,计数器芯片74LS192,555定时器,4511译码器,电阻,电容,二极管在电路开始工作时,对计数电路进行清零时会使用到,单刀双掷开关;设计电路图如报告夹纸;七.仿真测试:1.电路计时仿真电路开始计数时:计数从1秒到10秒的进位,从59秒到一分钟的进位,从1分到10分的进位,从59分到一小时的进位,从1小时到10小时的进位,从23小时到24小时的进位,然后重新开始由此循环,便完成了24小时循环计时功能,仿真结果如下:1. 7.2.8.3. 9.4. 10.5. 11.6. 12.13.2.电路报时仿真由电路图可知,U18:A和U18:B的6个输入引脚都为高电平时,蜂鸣器才会通电并发声,当计数器计数到59分50秒是,要求开始报时,而59分59秒时,还在报时,也就是说只需要检测分钟数和秒计数的十位,5的BCD码是4和1,9的BCD码是8和1,一共需要6个测端口,也就是上述的6个输入端口,开始报时时,报时电路状态如图:3.校时电路仿真正常计时校时U15:D和u15:C是一个选通电路,12角接的是秒的进位信号,9角接的是秒的脉冲信号,当SW1接到下引脚时,U15:D接通,u15:C关闭,进位信号通过,计数器的分技术正常计时;当SW1接到上引脚时,U15:D关闭,u15:C接通,校时的秒脉冲通过,便实现了分钟校时,时钟的校时与分钟校时大致相同;八.心得体会以及故障解决设计过程中遇到了一个问题,就是在校时电路开始工作时,校时的选择电路会给分钟和时钟的个位一个进位信号,也就是仿真开始时电路的分钟和时钟个位会有一个1;为了解决这个问题,我采用的是在电路开始工作时,同时给分钟和时钟的个位一个高电平的清零信号来解决,由于时钟的个位和十位的清零端是连在一起的,再加上分钟的个位,在校时小时的时候且当小时跳完24小时时,会给分钟的个位一个清零信号,这时在电路中加一个单向导通的二极管变解决了,具体加在那儿,请参考电路图;在设计过称中,我们也许遇到的问题不止一个两个,而我们要做的是通过努力去解决它;首先我们要具备丰富的基础知识,这是要在学习和实际生活中积累而成的;其次,我们还有身边的朋友同学老师可以请教,俗话说:三人行,必有我师;最后,我们还有网络,当今是个信息时代,网络承载信息的传递,而且信息量非常大,所以我们也可以适当的利用网络资源;通过这次对数字钟的设计与制作,让我了解了设计电路的步骤,也让我了解了关于数字钟的原理与设计理念,要设计一个电路总要先用仿真,仿真成功之后才实际接线;但是仿真是在一个比较好的状态下工作,而电路在实际工作中需要考虑到一些驱动和限流电阻等等,因为,再实际接线中有着各种各样的条件制约和干扰;而且,在仿真中无法成功的电路接法,在实际中因为芯片本身的特性而能够成功;所以,在设计时应考虑两者的差异,从中找出最适合的设计方法;这次学习让我对各种电路都有了大概的了解,所以说,坐而言不如立而行,对于这些电路还是应该自己动手实际操作才会有深刻理解,才能在实际生活和工作中应用起来;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
哈尔滨应用职业技术学院毕业论文教务处制毕业论文项目表1.1 数字电子钟的背景 (1)1.2 数字电子钟的意义 (1)1.3 数字电子钟应用 (1)第二章整体设计方案2.1 时间脉冲产生电路 (2)2.2 分频器电路 (4)2.3 时间计数器电路 (5)2.4译码驱动及显示单元电路 (8)2.5报时电路 (9)第三章数字钟的硬件设计3.1 时间脉冲产生设计 (9)3.2 LED显示电路 (12)3.3 键盘控制电路 (14)第四章数字钟的软件设计4.1 系统软件设计流程图 (16)4.2 数字电子时钟的原理图 (20)第五章系统仿真5.1 PROTUES软件介绍 (26)5.2 电子系统PROTUES仿真 (26)第六章调试与功能说明6.2 系统性能测试与功能说明 (27)6.3 系统时钟误差分析 (27)6.1 硬盘调试 (27)6.4 软件调试问题及解决 (27)结论 (29)参考文献 (30)摘要:在数字电路的设计中,时序设计是一个系统性能的主要标志,在高层次设计方法中,对时序控制的抽象度也相应提高,因此在设计中较难把握,但在理解TTL电路时序模型的基础上,采用合理的设计方法在设计复杂数字系统是行之有效的,通过许多设计实例证明采用这种方式可以使电路的后仿真通过率大大提高,并且系统的工作频率可以达到一个较高水平。
