passive zbo storage of liquid hydrogen and liquid oxygen applied to space science mission concepts

合集下载

地质专业英语词汇

地质专业英语词汇

地质专业词汇英语翻译(A-D)a horizon a 层位a lineation a 线理a twin a 双晶aa lava 块熔岩aalenian stage 阿林阶abandon 废弃abandoned mine 废弃的矿山abandoned well 废孔abatis 通风隔墙abdomen 腹部abdominal appendage 腹肢abdominal cavity 腹腔abdominal fin 腹abductor 外展肌abductor muscle 外展肌abernathyite 水砷钾铀矿aberration 象差abichite 光线矿abiogenesis 自然发生abiogeny 自然发生abiotic factor 非生物因素ablation 剥蚀ablation breccia 剥蚀角砾岩ablation moraine 消融碛ablation skin 熔蚀皮ablation till 消融碛ablykite 阿布石abnormal 异常的abnormal interference color异常干涉色abnormal metamorphism 异常变质作用abolition 废除abrade 剥蚀abrasion 海蚀abrasion platform 磨蚀台地abrasion surface 浪蚀面abrasion terrace 磨蚀阶地abrasionn test 磨耗试验abrasive 磨料;海蚀的abrazite 多水高岭土absarokite 正边玄武岩absite 钍钛铀矿absolute age 绝对年龄absolute black body 绝对黑体absolute chronology 绝对年代学absolute dating 绝对年代测定absolute geopotential 绝对重力势absolute porosity 绝对孔隙率absolute pressure 绝对压力absolute structure 绝对构造absorbed water 吸附水absorbent 吸收剂absorber 吸收器absorbing well 吸水井absorption 吸收absorption axis 吸收轴absorption border 融蚀缘absorption curve 吸收曲线absorption edge 吸收端absorption factor 吸收率absorption spectrum 吸收光谱absorptive capacity 吸收率absorptivity 吸收性abukumalite 铋磷灰石abundance 丰度abundance of elements 元素丰度abundance of isotopes 同位素丰度abundance ratio of isotopes 同位素相对丰度abysmal deposits 深海沉积物abyss 深海abyssal 深海的abyssal benthic zone 深渊底栖带abyssal deposits 深海沉积物abyssal facies 深海相abyssal hills province 深海丘陵区abyssal injection 深成贯入abyssal rock 深成岩abyssal sediments 深海沉积物acadialite 红菱沸石acadian stage 阿卡德阶acalycine 无花萼的acalycinous 无花萼的acanthite 螺状硫银矿acanthoid 刺状的acaulescent 无茎的acaulous 无茎的acaustobiolite 非燃性生物岩accelerated development 上升发育acceleration 促进accelerometer 加速度计accessory 副的accessory ejecta 早成同源抛出物accessory minerals 副矿物accidental ejecta 异源抛出物accidental inclusion 外源包体accidental species 偶见种accidental xenolith 外源包体acclivity 上坡accompanying mineral 伴生矿物accordance of summit levels 山峰高度一致accordant junction 交合汇流accordion fold 棱角褶皱accretion 附加体accretion gley 结核潜育层accretion theory 吸积理论accretionary lapilli 团积火山砾accumulate 堆积accumulated temperature 积温accumulation 堆积accumulation horizon 聚积层accumulation moraine 堆积冰碛accumulation terrace 堆积阶地accumulation theory of volcano 火山堆积说accumulation till 堆积冰碛accumulative phase 堆积相accuracy 准确度acephalous 无头的acephalous larva 无头幼虫acerous 针状的acetate 醋酸盐acetic acid 醋酸acf diagram acf 图解achavalite 硒铁矿achiardite 坏晶石achirite 透视石achlamydeous 无花被的achlusite 钠滑石achondrite 无球粒陨石achroite 无色电气石achromaite 浅闪石achromatic body 消色物体achromatic lens 消色差透镜achromatism 消色差achromatize 消色acicular 针状的aciculiform 针状的acid base equilibrium 酸碱平衡acid earth 酸性白土acid humus 酸性腐殖质acid mine drainage 酸性矿水排水acid plagioclase 酸性斜长石acid rock 酸性岩acid soil 酸性土acid solution 酸性溶液acid spring 酸性泉acid treatment of oil payzone 油层酸处理acid treatment of well 井的酸处理acidic lava 酸性熔岩acidification 酸化acidimetry 酸量滴定法acidite 酸性岩acidity 酸度acidizing of well 井的酸处理acidophilous plants 适酸植物acidotrophic lake 酸性营养湖acidulation 酸化acline twin 翻底双晶acmite 锥辉石acotyledon 无子叶植物acotyledonous 无子叶的acoustic basement 声波基底acoustic foundation 声波基底acoustic logging 声波测井acquired character 获得形质acre foot 英亩英尺acrobatholithic 露岩基的acrochordite 球砷锰矿acrospore 顶生孢子actinides 锕系元素actinium 锕actinolite 阳起石actinolite asbestos 阳起石石棉actinolite schist 阳起片岩actinolitic greenschist facies 阳起绿色片岩相actinometer 日射表actinometry 光化测定actinomorphic 辐射对称的actinomorphous 辐射对称的actinomyces 放线菌类actinostele 星状中柱actinouranium 锕铀actinula 辐射幼虫activated adsorption 活化吸附activated carbon 活性炭activated clay 活化粘土activated complex 活化络合物activated water 活化水activation 活化activation analysis 活化分析activation cross section 活化截面activation energy 活化能activation logging 活化测井activation method 活化法activation of platform 地台活化activator 活化剂active fault 活断层active folding 活褶曲作用active glacier 活动冰川active humus 活性腐殖质active hydrogen 活性氢active plate 移动板块active remote sensing 织式遥感active tectonic pattern 活动构造型式active volcano 活火山active water 侵蚀性水activity 活度activity coefficient 活度系数activization 活化作用activization platform block 活化台块actual reserves 实在储藏量actual volume 实际容积actualily 真实actualism 现实论actuopalaeontology 现实古生物学acute 急尖的acute bisectrix 锐角等分线acutifoliate 尖叶的adamant 硬石adamantine 坚硬的adamantine lustre 金刚光泽adamantine spar 刚玉adamellite 石英二长岩adamine 水砷锌矿adamite 水砷锌矿adamsite 暗绿云母adaptability 适应性adaptation 适应adaptive radiation 适应辐射adcumulate 累积岩addition 添加additional phase 加成相adductor 收肌adductor muscle scar 收肌筋痕adelite 砷钙镁石adelogenic 显衡隐晶质的1adelpholite 铌铁锰矿adenoid 腺样的adergneiss 脉状片麻岩adhering 粘附性的;附着adhesion 粘附adhesive disk 吸盘adhesiveness 胶糟性adiabat 绝热线adiabatic cooling 绝热冷却adiabatic curve 绝热线adiabatic equilibrium 绝热平衡adiabatic heating 绝热增温adiabatic lapse rate 绝热温度梯度adiabatic process 绝热过程adiabatic state 绝热状态adiabatic temperature gradient 绝热温度梯度adiagnostic 隐微晶质的adigeite 镁蛇纹石adinole 钠长英板岩adipocerite 伟晶腊石adipocire 伟晶腊石adipose cell 脂细胞adit 平峒adjacent rock 围岩adjacent sea 边缘海adjoining rock 围岩adjustment 蝶admimistration 管理admission 收气adobe 灰质粘土adoral 口侧的adsorbent 吸附剂adsorbing material 吸附剂adsorption 