积的变化规律
乘数与积的变化规律

乘数与积的变化规律
乘数与积的变化规律是指在乘法运算中,当一个因数(乘数)发生变化时,积的变化情况。
这个规律可以通过具体的例子来说明。
假设有两个数a 和b,它们的乘积为c,即a×b=c。
当a 不变,b 增加n 时,积c 会增加an。
例如,当a=2,b=3 时,c=6;当b 增加2 时,即b=5,c=10,c 增加了2a=4。
当a 不变,b 减少n 时,积c 会减少an。
例如,当a=2,b=3 时,c=6;当b 减少2 时,即b=1,c=2,c 减少了2a=4。
当b 不变,a 增加n 时,积c 会增加bn。
例如,当a=2,b=3 时,c=6;当a 增加2 时,即a=4,c=12,c 增加了2b=6。
当b 不变,a 减少n 时,积c 会减少bn。
例如,当a=2,b=3 时,c=6;当a 减少2 时,即a=0,c=0,c 减少了2b=6。
综上所述,乘数与积的变化规律是:当一个因数不变时,另一个因数增加或减少n,积也会相应地增加或减少n 倍。
这个规律在数学运算中非常重要,可以帮助我们更好地理解和解决乘法问题。
积的变化规律

课程解读一、学习目标:1. 会根据积的变化规律直接写出得数。
2. 掌握乘法的估算方法。
在解决具体问题的过程中,能应用合适的方法进行估算,养成估算的习惯。
二、重点、难点:1. 根据积的变化规律直接写出得数。
2. 在解决具体问题的过程中,能应用合适的方法进行估算。
三、考点分析:1. 根据积的变化规律直接写出得数。
2. 在解决具体问题的过程中,能应用合适的方法进行估算。
知识梳理典型例题[方法应用题]例1. 根据15×42=630,直接写出下面各题的得数。
思路分析:(1)题意分析:本题考查根据积的变化规律直接写出得数。
(2)解题思路:首先将各式与已知式子相比较,看看因数有什么变化,然后根据积的变化规律直接写出得数。
解答过程:解题后的思考:先找到不变的因数,再观察另一个因数的变化情况,就可以判断积的情况了。
变化的一个因数乘几,积也乘几;变化的一个因数除以几,积也跟着除以几。
例2. 市政府前面的广场上有一个边长是40米,面积是1600平方米的正方形草坪,现在扩大草坪面积,把边长扩大为原来的2倍,扩宽后的草坪面积是多少平方米?思路分析:(1)题意分析:本题考查应用积的变化规律。
(2)解题思路:正方形的面积=边长×边长边长扩大为原来的2倍面积扩大为原来的4倍解答过程:1600×2×2=6400(平方米)答:扩宽后的草坪面积是6400平方米。
解题后的思考:两个因数相乘,一个因数扩大为它的m倍,另一个因数也扩大为它的m倍,则积就扩大为它的m×m倍。
例3.红旗广场有一块长方形绿地,面积是480平方米,现在把这块绿地的长和宽分别增加为原来的4倍和3倍,扩大后的绿地面积是多少?思路分析:(1)题意分析:本题考查应用积的变化规律。
(2)解题思路:长方形的面积=长×宽长扩大为原来的4倍宽扩大为原来的3倍面积扩大为原来的12倍解答过程:4×3=12480×12=5760(平方米)答:扩大后的绿地面积为5760平方米。
积的变化规律

4×15= 60
小明和妈妈一起到水果店 去买水果,看见店里一招牌上 写着:“苹果3千克6元钱”, 他们买了12千克苹果,该付多 少钱?
6
12
小明和妈妈一起到水果店 去买水果,看见店里一招牌上 写着:“苹果3千克6元钱”, 他们买了12千克苹果,该付多 少钱? 6÷3×12=24(元)
小明和妈妈一起到水果店 去买水果,看见店里一招牌上 写着:“苹果3千克6元钱”, 他们买了12千克苹果,该付多 少钱? 12÷3×6=24(元)
18×24=432 (18÷2)×(24×2)= 432 (18×个因 数乘5,积( 也乘5 )。 2.两数相乘,一个因数不变,另一个因 数除以7,积( 也除以7 )。
3.两数相乘,一个因数不变,要想使积 扩大24倍,另一个因数( 也扩大24倍 )。
根据8×15=120,直接写出下面各题的积。
16×15= 240 32×15= 480 15×48= 720
积的变化规律