第一章绪论1.1数字电子钟的背景20世纪末,电子技术获得了飞速的发展,在其推动下,现代电子产品几乎渗透了社会的各个领域,有力地推动了社会生产力的发展和社会信息化程度的提高,同时也使现代电子产品性能进一步提高,产品更新换代的节奏也越来越快。
时间对人们来说总是那么宝贵,工作的忙碌性和繁杂性容易使人忘记当前的时间。
忘记了要做的事情,当事情不是很重要的时候,这种遗忘无伤大雅。
但是,一旦重要事情,一时的耽误可能酿成大祸。
数字钟是一种用数字电路技术实现时、分、秒计时的装置,与机械式时钟相比具有更高的准确性和直观性,且无机械装置,具有更更长的使用寿命,因此得到了广泛的使用。
1.2数字电子钟的意义数字钟是采用数字电路实现对.时,分,秒.数字显示的计时装置,广泛用于个人家庭,车站, 码头办公室等公共场所,成为人们日常生活中不可少的必需品,由于数字集成电路的发展和石英晶体振荡器的广泛应用,使得数字钟的精度,远远超过老式钟表, 钟表的数字化给人们生产生活带来了极大的方便,而且大大地扩展了钟表原先的报时功能。
诸如定时自动报警、按时自动打铃、时间程序自动控制、定时广播、自动起闭路灯、定时开关烘箱、通断动力设备、甚至各种定时电气的自动启用等,所有这些,都是以钟表数字化为基础的。
因此,研究数字钟及扩大其应用,有着非常现实的意义。
1.3数字电子钟的应用数字钟已成为人们日常生活中:必不可少的必需品,广泛用于个人家庭以及车站、码头、剧场、办公室等公共场所,给人们的生活、学习、工作、娱乐带来极大的方便。
由于数字集成电路技术的发展和采用了先进的石英技术,使数字钟具有走时准确、性能稳定、携带方便等优点,它还用于计时、自动报时及自动控制等各个领域。
第二章整体设计方案2.1 时间脉冲产生电路方案一:由集成电路定时器555与RC组成的多谐振荡器作为时间标准信号源。
图2.1 555与RC组成的多谐振荡器方案二:振荡器是数字钟的核心。
振荡器的稳定度及频率的精确度决定了数字钟计时的准确程度,通常选用石英晶体构成振荡器电路。
石英晶体振荡器的作用是产生时间标准信号。
因此,一般采用石英晶体振荡器经过分频得到这一事件脉冲信号。
图2.2 石英晶体振荡器方案三:由集成逻辑门与RC组成的始终源振荡器。
图2.3 门电路组成的多谐振荡器用555组成的脉冲产生电路:R1=15*103,R2=68*103,则555所产生的脉冲为:F=1.43/{(人+2*R2)*103}*10*106=0.947Hz,而设计要求为1Hz,因此其误差为5.3%,在精确度要求不是很高的时候可以使用。
石英晶体振荡电路采用的32768集体振荡电路,其频率为32768Hz,然后再经过15分频电路可得到标准的1Hz的脉冲输出。
由门电路组成的多谐振荡器的振荡周期不仅与时间常数RC有关,而且还取决于门电路的值电压,由于值电压受到温度、电源电压及干扰的影响,因此频率稳定性较差,只能用于对频率稳定性要求不高的场合。
综上分析,选择方案二,石英晶体振荡电路能够作为最稳定的信号源。
2.2 分频器电路通常,数字钟的晶体振荡器输出频率较高,为了得到1Hz的秒信号输入,对振荡器的输出信号进行分频。
通常实现分频器的电路是计数器电路,一般采用多级2进制计数器来实现。
CD4060计数为14级2进制计数器,可以将32768Hz的信号分频为2Hz,其内部框图如下所示,从图中可以看出,CD4060的时钟输入端两个串接的非门,因此可以直接实现振荡和分频的功能。
图2.4综上所诉,可选择CD4060同时构成振荡电路和分频电路,照上图可得1Hz 信号。
2.3时间计数器电路一般采用10进制计数器来实现时间技术单元的技术功能。
为减少器件使用数量,可选74HC390。
该器件为双2-5-10异步计数器,并且每一计数器均提供一个异步清零端(高电平有效)。
秒个位计数单元为10进制计数器,无需进制转换。
秒十位计数单元为6进制计数器,需要进制转换。
分个位和分十位计数单元电路结构分别与秒个位和秒十位计数单元完全相同。
时个位计数单元电路结构仍与秒或个位计数单元相同,但是要求,整个时计数单元应为24进制计数器,不是10的整倍数,因此需将个位和十位计数单元合并为一个整体才能进行24进制转换。
2.4 译码驱动及显示单元电路译码电路的功能是将秒、分、时、计数器的输出代码进行翻译,变成相应的数字。
用于驱动LED七段数码管的译码器常用的有74SL48。
74LS48是BCD-7段译码器/驱动器,其输出是0C门输出且低电平有效,专用于LED七段共阳极显示数码管。
若将秒、分、时计数器的每位输出分别接到相应的七段译码器的输入端,便可进行不同数字的显示。