吸附adsorption indicator 吸附指示剂adsorptive capacity 吸附能力adular 冰长石adularia 冰长石adult 成体advance 前进adventitious plants 外来植物adventive crater 寄生火口adventive volcano 寄生火山aecidiospore 锈孢子aeciospore 锈孢子aegirine 霓石aegirine augite 霓辉石aegirite 霓石aenigmatite 三斜闪石aeolian clastics 风成碎屑岩aeolian deposit 风积aeolian landform 风成地形aeolian soil 风积土aeration 充气aeration tissue 通气组织aeration zone 饱气带aerenchyma 通气组织aerial method of geology 航空地质甸方法aerial photography 航空摄影学aerial ropeway 架空死aerial survey 航空测量aerial triangulation 航空三角测量aerify 使呈气态aerobe 需气生物aerocartograph 航空测图仪aerogenous rock 风成岩aerogeography 航空地理学aerogeology 航空地质学aerolite 石陨石aerolith 石陨石aeromagnetic survey 航空磁测aerophotogeological map 航空摄影地质图aerophotogrammetry 航空摄影测量学aerophotography 航空摄影学aerophotography of geology 地质专业航空摄影aeroplankton 大气浮游生物aeroradioactive survey 航空放射性测量aerosiderite 铁陨石aerosiderolite 铁石陨石aerosite 深红银矿aerugite 块砷镍矿aeschynite 易解石affiliation 亲缘关系affine deformation 均匀变形affinity 亲和力afflux 汇入after deep 后渊aftereffect 后效aftershock 余震afwillite 桂硅钙石agalite 纤滑石agalmatolite 寿山石agamogony 无配子生殖agate 玛瑙age 龄期age determination 时代鉴定age of cycads 苏铁植物时代age spectra 年龄谱ageing of colloids 胶体熟化agent of erosion 侵蚀力agents of metamorphism 变质营力ageostrophic wind 非地转风agglomerate 集块岩agglomerate lava 集块熔岩agglomeratic 集块岩状的agglomeration 烧结agglutinate 粘合集块岩agglutination 胶着agglutinin 凝集素aggradation 加积aggradation terrace 堆积阶地aggradational plain 堆积平原aggregate 集合体aggregation 聚集aggressive water 侵进水agitation 搅拌agmatite 角砾混合岩agnatha 无颌类agnolite 红硅钙锰矿agnotozoic era 元古代agpaite 钠质火成岩agreement 协议agricolite 闪铋矿agricultural geology 农业地质学agricultural geomorphology 农业地貌学agroforestrial geology 农林地质学agrogeology 农业地质学agrohydrologg 农业水文学aguilarite 辉硒银矿aidyrlite 杂硅铝镍矿aikinite 针硫铋铅矿air borne radioactivity 大气放射性air chamber 气室air compressor 空气压缩机air damping 空气制动air drilling 空气钻进air drying 风干air elutriation 空气淘析air flush drilling 空气冲洗钻井air gun 空气枪air hammer 气锤air lift 气动提升机air permeability 透气性air pressure 空气压力air release valve 放气阀air sac 气囊air separating tank 空气分离罐air separator 气力分离器air shrinkage 空气收缩air vent 排气孔air volcano 气火山airborne electromagnetic method 航空电磁法airborne electromagnetics 航空电磁法airborne magnetic prospecting 航空磁法勘探airborne magnetometer 航空地磁仪airborne remote sensing 航空遥感airborne survey 航空甸airial camera 航空摄影机airview 空瞰图airy phase 艾氏相airy's spiral 艾氏螺旋akaustobiolite 非燃性生物岩akaustobiolith 非燃性生物岩akerite 英辉正长岩akermanite 镁黄长石akf diagram akf图解akinete 厚壁孢子akrochordite 球砷锰矿aksaite 阿氏硼镁石ala twin 轴双晶alabandine 硫锰矿alabandite 硫锰矿alabaster 雪花石膏alabastrite 雪花石膏alamosite 铅灰石alar 翼状的alary 翼状的alaskaite 铅泡铋矿alaskite 白岗岩alate 有翼的albedo 反照率albers' equal area projection 亚尔勃斯等积投影albertite 黑沥青albian 阿尔布阶albian stage 阿尔布阶albite 钠长石albite twin 钠长石双晶albitite 钠长石玢岩albitization 钠长石化albitophyre 钠长斑岩alboranite 紫苏变玄岩aleurolite 粉砂岩aleuropelitic 粉砂泥的aleutite 易辉安山岩alexandrite 翠绿宝石algae 藻类algae control 藻类控制algal ball 海藻饼algal biscuit 海藻饼algal coal 藻煤algal fungi 藻菌类algal limestone 藻灰岩algal reef 藻礁algal structure 藻结构alginite 藻类体algodonite 微晶砷铜矿algology 藻类学algonkian 阿尔冈纪algonkian system 阿尔冈系algovite 辉斜岩aliphatic compound 脂族化合物alizarin 二羟蒽醌alkali 碱alkali alumina metasomatism 碱氧化铝交代alkali basaet 碱性玄武岩alkali earth metal 碱土金属alkali feldspar 碱性长石alkali flat 碱覆盖坪alkali gabbro 碱性辉长岩alkali granti 碱性花岗岩alkali lime index 碱灰质指数alkali metal 碱金属alkali olivine basalt 碱性橄榄玄武岩alkali pyroxene 碱性辉石alkali rock series 碱性岩系alkali salt 碱盐alkali soil 碱土alkali syenit 碱性正长岩alkalic rock 硷性岩alkalic ultrabasic rock 碱超基性岩alkalify 碱化alkalimetry 碱量滴定法alkaline amphibolization 碱性角闪石化alkaline earth 碱土族alkaline earth metal 碱土金属alkaline metasomatism 碱性交代作用alkaline pyroxenization 碱性辉石化2alkaline rock 硷性岩alkaline rocks 碱性岩类alkaline soil 碱性土alkaline solution 碱性溶液alkaline spring 碱泉alkalinity 碱度alkalipicrite 碱性苦橄岩alkalitrophic lake 碱液营养湖alkalization 碱化作用alkalize 碱化alkaloid 生物碱alkanes 链烷烃allactite 砷水锰矿allagite 绿蔷薇辉石allalinite 浊变辉长岩allanite 褐帘石alleghanyite 粒硅锰矿allemontite 砷锑矿allite 铝铁土allivalite 橄榄钙长岩allobar 变压区allocation 分配allochemical metamorphism 异化变质allochetite 霞辉二长斑岩allochroite 粒榴石allochromatic colour 假色allochromatism 假色allochthone 移置岩体allochthonous 外来的allochthonous coal 异地生成煤allochthonous deposit 移积allochthonous fold 移置性褶曲allochthonous limestone 移置灰岩alloclastic breccia 火山碎屑角砾岩allogenic 他生的allogenic element 他生元素allogenic mineral 他生矿物allogenic succession 他生演替allomerism 异质同晶现象allometamorphism 他变作用allometry 异速生长allomigmatite 他混合岩allomorph 同质异形的allomorphism 同质异晶allomorphous 同质异形的allopalladium 硒钯矿allopatric polymorphism 同质多形allophane 水铝英石allophase metamorphism 他相变质alloskarn 外成夕卡岩allothigenic 他生的allothigenous 他生的allotriomorphic 他形的allotriomorphic granular texture 他形晶粒状结构allotriomorphic structure 他形构造allotriomorphic texture 他形结构allotrope 同素异形体allotropic modification 同素异形体allotropic transformation 同素异晶变化allotropism 同素异形allotropy 同素异形allotype 异模式标本alloy 合金alluvial 冲积的alluvial apron 山麓冲积扇alluvial channel 冲积河道alluvial cone 冲积锥alluvial deposit 冲积层alluvial fan 冲积扇alluvial fan deposit 冲积扇层alluvial ore deposit 冲积矿床alluvial placer 冲积砂矿床alluvial plain 冲积平原alluvial sand