“点线面”思维训练模式3——
从“积的变化规律”到“积不变的规律”
一、一个因数变化
【1】一个因数不变,另一个因数扩大了。
【结论】:一个因数不变,另一个因数扩大多少倍(0除外),积也跟着扩大相同的倍数。
【2】一个因数不变,另一个因数缩小。
【结论】:一个因数不变,另一个因数缩小多少倍(0除外),积也跟着缩小相同的倍数。
(一)、积的变化规律:
(1)、一个因数不变,另一个因数乘(或除以)几,积就相应的乘(或除以)几。
字母表示:如果axb=C,则
(ax3)×b=c×3
举例:axb=12如果(ax3)则积就是
12×3=36.
(2)、一个数乘一个比1大的数,积比原数大;
(3)、一个数乘一个比1小的数,积比原数小。
【3】积的变化规律:
【结论】:积与因数同向变化。
【4】同步应用
【5】能力提升
【6】拓展训练
二、积不变的规律
【结论】:一个因数扩大或缩小多少倍,另一个因数缩小或扩大相同的倍数(0除外),积不变。
两个因素反向变化,积不变。
(巧墨静好)
下一节内容:1.商的变化规律——商不变的规律——余数的变化规律
2、和、差、积、商的变化规律。
积的变化规律3条

积的变化规律3条
积的变化规律有以下几条:
1、两个数相乘,一个因数扩大(或缩小)N倍,另一个因数不变,那么它们的积也扩大N倍。
(N为非0自然数)。
2、一个因数扩大a倍,一个因数扩大b倍,积就扩大a*b倍。
3、两个数相乘,一个因数扩大了N倍,另一个因数缩小了N倍,那么它们的积不变。
4、总结:积的变化规律是指因数的变化所引起的积的变化。
如一个因数扩大n倍,另一个因数不变,则积也扩大n倍。
一个因数扩大n倍,另一个因数缩小n倍,则积不变。
两个因数所得结果,叫做积。
也可阐述为其中一个因数表示另一个因数的数量,这么多的这个因数之和为这个乘式的积。
一个乘式中的各个数字为这个乘式的因数。
四年级数学积的变化规律

根据120X8=960,直接写出下列算式的结果。
60X8= 480 30X8= 240 15X8= 120
积的变化规律Leabharlann 一)两数相乘,一个因数不变,另 一个因数扩大(或缩小)到 原来的几倍,积就扩大(或 (0除外) 缩小)相同的倍数。
数学擂台
根据 25 ×
20
= 500 写出:
25 ×( 40 ) = 1000 25 ×( 10 )= 250 (100 )× 20 = 2000
……
口算
80 × 4= 320
缩 小 了 倍 缩 小 了 倍
缩 小 了 倍
10
40 × 4= 160 缩
小 了 倍 10 10
20 × 4= 80
10
口算
6 × 2=
扩 大 了 倍 10
12
扩 大 了 倍 10
6 × 20= 120
扩 大 了 倍 扩 大 了 倍 10 10
6 × 200= 1200
复习
3扩大到原来的10倍,是( 30 )。 50缩小到原来的5倍,是( 10 )。
( 扩大到原来的10倍 ) 18 180
( 缩小到原来的10倍
)
府前街小学 窦晓敏
规律:
两数相乘,一个因数不变,另 一个因数扩大到原来的几倍, 积就扩大相同的倍数。(0除外)
规律:
两数相乘,一个因数不变,另 一个因数缩小到原来的几倍, 积就缩小相同的倍数。(0除外)
积的变化规律

6 × 20
17×12 = 204
= 120 = 1200
6 × 200
积也乘了10。
积的变化规律
一个因数不变,另一个因数乘 几,积也乘几。
17×12 = 204
积的变化规律
36×25 = 900 36×75 = 2700 ?
17×12 = 204
一个因数不变, 另一个因数乘3,积也乘3。
根据8×15 = 120,直接写出 下面各题的积。 16×15 =240 32×15 =480 8×30 =240
积的变化规律
36×25 = 900
因数
因数
17×12 = 204
积
36×75 = ?
积的变化规律
相同点:一个因数不变。
6× 2
6 × 20
= 12
= 120 = 1200
17×12 = 204
6 × 200
积的变化规律
相同点:一个因数不变。
6× 2
6 × 20
= 12
= 120
17×12 = 204
6 × 200 = 1200 另一个因数乘了10。 积也乘了10。
积的变化规律
相同点:一个因数不变。
6× 2
= 12
6 × 20 = 120 另一个因数 乘了100。 6 × 200 = 1200
积也乘了100。
17×12 = 204
积的变化规律
相同点:一个因数不变。 另一个因数 乘了10。 6× 2 = 12
560平方米
24米
8米 8米 8米
560平方米 560平方米
24÷ 8=3(倍) 560×3=1680(平方米)
苹果:5元3千克
香蕉:10元2千克
积的变化规律