2.5 报时电路方案一:采用仿广播台整点报时的功能:每当数字钟计时快要到正点的时候发出响声,通常按照四低音,一高音的顺序发出的间断生,以最后一声高音借宿的时刻为正点时刻。
4低音分别发生在59分51秒、发生在59分53秒、发生在59分55秒、发生在59分57秒,最后一声高音发生在59分59秒,他们的持续时间均为一秒。
图2.5报时电路方案二:方案二与方案一实现功能一样,电路不一样。
图2.6 报时电路第三章数字钟的硬件设计3.1 时间脉冲产生电路的设计CD4060同时构成振荡电路和分频电路。
如图14,在MR和RS之间介入振荡器外接元件可实现振荡,并利用时计数电路中多一个2分频器可实现15级分2分频,即可得1Hz信号。
显示器普遍地用于直观地显示数字系统的运行状态和工作数据,按照材料及产品工艺,单片机应用系统中常用的显示器有:发光二极管LED显示器、液晶LCD显示器、CRT显示器等。
LED显示器是现在最常用的显示器之一,如下图所示。
图3.1LED显示器的符号图发光二极管(LED)由特殊的半导体材料砷化镓、磷砷化镓等制成,可以单独使用,也可以组装成分段式或点阵式LED显示器件(半导体显示器)。
分段式显示器(LED数码管)由7条线段围成8字型,每一段包含一个发光二极管。
外加正向电压时二极管导通,发出清晰的光。
只要按规律控制各发光段亮、灭,就可以显示各种字形或符号。
LED数码管有共阳、共阴之分。
图是共阳式、共阴式LED数码管的原理图和符号.图3.2 数码管显示电路显示模块需要实时显示当前的时间,即时、分、秒,因此需要6个数码管,另需两个数码管来显示横。
采用动态显示方式显示时间,硬件连接如下图所示,时的十位和个位分别显示在第一个和第二个数码管,分的十位和个位分别显示在第四个和第五个数码管,秒的十位和个位分别显示在第七个和第八个数码管,其余数码管显示横线。
LED显示器的显示控制方式按驱动方式可分成静态显示方式和动态显示方式两种。
对于多位LED显示器,通常都是采用动态扫描的方法进行显示数码管使用条件:a、段及小数点上加限流电阻b、使用电压:段:根据发光颜色决定;小数点:根据发光颜色决定c、使用电流:静态:总电流80mA(每段10mA);动态:平均电流4-5mA 峰值电流100mA数码管使用注意事项说明:(1)数码管表面不要用手触摸,不要用手去弄引角;(2)焊接温度:260度;焊接时间:5S(3)表面有保护膜的产品,可以在使用前撕下来。
3.3 键盘控制电路该设计需要校对时间,所以用三个按键来实现。
按khour来调节小时的时间,按kmin来调节分针的时间,按ksec来调节秒的时间。
下图是按键硬件连接图。
第四章数字钟的软件设计系统的软件设计也是工具系统功能的设计。
软件的设计主要包括执行软件(完成各种实质性功能)的设计和监控软件的设计。
的软件设计通常要考虑以下几个方面的问题:(1)根据软件功能要求,将系统软件划分为若干个相对独立的部分,设计出合理的总体结构,使软件开发清晰、简洁和流程合理;(2)培养良好的编程风格,如考虑结构化程序设计、实行模块化、子程序化。
既便于调试、链接,又便于移植和修改;(3)建立正确的数学模型,通过仿真提高系统的性能,并选取合适的参数;(4)绘制程序流程图;(5)合理分配系统资源;(6)为程序加入注释,提高可读性,实施软件工程;(7)注意软件的抗干扰设计,提高系统的可靠性。
4.1 系统软件设计流程图这次的数字电子钟设计用到很多子程序,它们的流程图如下所示。
主程序是先开始,然后启动定时器,定时器启动后在进行按键检测,检测完后,就可以显示时间按键处理是先检测秒按键是否按下,秒按键如果按下,秒就加1;如果没有按下,就检测分按键是否按下,分按键如果按下,分就加1;如果没有按下,就检测时按键是否按下,时按键如果按下,时就加1;如果没有按下,就把时间显示出来。
图4.1按键处理流程图定时器中断时是先检测1秒是否到,1秒如果到,秒单元就加1;如果没到,就检测1分钟是否到,1分钟如果到,分单元就加1;如果没到,就检测1小时是否到,1小时如果到,时单元就加1,如果没到,就显示时间。
时间显示是先秒个位计算显示,然后是秒十位计算显示,再是分个位计算显示,再然后是分十位显示,再就是时个位计算显示,最后是时十位显示。
图4.3时间显示4.2 数字钟的原理图用PROTUES软件,根据要求画出数字电子钟的原理图如下所示。
图4.4数字钟的原理图在此有必要介绍一下数字电子钟的工作原理。
工作原理:数字电子钟是一个将“时”,“分”,“秒”显示于人的视觉器官的计时装置。
它的计时周期为24小时,显示满刻度为23时59分59秒,另外还有校时功能。