ripples 河成砂纹alluvial sand wave 河成沙波alluvial soil 冲积土alluvial terrace 冲积阶地alluvial veneer 冲积表层alluviation 冲积alluvion 冲积层alluvium 冲积层almandine 铁铝榴石almandite 铁铝榴石alnico 铝镍钴合金alnoite 黄长煌斑岩alp 高山alpha quartz 石英alpha ray spectrometer 能谱仪alphitite 岩粉土alpides 阿尔卑斯造山带alpine animals 高山动物alpine belt 高山带alpine orogeny 阿尔卑斯造山运动alpine type peridotite 阿尔卑斯式橄榄岩alpine type vein 阿尔卑斯型矿脉alpinotype orogeny 阿尔卑斯型造山作用alpinotype tectonics 阿尔卑斯型构造alsbachite 榴云细斑岩alstonite 碳碱钙钡矿altaite 碲铅矿altar 腋生的altazimuth 经纬仪alteration 蚀变alteration halo 蚀变晕alteration zone 蚀变晕altered aureole 蚀变晕altered mineral 蚀变矿物alternant 交替的alternate phyllotaxis 互生叶序alternately pinnate 互生羽状的alternating 交替alternating layers 互层alternation 互层alternation of beds 互层alternation of generations 世代交替alternative 可选择的altimeter 高度计altitude 高度altitudinal zonality 垂直分布带alum 茂alum shale 茂页岩alum slate 茂板岩alumian 无水矾石alumina 矾土aluminate 铝酸盐aluminite 矾石aluminum 铝alumochromite 铝铬铁矿alunite 茂石alunitization 茂石化alunogen 毛矾石alurgite 锰云母alveolar 蜂窝状alvite 铪锆石amagmatic 非岩浆活动的amalgam 汞齐amalgamation 混汞作用amarantite 红铁矾amazonite 天河石amazonitization 天河石化ambatoarinite 碳酸锶铈矿amber 钙铝榴石amberite 灰黄琥珀ambient 外界的ambiguity 多义性amblygonite 磷铝石ambrite 灰黄琥珀ambulacral foot 管足ambulacral system 步带系ambularcral zone 步带ameba 变形虫amendment 修正;校正americium 镅amesite 镁绿泥石ametaboly 无变态amethyst 紫水晶amherstite 反条正长闪长岩amianthus 石棉amino acid metabolism 氨基酸代谢aminobenzoic acid 氨基苯酸ammonioborite 水铵硼石ammonites 菊石类amorphous 非晶质的amorphous graphite 无定型石墨amorphous silica 无定形硅氧amosite 铁石棉amount 总计amount of evaporation 蒸发量amount of precipitation 降水量amount of throw 纵距ampangabeit 铌链铁铀矿ampelite 黄铁炭质页岩amphibia 两栖类amphibious plants 两栖植物amphibole 闪石amphibolite 闪岩amphibolite facies 角闪岩相amphibolization 闪石化作用amphigene 白榴石amphigenite 白榴熔岩amphiprotic 两性的ampholyte 两性电解质amphoteric 两性的amphoteric electrolyte 两性电解质amphoteric element 两性元素amphoteric ion 两性离子amphoteric oxide 两性氧化物amphoterite 无粒古橄陨石amplexicaul 抱茎的amplifier for photocurrents 光电僚大器amplitude 振幅amplitude correction 振幅校正amplitude spectrum 振幅谱amygdale 杏仁孔amygdaloid 杏仁岩amygdaloidal 杏仁状的amygdaloidal structure 杏仁状构造amygdule 杏仁孔anabatic wind 谷风anabolism 合成代谢anaboly 后加演化anaclinal 逆向的anadiagenesis 前进成岩作用anaerobe 厌气微生物anaerobic bacteria 嫌气细菌anaerobiosis 嫌气生活anagenesis 前进演化anal fin 臀鳍anal gland 肛腺analbite 单斜钠长石analcime 方沸石analcimite 方沸岩analcimolith 方沸岩analcite 方沸石analog 相似体analogous organ 同功瀑analogue 相似体analogy 类似analysis by sedimentation 沉积分析analytic standard 分析标准analytical balance 分析天平anamesite 中粒玄武岩anamigmatism 深溶混合岩化anamorphic zone 合成变质带anamorphism 合成变质anapaite 三斜磷钙铁矿anaseism 背震中anastomose 网结anastrophen 倒装法anatase 锐钛矿anatectic magma 深熔岩浆anatectite 深熔混合岩anatexis 深熔作用anauxite 富硅高岭石anchieutectic 近底共融的anchimetamorphism 近变质作用anchimonomineralic 近单矿物的3anchor ice 底冰ancient channel 古河道ancient elephant 古大象ancient landform 古地形ancylite 菱锶铬矿andalusite 红柱石andersonite 水碳钠钙铀矿andesine 中长石andesite 安山岩andesite line 安山岩线andorite 锑铅银矿andradite 钙铁榴石anemoclastics 风成碎屑岩anemophilous plant 风媒植物anemophily 风媒anemousite 三斜霞石angara flora 安加拉植物群angara shield 安加拉古陆angaraland 安加拉古陆angarides 安加拉古陆angiospermous 被子的angiosperms 被子植物angle of contact 接触角angle of draw 陷落角angle of incidence 入射角angle of inclination 倾斜角angle of internal friction 内摩擦角angle of reflection 反射角angle of refraction 折射角angle of repose 休止角angle of strike 走向角度angle of subsidence 陷落角anglesite 硫酸铅矿angrite 钛辉无球粒陨石angular 有角的angular discordance 斜交不整合angular unconformity 钭文不整合angularity 有角angustifoliate 狭叶的anhedral 他形的anhydration 脱水anhydride 无水物anhydrite 硬石膏anhydrite formation 硬石膏层anhysteretic remanent magnetiazation 非滞后剩余磁化animal charcoal 动物煤animal debris 动物残余animal theory 动物成因论animikie system 安尼迷基系animikite 铅银砷镍矿anisian 安尼阶anisodesmic structure 蛤稳变异构造anisometric 非等轴的anisophyllous 不等叶的anisotrophism 蛤异性anisotropic 非均质的anisotropic fabric 蛤异性组构anisotropy 蛤异性anisotropy of crystals 晶体蛤异性ankaramite 钭长辉石岩ankaratrite 橄霞玄武岩ankerite 铁白云石anna aannabergite 镍华annealing recrystallization 退火重结晶作用annelids 环节动物annerodite 铌钇铀矿annite 羟铁云母annivite 铋铜矿annual 年刊annual amount of precipitation 年降水量annual plant 一年生植物annual ring 年轮annular 环状的annulation 环annulus 体环anomalous electric field 异常电场anomalous extinction 异常消光anomalous interference color 异常干涉色anomalous lead 异常铅anomalous upheaval 异常隆起anomaly 异常anomite 褐云母anonymous 不具名的anorogenic period 非造山期anorogenic time 非造山期anorthite 钙长石anorthitite 钙长岩anorthoclase 歪长石anorthosite 斜长岩antagonism 对抗作用antarctic 南极antarctica 南极大陆antecedent 先行的antecedent precipitation index 前期降雨指标antecedent river 先成河antecedent valley 先成谷anteclise 台背斜antegenetic river 原生河antenna 触角antennule 第一触角anther 药antheridium 精子囊antholite 直闪石anthophyllite 直闪石anthozoa 珊烘类anthracite 无烟煤anthracite coal 无烟煤anthraconite 沥青灰岩anthraxolite 碳沥青anthraxylon 纯木煤anthropogenic factor 人为因素anthropogeography 人类地理学anthropoid 类人猿anthropoid apes ape 类人猿anthropology 人类学anthropophyte 人为植物anthropostratigraphy 人类地层学antibonding electron 反键电子anticathode 对阴极anticlinal 背钭的anticlinal axis 背斜轴anticlinal bend 背斜弯曲anticlinal dome 背斜隆起anticlinal fault 背斜断层anticlinal fold 背斜anticlinal limb 