1.快速写出右边算式的积,观察每个
算式的两个因数都有什么变化?
2.结合三个算式的积,观察每个算式
的积都有什么变化? 3.试着总结出积与两个因数之间的关 系。(小组合作)
6×2= 12 6×20= 120 6×200= 1200
两个因数相乘,其中一个因数不变,
另一个因数乘以几,积也随着乘几
(长)×24= 1680
做一做
根据8×50=400,直接写出下面各题的积。 16×50= 800 32×50= 1600 8×25= 200
我能行
4×13=52 4×130= 520 4×1300= 5200
40×13= 520 400×13= 5200 8×13= 104 4×26= 104 24×300=7200 24×30= 720 24×3= 72 12×300= 3600 6×300= 1800 24×100= 2400 8×300= 2400
12×3=36 24×3= 72 48×3= 144 96×3= 288
缩小( 2 )倍 缩小(4 )倍
缩小(3 )倍
72×2=144 36×2= 72 9×2= 18 3×2= 6
缩小 (2 )倍 缩小 (4 )倍 缩小 (3 )倍
400平方米
8米
一个长方形的绿地,如果长不变, 宽要增加到24米,扩大后的果园面 积是多少?
自学提示二
1.快速写出右边算式的积,观察每个
算式的 两个因数又有什么变化?
2. 结合三个算式的积,观察每个算
式的积又有什么变化? 3. 试着总结出积与两个因数之间的 另一层关系。(小组合作)
80×4= 320 40×4= 160 20×4= 80
试着总结: 积的变化规律
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《积的变化规律》教学设计
教材分析:
《积的变化规律》是人教版《义务教育课程标准实验教科书数学》四年级上册第三单元的内容。
在乘法运算中探索积的变化规律是整数四则运算中内容结构的一个重要方面,教材以两组乘法算式为载体,引导学生探究积的变化规律。
这一规律是学生计算思维能力的一次飞跃,是学生的思维由单一、松散向灵活、多样化转变的一个突破口。
四年级学生已初步具有一定的探索能力,在乘法口算练习中已经出现过此类习题,并且在学习大数的认识时曾经用计算器研究过一些乘法计算的特殊例子,而这些都为学生探索积的变化提供了基础。
因此在教学中我通过引导学生通过独立观察、讨论、计算、分析,然后全班交流,归纳出积的变化规律,并会用数学语言表达,获得一定的价值体验。
教学目标:
1、让学生探索并掌握一个因数不变,另一个因数乘(或除以)几,积也乘(或除以)几的变化规律;能将这规律恰当地运用于实际计算和解决简单的实际问题。
2、使学生经历积的变化规律的发现过程,初步获得探索和发现数学规律的基本方法和经验。
3、通过学习活动的参与,培养学生的探究能力、合作交流能力和归纳总结能力,使学生获得成功的乐趣,增强学习的兴趣和自信心。
4、培养学生从正反两个方面观察事物的辨证思想。
教学重点:发现并运用积的变化规律。
教学难点:积的变化规律的探究策略。
教学准备:课件、练习题卡等。
教学过程:
一、创设情境,揭示课题
出示:一个文具盒6元,买2个多少钱?20个呢?200个呢?
生读题,口头列式,板书:
6×2= 12
6×20=120
6×200=1200
结合算式复习乘法各部分名称,引入课题。
二、自主探究,发现规律
1、研究一个因数不变,另一个因数变大,积的变化情况。
6×2= 12(元) 6×20=120(元) 6×200=1200(元)(1)引导学生自己观察发现,并把自己的发现结果在小组内交流。
(2)指名汇报,板书:一个因数不变,另一个因数乘几,积也乘几。
(3)启发:还有不同的发现吗?
(4)学生发言,完善板书:一个因数不变,另一个因数除以几,积也除以几。
(5)学生发言:在除法中,0不能作除数,因此要强调0除外。
(6)完善原有规律。
2、验证规律。
(1)引导学生通过举例来验证规律的普遍性。
(2)学生写3个算式,同桌互相交流:因数和积是怎样变化的?
指导生看书,巩固课堂所发现的规律。
三、运用规律,解决问题
1、根据8×50=400,直接写出下面各题的积。
16×50= 32×50= 8×25=
2、全社会各界朋友发起了向地震灾区捐赠活动,用何种运输方式合适呢?。
咱们也帮忙分析一下,一辆大卡车在普通公路上以40千米/时的速度行使,4小时可以行()千米。
一辆小轿车在高速公路上行驶的速度是大卡车的2倍,这辆小轿车用同样的时间可行()千米。