背斜翼anticlinal mountain 背斜脊anticlinal ridge 背斜脊anticlinal theory 背斜理论anticlinal trap 背斜圈闭anticlinal valley 背斜谷anticlinal zone 背斜带anticline 背斜anticlinorium 复背斜anticlise 台背斜anticlockwise 反时针方向的anticoincidence 反符合antidune 反沙丘antiferromagnetism 反铁磁性antifluorite structure 反萤石结构antiform 背斜型构造antiformal syncline 背斜型向斜antigorite 叶蛇纹石antimonite 辉锑矿antimony 锑antimony bloom 锑华antipathy 不相容antipertite 反纹长石antiseismic 抗震的antiseptic 防腐剂antistress mineral 反应力矿物antisymmetrization 反对称化antithetic fault 反向断层antlerite 块铜矾antofagastite 水氯铜矿anulus 体环apachite 闪辉响岩apatite 磷灰石aperiodicity 非周期性aperture 孔apex 背斜顶apex of shell 壳顶aphanic 显衡隐晶质的aphaniphyric 隐晶斑状aphanite 隐晶岩aphanitic texture 隐晶结构aphanitic variolitic texture 隐晶球颗结构aphotic zone 无光带aphrosiderite 铁华绿泥石aphthalose 钾芒硝aphthitalite 钾芒硝aphthonite 银铜矿aphyric 无斑隐晶质的apical disk 顶系apical system 顶系apjohnite 锰茂aplite 细晶岩aplitic 细晶状的aplitic facies 细晶岩相aplitic texture 细晶岩构造aplogranite 淡色花岗岩apoandesite 脱玻安山岩apobasalt 脱玻玄武岩apogee 远地点apogranite 变花岗岩apolar adsorption 非极性吸附apomagmatic 外岩浆的apomagmatic deposit 外岩浆矿床apophyllite 鱼眼石apophyse 岩枝apophysis 岩枝apospory 无孢生殖apparent 外观上的apparent density 视密度apparent dip 视倾斜apparent heave 视横断距apparent resistivity 视电阻率apparent resistivity curve 视电阻率曲线apparent resistivity map 视电阻率图apparent specific gravity 表观比重apparent velocity 视速度apperance of crystal 结晶外貌apple coal 软煤applied geochemistry 应用地球化学applied geology 应用地质学applied geomorphology 应用地形学applied geothermics 应用地热学applied geothermy 应用地热学applied palaeontology 应用古生物学applied seismology 应用地震学appraisement 评价apron reef 石中住裙礁aptian 阿普第阶aptian stage 阿普第阶aqua regia 王水aquamarine 海蓝宝石aquatic 水生的aquatic animals 水栖动物aqueduct 沟渠aqueous deposit 水成沉积aqueous rock 水成岩aqueous soil 水成土aqueous solution 水溶液aquiclude 隔水层aquifer 含水层aquifer loss 含水层损失aquifer storage 合水层储水aquifer test 含水层试验aquiferous 含水的aquifuge 不透水层aquitanian stage 阿启坦阶aquitard 弱含水层arachnidea 蛛形类araeoxene 钒铅锌矿aragonite 文石4arakawaite 磷锌铜矿aramayoite 硫铋锑银矿arandisite 硅锡矿arborescent 被状arc of compression 褶皱弧arc of folding 压缩弧arch 背斜archaean era 太古代archaeocyte 原始细胞archaeogeology 考古地质学archaeopteris flora 古蔽属植物群archaeopteryx 始祖鸟属archaeozoic 太古代的archaian 太古代的archbend 褶皱头部archean 太古代archean greenstone belt 太古代绿岩带arched structure 隆起构造archegone 颈卵器archegonium 颈卵器archeomagnetism 太古磁性archeophytic era 太古植物代archeozoic era 太古代archetype 原始型archipelagic apron 群岛沿边漫坡海底archipelago 群岛arcogenesis 地穹运动arcogeny 地穹运动arctic 北极圈arctic air mass 北极气团arctic front 北极锋arctic plants 北极植物arctic subregion 北极亚区arctoalpine 北极高山的arcuate 弓形的arcuate delta 弓形三角洲ardealite 磷石膏ardennite 锰硅铝矿area 分布区area of artesian flow 自廉区area of influence 影响区域areal eruption 区域喷溢arenaceous 砂屑的arenaceous rock 砂质岩arenaceous texture 砂质结构arenes 粗砂arenopelitic 砂泥质的arenose 粗砂质的arfvedsonite 钠钙闪石argentiferous 含银的argentite 辉银矿argentobismutite 硫银铋矿argentojarosite 辉银黄钾铁矾argentopyrite 含银黄铁矿argil 白粘土argillaceous 泥质的argillaceous limestone 泥质灰岩argillite 泥岩argillization 泥化argon 氩argyrodite 硫银锗矿arid basin 干燥盆地arid landform 干旱地形arid peneplain 干旱准平原arid zone 干旱带aridity coefficient 干燥系数aridity index 干燥指数ariegite 尖榴辉岩arithmetical averaging grade 算术平均品位arithmetical averaging thickness 算术平均厚度arizonite 红钛铁矿arkite 白榴霞斑岩arkose 长石石英岩arkosic sandstone 长石石英岩armangite 砷锰矿armored cone 熔壳火山锥armored fishes 甲胄鱼纲aromatic base crude oil 芳香基原油arrangement 配置arroyo 干谷arsenate 砷酸盐arsenic 砷arseniopleite 红砷铁矿arseniosiderite 钙砷铁矿arsenite 砷华arsenoclasite 水砷锰石arsenolite 砷华arsenomiargyrite 砷辉锑银矿arsenopyrite 毒砂arterite 层混合岩artesian aquifer 自廉层artesian basin 自廉盆地artesian ground water 自霖下水artesian pressure head 承压水位artesian spring 自联artesian water 自廉artesian well 自廉arthropoda 节肢动物artic front 北极峰articulation 关节artificial 人为的artificial classification 人为分类artificial crystal 人造晶体artificial diamond 人造金刚石artificial discharge 人工排泄artificial earth's satellite 人造地球卫星artificial earthquake 人为地震artificial ground water 人工地下水artificial hypocenter 人工震源artificial mineral 人造矿物artificial radio element 人工放射元素artificial radioactivity 人工放射性artificial recharge 人工补给artificial satellite 人造卫星artificial seismic source 人工震源artificial selection 人工淘汰artinite 纡维菱镁矿artinsk stage 阿丁斯克阶artinskian 阿丁斯克阶asbestos 石棉asbestus 石棉asbolane 钴土矿asbolite 钴土矿ascending development 上升发育ascension theory 上升说ascent curve 上升曲线aschaffite 云英钭煌岩ascharite 硼镁石aschistic 岩浆同质的aschistic dike 未分异岩脉aschistic dyke 未分异岩脉aschistite 未分异岩ascon type 单沟型ascospore 子囊孢子ascus 子囊aseismic 无震的asexual generation 无性世代asexual reproduction 无性生殖ash bed 火山灰层ash cloud 灰云ash cone 火山灰丘ash content of coal 煤灰分ash fall 降落灰ash flow 火山灰流ash free 无灰分的ash shower 降落灰ash structure 火山灰构造ashgillian stage 阿石极阶ashing 灰化asmanite 陨鳞石英asparagolite 黄绿磷灰石asparagus stone 黄绿磷灰石asperite 玻质英安岩asphalt 地沥青asphalt sealing trap 沥青塞圈闭asphaltenes 沥青质asphaltic base crude oil 沥青基原油asphaltic pyrobitumen 焦性沥青asphaltite 沥青岩asphaltum 地沥青aspite 盾状火山asporous 无孢子的assay 试金assay balance 试金天平assay map 采样平面图assaying 试料分析assessment well 估价井assimilate 同化assimilation 岩浆的同化作用associate 使联合associate species 伴生种associate structure 伴生构造associated mineral 伴生矿物associated ore 伴生矿association 联合association of elements 元素的共生组合assyntite 钛辉方钠正长岩assypite 钠橄辉长岩astable 不稳定的astatic 无定向的astatic magnetometer 无定向磁力仪astaticism 无定向性astatine 砹astatisation 无定向化asteroid 小行星asthenosphere 软力astian stage 阿斯蒂阶astite 红柱角页岩astrakhanite 白钠镁矾astroblem 古陨挥astrogeology 天体地质学astrophyllite 星叶石asymmetric 不对称的asymmetric carbon atom 不对称碳原子asymmetric dispersion 不对称色散asymmetric fold 不对称褶皱asymmetrical 不对称的asymmetrical anticline 不对称背斜asymmetrical crystal monochromator 不对称结晶单色仪asymmetrical ridge 不对称山脊asymmetry 非对称asynchronous 异步的atacamite 氯铜矿atatschite 线玻正斑岩atavism 返祖ataxic mineral deposit 不成层矿床ataxite 角砾斑杂岩ataxitic 角砾斑杂状的atectonic 非构造的atelestite 砷酸铋矿atlantic ocean 大误atlantic suite 大误岩套atlasspat 纤维石atmoclast 气碎岩atmoclastic rock 气碎岩atmoclastics 气碎岩atmogenic metamorphism 气生变质atmometer 蒸发表atmophile element 亲气元素atmosphere 大气圈atmospheric pressure 气压atmospheric rock 气成岩atmospheric weathering 大气风化atmospheric window 大气窗口atmospheric windows 大气窗口atoll 环礁atoll lake 环礁湖atoll texture 环礁结构atomic binding 原子键atomic bond 原子键atomic disintegration 原子衰变atomic energy level 原子能级atomic mass unit 原子质量单位atomic ratio 原子比atomic size 原子大小atomic spectrum 原子光谱5atomic unit 原子单位atomic volume 原子体积atomistics 原子论atrio 火口原atrio lake 火口原湖atriopore 围鳃腔atrium 围鳃腔attenuation 衰减attenuation constant 衰减常数attenuation factor 衰减常数attraction 引力attribute 属性attrition 磨损attritus 碎集煤atypical 非典型的aubrite 顽火辉石无球粒陨石auerlite 磷钍矿augelite 光彩石augen structure 眼状构造augengneiss 眼环片麻岩auger 螺旋钻auger drill 螺旋钻augite 辉石augitite 辉石岩aulacogene 古断槽aureole 接触圈aurichalcite 绿铜锌矿auriferous 含金的auriferous conglomerate 含金砾岩auripigment 雌黄aurora 极光auroral zone 极光地带australite 澳洲似黑曜岩authigene 自生的authigenesis 自生作用authigenic 自生的authigenic element 自生元素authigenic mineral 自生矿物authigenous 自生的auto injection 自注入autobreccia 同生角砾岩autobreccited lava 同生角砾岩熔岩autocatalysis 自动催化autochthone 原地岩体autochthonous 原地的autochthonous coal 原地生成煤autochthonous deposit 原地沉积autochthonous fold 原地褶皱autochthonous granite 原地花岗岩autochthonous limestone 原地灰岩autoclases 自碎autoclast 自碎岩autoclastic 自碎的autoclastic rock 自碎岩autoclave 压热器高压锅autocorrelation function 自相关函数autogenic succession 自发演替autogeny 自生autogeosyncline 自地槽autointrusion 自侵入autolith 同源包体autometamorphism 自变质作用autometasomatism 自交代作用automolite 铁锌晶石automorphic 自形的autopneumatolysis 自气化作用autoradiography 自动射线照相术autotrophism 自养autotrophy 自养autotype 自型autunite 钙铀云母auversian stage 奥伯斯阶auxiliary curve 辅助曲线auxiliary fault 副断层auxiliary joint 副节理auxiliary mineral 副矿物available relief 有效起伏available water 可利用的水avalanche 雪崩avalanche breccia 岩崩角砾岩aven 落水洞aventurine 砂金石average life 平均寿命avezacite 钛铁辉闪脉岩avicennite 褐铊矿aviolite 堇云角页岩avogadrite 氟硼钾石awaruite 铁镍矿axe stone 软玉axial 轴的axial angle 光轴角axial colour 轴色axial distribution analysis 轴向分布分析axial plane 轴面axial plane cleavage 轴面劈理axial plane folding 轴面褶皱axial plane foliation 轴面叶理构造axial plane schistosity 轴面片理axial ratio 轴率axial section 轴向剖面axial skeleton 轴骨axial trace 轴迹axillary 腋生的axillary bud 腋芽axinite 斧石axinitization 斧石化axiolite 椭球粒axiolith 椭球粒axiolitic 椭球粒状的axis 轴axis of rotation 旋转轴axis of rotatory reflection 回转反射轴axis of symmetry 对称轴axis plane 轴面azeotrope 共沸混合物azeotropy 共沸性azilian age 阿齐尔时代azimuth 方位角azimuthal equal area projection 等积方位投影azimuthal equidistant projection 等距方位投影azimuthal orthomorphic 正形方位投影azimuthal projection 方位投影azimuthal quantum number 方位角量子数azoic era 无生代azurite 蓝铜矿babel quartz 塔状石英babingtonite 铁灰石bacillite 杆雏晶束back 背back deep 次生优地槽back flow 逆流back radiation 逆辐射back reflection camera 逆反射照相机back swamp 河漫滩沼泽backfill 充填background value 背景值backland 腹地backpressure 回压backshore 后滨backwash 回流backwashing method 回哩backwater 回水bacteria 细菌bacterial analysis 细菌分析bacterielles fossil 细菌化石baculite 杆菊石bad land 恶劣地baddeleyite 斜锆石badenite 镍铋砷钴矿baectuite 白头岩bag of ore 矿袋bagrationite 铈黑帘石bahiaite 橄闪紫苏岩baikalite 易裂钙铁辉石bailer 簧头;捞砂筒bajocian 巴柔阶bakerite 纤硼钙石baking coal 粘结煤balance 平衡balance resources 表内储量balanced filter 衡均滤波器balas 玫红尖晶石ball clay 球土ball diorite 球状闪长岩ball granite 球状花岗岩ball ironstone 球状铁矿石ball mill 球磨机ball porphyry 球状斑岩ball structure 球状构造ball texture 球状结构ballas 工业用球面金刚石balling 球团balsam 香胶baltic shield 波罗的地盾banakite 粗绿岩banatite 正辉英闪长岩band 带;夹层banded 带状的banded agate 带状玛瑙banded clay 带状粘土banded coal 条带状煤banded gneiss 带状片麻岩banded hematite quartzite 带状赤铁矿石英岩banded iron ore deposit 条带状铁矿床banded lode 带状脉banded migmatite 带状混合岩banded ore 带状矿石banded structure 带状构造banded vein 带状矿脉banding 层状bandy 带状的bandylite 氯硼铜石bank 岸bank erosion 沙滩侵蚀bank gravel 采石坑砾石bank run gravel 采石坑砾石bank side 河岸斜坡banket 含金砾岩层baotite 包头矿bar 沙洲bar theory 砂州说barb 羽支barbed drainage 倒钩水系统barbierite 钠正长石barchane 新月形砂丘baric topography 气压形势baricalcite 重解石barite 重晶石barium 钡barium anorthitite 钡斜长岩barium feldspar 钡长石bark 胜barkevikite 棕闪石barkhan 新月形砂丘barlte 天青重晶岩barn 靶恩barolite 天青重晶岩barometric altimeter 气压测高计barotolerancy 耐压性barranca 峡谷barranco 峡谷barrandite 磷铝铁石barremian 巴列姆阶barren bed 哑层barren layer 废石层barren of coal 不含煤的barren rock 无矿岩barren sand 无油砂层barrier 堡坝barrier reef 堡礁barrier spring 堡坝泉barrow 矸石场barthite 砷锌铜矿bartonian 巴尔顿阶barylite 硅钡铍矿barysil 硅铅矿barysilite 硅铅矿6。