3、一块长方形草地,宽8米,面积是560平方米。
如果长不变,宽增加到24米,现在的面积是多少?
4、算出第一个算式的积,然后直接写出其他算式的积。
18×30=
18×15=
18× 5=
54× 5=
生速算,汇报得数,说思路。
比较18×15=270和54× 5=270,你们发现了什么?
生1:为什么两个因数不同,积却相同呢?
生交流、汇报、得出:
两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的积不变。
四、应用规律解决问题
在○里填上运算符号,在□里填上数:
24×75=1800
﹙24○6﹚×﹙75×6﹚=1800
18×24=432
(18÷2)×(24×2)= □
(18×2)×(24÷2)= □学生继续质疑,发表见解……
五、全课总结
师:经过今天这节课,大家有什么收获呢?
六、板书设计
积的变化规律
6×2= 12
6×20=120
6×200=1200
一个因数不变,另一个因数乘几(或除以几),积也乘几(或除以几)。
【教学反思】
有效教学是预设与生成、封闭与开放的统一体。
教师在教学中应该“提倡生成”,并能够“驾驭生成”,让学生的问题带着我们的课堂自由飞翔。
一、和谐课堂,生成问题
提出一个问题比解决一个问题更重要,给学生营造一个和谐的数学课堂,让学生的思维尽情释放!课堂教学不仅是知识传递的过程,也是师生情感交融,人际交往、思想共鸣的过程,创设一种师生心理相融、民主交往的良好的课堂气氛无疑是课堂问题的最好催化剂。
只有学生不怕了,学生才会站起来提出他们脑中一直盘旋着的问题。
不怕,包括“不怕老师”,对老师的权威敢于提出质疑,敢于表达自己心中的想法;“不怕教材”,对教材的一些观点能够提出自己的看法,即使可能观点存在着错误性;“不怕同学”,很多学生的心理有一种疑问:“我的问题的提出会不会遭到同学们的耻笑?”;“不怕自己”,打断老师的课堂,提出自己的问题是需要多么大的勇气?!学生所能做的就是战胜自己胆怯的心,把信心成功的刻入自己的心里。
只有这样课堂才会活跃,学生的问题会接踵而至。
由于在平时的教学活动中,我适时鼓励学生敢于在课堂上张扬自己的个性,不怕说错,就怕你不说。
在本节课上,学生大胆发言,有一个新的知识点生成出一个又一个知识点。
二、精心预设方能为生成导航
传统教学中,教师思考最多的是教师如何地牵、如何地引、如何地讲清楚、讲明白。
教师扮演着不可替代的、绝对权威的角色,教师成了学生学习结果的惟一的评判者。
在教师的眼里,学生是知识的接受者,只要认真听、认真看、认真记,顺着教师预先设计的教学思路学习就可以了。
因此,所有的教学过程都在教师的控制之中,甚至问题答案都是教师设计好的,这种教学看起来学生是“动”起来了,“参与”了,其实质是学生顺着教师的设计、顺着教师的教学思路、顺着教师的期望,进行教师心中有数的“表演”。
最终是学生完成教师预定的教学任务。
这种只重预设,忽视生成的理念是传统备课的一大弊端,必须引起我们高度重视和关注。
教学过程不可能都是预设的,由于学生存在着差异,因此,问题的答案也不应该是惟一的,教学应该是“预设”和“生成”的有机整合,忽视了教学的生成性,就忽视了学生的差异,忽视了学生的发展。
“凡事预则立,不预则废”,没有预设的生成往往是盲目的,低效的,甚至是无价值的。
生成,不是对预设的否定,而是对预设的挑战——精彩的生成源于高质量的预设。
苏霍姆林斯基说过“教育的技巧并不在于我能预见到课的所有细节,在于根据当时的具体情况,巧妙地在学生不知不觉之中做出相应的变动。
”在本节课上,由于课前我进行了充分的预设,当学生运用已发现的规律去解决新的问题是时,我及时地加以肯定,并适时地加以引导。
在老师的肯定与鼓励中,孩子们由此生成出更多的数学问题,并能自己去发现。
其实在教学中我们只要到:心中有案,行中无案,寓有形的预设于动态的教学中,真正溶入互动的课堂,不断捕捉、判断、重组课堂教学中从学生那里涌现出来的各种信息,随时把握课堂教学中闪动的亮点,样使的教学更具有针对性,为即时“生成”提供更宽阔的舞台,用智慧将教学演绎得更加精彩!
数学课堂上的生成是真实而美丽的,稍纵即逝而可遇不可求的!这就要求我们教师要有拨乱反正的胆识,要有取舍扬弃的智慧,及时捕捉一些有用的问题,顺势引导,让有价值的资源渐入佳境,别有洞天;让看似平常的资源,峰回路转,柳暗花明;让极易擦肩而过的资源化险为夷,绝处逢生,炼就一身扬沙拣金的提炼功夫,使学生能在活而不乱、趣而不俗、新而不谬的空间里畅所欲言,自由放飞,使课堂精彩纷呈,焕发出生命的活力。