可乐审核水处理模块

可乐审核水处理模块
是否包含公司关于TTHM的所有要求?
11
Do records indicate that the treated water (as an ingredient) meets specifications?
是否有记录显示处理水(作为一个因素)满足规范?
12
Are the requirements for equipment maintenance followed?
3
Does the plant comply with general requirements on water treatment?
厂方是否遵循了水处理一般要求?
4
Does the plant comply with all requirements on raw water (source water)?
水处理区域设计是否足以防止污染(内部、外部)?水处理区域是否满足了所有GMP设计标准的认可条件?
2
Is the water treatment area free of any obvious sources of potential contamination?
水处理区域是否远离了明显的潜在污染源?
BO-RQ-200
The area is clean, organized and well maintained
此区域清洁、有条理并得到良好的维护
No potential contamination points such as for instance:
无潜在的污染源,如
-Standing water in the area地面有积水
Total Trihalomethanes Monitoring
3) Specifications and Requirements Summary:

新型电力系统下的氢储能研究

新型电力系统下的氢储能研究

0 引言随着经济社会的飞速发展,人类对能源的需求量也在与日俱增。

传统的化石燃料如煤炭、石油等被过度开采使用,引发了一系列的能源危机、环境污染和温室气体排放。

其中,温室气体致使全球气候加速变暖,引发一系列极端天气事件的发生。

针对这些问题,中国政府向世界宣布:中国于2030年前力争实现二氧化碳排放达到峰值,努力争取2060年前实现碳中和。

2021年3月15日,习近平总书记在中央财经委员会第九次会议上提出构建新型电力系统,构建新型电力系统正式成为实现“双碳”目标的重要抓手,我国的电力系统形态由三要素“源网荷”发展为“源网荷储”四要素。

国家能源局发布《新型电力系统发展蓝皮书》,要求深度融合长时间尺度新能源资源评估和功率预测、智慧调控、新型储能等技术应用,推动系统友好型“新能源+储能”电站建设(见图1)。

新型电力系统下的氢储能研究刘德民,刘志刚(东方电气集团东方电机有限公司,四川省德阳市 618000)摘 要:在“双碳”目标的指引下,新能源将逐步代替化石能源,而新能源主要为风电和太阳能发电,存在不稳定和间歇性,需要用储能的方式来提高新能源的稳定性。

同时,全球的能源利用一直朝着低碳的方向在发展,从生物质到煤炭、石油、天然气再到氢能,碳氢比一直在减少。

在新型电力系统下,氢储能对比传统电化学储能、热化学储能、热能储能、压缩空气储能、飞轮储能、抽水蓄能储能、超导储能等方面有着超高能量密度的独特优势。

截至目前,美国、德国、日本、中国等多个国家都发布了国家级氢能发展战略,氢储能可以说是终端实现绿色低碳转型的重要载体。

虽然优势明显,但氢储能产业发展形态和发展路径尚需进一步探索。

本文结合国内外储能现状、氢能产业发展情况以及氢能关键技术,探讨氢储能特征优势和关键技术,为氢能产业发展提供价值方向。

关键词:双碳;新型电力系统;储能;氢储能;氢产业中图分类号:TK91 文献标识码:A 学科代码:480.40 DOI:10.3969/j.issn.2096-093X.2024.02.007基金项目:四川省重大专项资金资助项目“变速抽水蓄能成套设备关键技术及核心装备研制”(2022ZDZX0041)。

液体有机氢载体储氢体系筛选及应用场景分析

液体有机氢载体储氢体系筛选及应用场景分析

第46卷第1期2021年2月天然气化工一C1化学与化工NATURAL GAS CHEMICAL INDUSTRYVol.46No.1Feb.2021•综述与专论•液体有机氢载体储氢体系筛选及应用场景分析宋鹏飞,侯建国,穆祥宇,王秀林(中海石油气电集团技术研发中心,北京100007)摘要:储运成本偏高已经成为制约氢能产业发展的瓶颈和挑战。

在多种氢储运技术中,液体有机氢载体(LOHC)储氢被认为是最具发展潜力的方向之一,有望在氢能社会中发挥重要的作用。

对几种LOHC体系进行了比较,认为甲基环己烷体系、N-乙基咔唑和二苄基甲苯体系目前相对成熟,正在走向商业化。

对包括氢气跨洋运输与国际氢供应链、大宗氢气储运、可再生能源储能、基于LOHC储氢的站内制氢加氢站等未来能源体系中几种新型应用场景进行了分析,梳理了目前LOHC储氢研究面临的难题和研究方向,并提出了研究建议。

关键词:氢能;液体有机氢载体(LOHC);储能;应用场景;二苄基甲苯;N-乙基咔唑;甲基环己烷中图分类号:TQ116.2;TK91文献标志码:A文章编号:1001-9219(2021)01-01-05Screening and application scenarios of liquid organic hydrogen carrier systemsSONG Peng-fei,HOU Jian-guo,MU Xiang-yu,WANG Xiu-lin(CNOOC Gas and Power Group Technology R&D Center,Beijing100007,China)Abstract:The high cost of storage and transportation has become the bottleneck and challenge restricting the development of hydrogen energy industry.In a variety of hydrogen storage and transportation technologies,liquid organic hydrogen carrier(LOHC)is considered to be one of the most promising directions,and is expected to play an important role in the hydrogen energy society. Several LOHC systems are compared,and it is considered that the LOHC systems of methylcyclohexane,N-ethylcarbazole and dibenzyltoluene are relatively mature and are going to commercialization.Several new application scenarios in the future energy system,including hydrogen trans ocean transportation and international hydrogen supply chain,bulk hydrogen storage and transport­ation,renewable energy storage,and the in-station hydrogen production and hydrogen refueling station based on LHOCs are analyzed. The current problems and research directions of LOHCs are summarized,and some research suggestions are put forward.Keywords:hydrogen energy;liquid organic hydrogen carrier(LOHC);energy storage;application scenarios;dibenzyltoluene;N-ethyl carbazole;methylcyclohexane氢电互补是未来能源转型的重要方向,是新型智慧能源体系的核心。

储油专业英语

储油专业英语

Aerobic slim -forming bacteria 好氧黏液菌Air flotation tank 气浮罐Aqueous solution 水溶液Auxiliary equipment 辅助设备Chemical addition 化学添加剂Chemical scavenger 脱氧剂Coorrosion inhibitor 防腐剂Disssolved oxygen 溶解氧Electrical power generationl 发电Electrostatic field 静电场Element sulfur 元素硫硫磺Emulsified water 乳化水Emulsifying agent 乳化剂Filtration unit 过滤装置Free water 游离水Gas stripping 气提Holding tank 储罐Hydrogen sulfide 硫化氢Injection air 仪表风Jetting nozzle喷嘴Leasa automatic custody transfer(LACT) unit 矿场自动交接转换装置Oil skimmer tank 撇油罐Orifice-meter 孔板流量计Plate coalescer 板式聚结罐Produced water 采出水Scales inhibitor 防垢剂Sediment and water(S&W)沉积物和水Stage separation 多级分离Sulfur removal 脱硫Suspended solids 悬浮固体Test separator 计量分离器Turbine meter 涡轮流量Unit operation 单元操作Vapor recovery unit (VRU)蒸汽回收装置Basic sediment 机械杂质Bubble point pressure 泡点压力Chem-electric treater 电化学处理器Clean oil 洁净原油Control valve 控制阀Dissolved gas 溶解气Electrostatic coalescer 静电聚结器End product 终端产品Flash drum 闪蒸罐Flowing pressure 流动压力Gunbarrel settling tank油水沉降罐Heater-treater加热处理器Heating coil加热盘管Homogeneous mixture 匀质混合物Inlet divertor 入口分流器Mechanical separation 机械分离Multistage separation (MSS) 多级分离Natural gas 天然气Oil bucket 油室Overhead gas 塔顶气Pour point 倾点Rate of flow 流量Reid vapor pressour (RVP)雷德蒸汽压Sales line 销售管线Stock tank 库存罐矿场原油储罐Tank battery 罐组罐群Three-phase separator 三相分离器Tray tower 板式塔True vapor pressure(TVP)真实蒸汽压Vented tank 通风储罐常压储罐Water weir 水堰Well fluids 井流Aluminum sulfate 硫酸铝Calcium carbonate 碳酸钙Continous phase连续相Discontinuous phase非连续相Dispersed phase 分散相Dual emulision 双重乳状液Electrostatic treater 静电处理器电脱水器Iron sulfide 硫化铁Normal emulsion 油包水乳状液Organic acid 有机酸Selling price 售价Stable emulsion 稳定乳状液Tank cars 铁路油槽车Treating process 处理工艺处理过程Water cut (原油)水含量Water-bearing crude 含水原油Water-in-oil (W/O) emulsion 油包水乳状液Allowable concentration 容许浓度Block diagram方框图Calorific value热值Carbonic acid 碳酸Cryogenic gas plant气体深冷处理厂Flowing-tubing pressure油管流动压力Gas reservoir 气藏Gas well 气井Gas-producing well采气井气井Hydrogen embrittlement 氢脆Indirect fired heater 间接式加热炉Multistage flash separation 多级闪蒸分离Retention time 滞留时间Crimped sheet 波纹板Deflector plate折流板Equilibrium stage平衡级Height equivalent to a theoretical plate理论塔板等效高度Operating flexibility 操作弹性Packed bed 填料床Pall ring 鲍尔环Random packing 随即填料Stripping section 提溜段气提段Structured packing 规整填料Theoretical stage理论级Turndown ratio 调节比。

Hydrogen storage 课件

Hydrogen storage 课件

metal hydrides chemical hydrides
Observed H2 Capacity, weight %
12 10
DOE system targets
sorbents
8 6 4 2 0 -200
-100
0 0
100
200
300
400
H2 sorption temperature (ºC)
3
Strategy – Diverse, Balanced Portfolio
National Hydrogen Storage Project1
Centers of Excellence Independent Projects
Testing, Material Properties & Analysis Cross Cutting
U.S. Department Department of of Energy Energy U.S. Hydrogen Program
Hydrogen Storage
Sunita Satyapal 2008 DOE Hydrogen Program Merit Review and Peer Evaluation Meeting June 9, 2008
○ 0.02 0.02g gH H2per persec. sec.per perkW kWof ofpower power ○ 2 ○ Refueling Refuelingtime time<3 <3min. min.for for5 5kg kgH H2 ○ 2
– System Systemcost cost – – Fuel Fuelcost cost – – Safety, Safety,C&S, C&S,reliability, reliability,cycle cyclelife, life,efficiency, efficiency,etc. etc. –

十二水磷酸氢二钠复合相变材料制备及应用于大棚降温的节能效果

十二水磷酸氢二钠复合相变材料制备及应用于大棚降温的节能效果

第 12 卷第 12 期2023 年 12 月Vol.12 No.12Dec. 2023储能科学与技术Energy Storage Science and Technology十二水磷酸氢二钠复合相变材料制备及应用于大棚降温的节能效果肖强强1, 2,孙佳康1,唐洪达1,张林华1,刁乃仁2,李辉1(1山东建筑大学热能工程学院;2山东中瑞新能源科技有限公司,山东济南250101)摘要:温室大棚利用温室效应原理,维持植物适宜的生长环境。

当光照强烈时,大棚内的温度可能超过植物正常的生长温度,此时需要采取适当的降温措施。

本工作将相变储热技术应用于温室大棚,采用被动控温原理降低大棚的峰值温度,减少主动降温的能耗。

选择十二水磷酸氢二钠为相变材料,添加成核剂和增稠剂后制得复合相变材料以改善水合无机盐的过冷和稳定性问题,使用步冷曲线法、差示扫描量热仪、同步热分析仪等测试材料性能。

将复合相变材料封装成板,装配到温室大棚中,在实际光照条件下测试相变板对大棚内部热环境的影响。

结果表明,4%质量分数的九水硅酸钠可以将十二水磷酸氢二钠的过冷度由12 ℃降低至0.5 ℃;黄原胶作为增稠剂,当质量分数为5%时,材料循环稳定性良好;复合材料的相变温度和潜热分别为34.2 ℃和194.5 J/g,适合用于温室大棚。

连续24 h的温度检测显示大棚的峰值温度相比未装配相变板的参考大棚降低3.5 ℃,峰值时间推迟32 min,高温总时长相比参考大棚明显缩短。

因此,十二水磷酸氢二钠复合相变材料应用于温室大棚可以起到改善大棚高温环境,降低制冷能耗的作用。

关键词:温室大棚;相变材料;十二水磷酸氢二钠;降温能耗doi: 10.19799/ki.2095-4239.2023.0483中图分类号:TK 02 文献标志码:A 文章编号:2095-4239(2023)12-3635-08Preparation and energy-saving effects of disodium hydrogen phosphate dodecahydrate composite phase-change materialapplied in greenhouse coolingXIAO Qiangqiang1, 2, SUN Jiakang1, TANG Hongda1, ZHANG Linhua1, DIAO Nairen2, LI Hui 1(1School of Thermal Engineering, Shandong Jianzhu University; 2Shandong Zhongrui New Energy T echnology Co., Ltd.,Jinan 250101, Shandong, China)Abstract:Greenhouses exploit the principle of greenhouse effect to maintain an optimal growth environment for plants. Under intense sunlight, the temperature inside greenhouses may exceed a suitable growth temperature; therefore, appropriate cooling measures must be implemented. In this study, phase-change energy storage technology is applied to greenhouses by exploiting passive temperature control to reduce the peak temperature of the greenhouse and thereby reduce energy consumption. Disodium hydrogen phosphate dodecahydrate (DHPD) was used as the phase change material (PCM). After the addition of nucleating agents and收稿日期:2023-07-17;修改稿日期:2023-08-08。

化工流程中吸附的方法

化工流程中吸附的方法

化工流程中吸附的方法英文回答:Adsorption is a physical process in which one substance, the adsorbate, is accumulated on the surface of another substance, the adsorbent. In chemical processes, adsorption is used for a variety of purposes, including:Purification of gases and liquids Adsorption can beused to remove impurities from gases and liquids by selectively adsorbing the impurities onto a solid adsorbent. This process is often used to remove water vapor from air, remove sulfur dioxide from flue gases, and removeimpurities from liquid hydrocarbons.Separation of components Adsorption can be used to separate different components of a mixture by selectively adsorbing one component onto a solid adsorbent. Thisprocess is often used to separate hydrocarbons in petroleum refining, separate organic compounds in chemicalmanufacturing, and separate gases in air separation.Catalysis Adsorption is involved in the mechanism of many catalytic reactions. In these reactions, the reactants are adsorbed onto the surface of a catalyst, which provides a site for the reaction to occur. The catalyst surface can modify the electronic structure of the reactants, making them more reactive.Energy storage Adsorption can be used to store energyin the form of chemical bonds. This process is being investigated for use in energy storage systems, such asfuel cells and batteries.中文回答:化学过程中吸附的方法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Passive ZBO storage of liquid hydrogen and liquid oxygen appliedto space science mission conceptsD.W.Plachtaa,*,R.J.Christie b ,J.M.Jurns c ,P.KitteldaNASA Glenn Research Center,Propellant Systems Branch,21000Brookpark Road,Mail Stop 86-2,Cleveland,OH 44135,USAbZin Technologies,Cleveland,OH,USAcQSS,Cleveland,OH,USA dPalo Alto,CA,94303,USAReceived 17November 2005;accepted 18November 2005AbstractLiquid hydrogen and oxygen cryogenic propulsion and storage were recently considered for application to Titan Explorer and Comet Nuclear Sample Return space science mission investigations.These missions would require up to 11years of cryogenic storage.We mod-eled and designed cryogenic propellant storage concepts for these missions.By isolating the propellant tank’s view to deep space,we were able to achieve zero boil-offfor both liquid hydrogen and oxygen propellant storage without cryocoolers.Several shades were incorpo-rated to protect the tanks from the sun and spacecraft bus,and to protect the hydrogen tank from the warmer oxygen tank.This had a dramatic effect on the surface temperatures of the propellant tank insulation.These passive storage concepts for deep space missions substantially improved this application of cryogenic propulsion.It is projected that for missions requiring larger propellant tank sizes,the results would be even more dramatic.Published by Elsevier Ltd.Keywords:Hydrogen;Oxygen;Space cryogenics;Heat transfer1.IntroductionNASA Glenn Research Center (GRC),in partnership with NASA Jet Propulsion Laboratory (JPL)and NASA Ames Research Center (ARC),was tasked to define and analyze cryogenic hydrogen and oxygen storage systems for use in the propulsion design for several space science missions,defined by JPL and our customer,NASA Mar-shall Space Flight Center’s (MSFC)In-Space Propulsion Technologies (ISPT)Project Office (TD05),managed at MSFC.A detailed report of the complete study has been published by JPL [1].This paper,describes the propellantstorage thermal analysis and design for two of the missions considered:Titan Explorer (TEx)and comet nucleus sam-ple return (CNSR).It excludes the Mars Sample Return mission,which is described in a related paper [2].TEx is a mission with science instrumentation for an orbital exploration of Titan,a moon of Saturn.It is powered by radio-isotope thermal generators (RTGs).The CNSR mission rendezvous with Comet Wirtanen,stays a month,collects a 1kg sample and returns the sam-ple to Earth.It is powered by solar arrays.A summary of the top level requirements of these missions are shown in Table 1.For each mission considered,a thermal environment was defined and zero boil-off(ZBO)cryogenic storage designs and analyses were performed.Non-vented cryo-genic storage was required by the customer and was baselined.These analyses included configuration investi-gations,radiation modeling and the use and extensive0011-2275/$-see front matter Published by Elsevier Ltd.doi:10.1016/j.cryogenics.2005.11.012*Corresponding author.Tel.:+12169777126;fax:+12169777545.E-mail address:david.w.plachta@ (D.W.Plachta)./locate/cryogenicsCryogenics 46(2006)89–97augmentation of GRC’s cryogenic analysis tool (CAT).This,along with JPL’s design work on the related cryo-genic propulsion systems and other spacecraft systems,fed into a real-time mission design effort.This included engineers from each spacecraft discipline working together in a computer integrated mission design environment.2.Modeling/methodologyZero boil-offcryogenic propellant systems analysis for this study used several different analysis tools.Results were cross-checked with simple hand calculations to verify results.Thermal loads from environmental conditions were calculated using thermal analysis system (TAS),a finite ele-ment tool from Harvard Thermal,Inc.The cryogenic anal-ysis tool (CAT),an internally developed spreadsheet (used in previous studies),[3,4],determined the time dependent fluid conditions of a particular design.CAT was used to iterate on the designs,while ensuring that the specific ZBO design did not overpressure the propellant tanks during the mission.2.1.CAT methodologyGiven that a well mixed cryogen is initially stored at sat-urated conditions under its own vapor pressure in a storage tank that has structural supports,cryocoolers,a heater and MLI insulation,the pressure in the tank will change according to the following relationship [5]:d P d t hsp ¼/ðQ ÞV where P tank pressure t time/internal energy derivative Q net heat into system V tank volumehsphomogenous self pressurizationInitial tank pressure and tank volume are given,and energy derivative is calculated from the fluid properties as per the above reference.Given a closed cryogenic storage system without boil-off,net heat into the system is determined by the energy balance:Q net ¼Q MLI þQ struts þQ penetrations þQ mixerÀQ cryocooler þQ parasiticwhere Q net net heat into the systemQ cryocooler heat rejected from propellant by operating cryo-coolerQ MLI heat leak through insulation Q struts heat leak through supportsQ mixer heat introduced to system by mixerQ penetrations heat leak through piping penetrations intotankQ parasitic parasitic heat leak through redundant,non-oper-ating cryocooler Formulae for calculating heat loads are given in Appendix A .The CAT predicts the change in fluid temperature and pressure.When the net heat leak is greater than the heat removed,propellant temperature and pressure increases.This slightly decreases liquid mass,offset by an identical increase in vapor mass.When the net heat leak is less than the heat removed,propellant temperature and pressure decreases and liquid mass increases (from condensate).Fluid conditions are calculated on a daily basis based on initial fluid conditions from the previous day using tabu-lated fluid properties.From the thermal and fluid calculations,component designs such as the mixer,tank,tank supports,penetra-tions,and insulation are performed in CAT.These designs determine their mass,volume,areas,and power require-ments,which are then fed into the Team X mission environment.3.Cryogenic propellant systems 3.1.Model descriptionThe thermal model of a zero boil-off(ZBO)cryogenic propellant system is shown in Fig.1.MLI insulation was used for the LO 2and LH 2tanks.Shades shield the propel-lant tanks from solar or planetary albedo,planetary infra-red radiation,and from the spacecraft bus.Three shading configurations were modeled and iterated upon to mini-mize the heat going into the propellant tanks.Radiation modeling included iterations on inter-tank shield concepts to minimize the heat transfer between the liquid oxygen (LO 2)tank to the liquid hydrogen (LH 2)tanks.A conduc-tion model of the support structure (struts)was also incor-porated.Obstructions were included to represent structures that block the view to space,such as the struts,thruster,other tanks,and miscellaneous objects.The avionics sec-tion of the S/C Bus was fixed at 250K (based on JPL experience).Shades and shields were modeled as 20-layer MLI blan-kets,over an undefined structural frame and are in a cone shape to behave like a ‘‘V’’groove radiator.The blanketsTable 1A summary of the significant requirements of the missions studied TExCNSRHigh delta-V,large payload Moderate to high delta-V,small payload Relatively ‘cold’thermal environment Relatively ‘cold’thermal environment RTG powered Solar poweredFlagship classNew Frontiers class90 D.W.Plachta et al./Cryogenics 46(2006)89–97were modeled with an effective emissivity of 0.004,which is conservative in comparison to the James Webb Telescope shield,which has a shield effective emissivity of 0.00038.Surface properties for absorptivity and emissivity were researched and selected as shown in Fig.1.The values used are consistent with those used by JPL in the Team X envi-ronment,which is based on years of experience in the developing and flying spacecraft.In some cases,these values may be conservative.3.2.Tank insulationFor this analysis the baseline for insulation design assumed a foam thickness of 1.8cm and 45layers of MLI.The MLI was reduced significantly in the cases where the tanks were exposed to deep space.The MLI cover sheet is a flexible optical solar reflector (FOSR).The FOSR pro-vides a low solar absorptance along with a high infrared emittance and is used extensively on many spacecraft such as the Hubble space telescope.The FOSR mass includes a Nomex scrim which adheres to the Teflon to give it strength and arrest tearing.We based insulation modeling on the Lockheed [6]equation,modified for cryogenic test data per Martin and Hastings [7].We included foam insu-lation to provide insulation during pre-launch ground operations where the MLI is ineffective.We assumed that during this phase of operations,the MLI was not in a vacuum,but was gas purged.3.3.Loads and temperaturesThe thermal loads on the vehicle consist of the absorbed Sun’s radiation,planetary albedo and infrared radiation (IR).Fixed temperature boundary conditions include thespacecraft bus (S/C Bus)temperature,and deep space tem-perature.The MLI and radiator environment temperatures are determined by applying the above loads and allowing the model to reach thermal equilibrium.These surface tem-perature equilibrium temperatures are also known as the ‘‘environment temperatures.’’By averaging the tempera-ture of each surface element,we obtain an average environ-ment temperature for groups of surfaces such as the tank MLI or the radiator.We determine the average surface temperature by taking the temperature of each element raised to the fourth power and weighting it by the element’s area,then summing the products and dividing by the total area of the elements.The fourth root of the result is the average temperature:T avg ¼P A e ÃT 4e ÀÁP A e 0:253.4.StrutsThe support structure for the tanks is a major source of heat leak.After evaluating strut designs,we decided to incorporate passive orbital disconnect struts (PODS)[8].A schematic of a PODS is sketched in Fig.2.As shown by the arrows,the heat path in space is through a longer path with a much smaller cross-section area.During launch the load path is through a shorter,stronger path with a much larger cross-sectional area.By using the PODS,the heat leak in microgravity can easily be reduced to 0.1of that of the state-of-the-art (SOTA)struts [9].PODS were used on Gravity Probe-B and may be used on many other missions.Note that PODS greatly reduce the orbital natural frequency of the structure.Therefore before choosing PODS as a support method,structuralFig.1.Titan explorer thermal model.Surface properties used were based on JPL experience.D.W.Plachta et al./Cryogenics 46(2006)89–9791and flight control analyses need to be performed to verify that they can be safely used with the launch vehicle selected.3.5.Penetrations and other heat leak sourcesWe used the multipurpose hydrogen test bed test results (Ref.[7])as the baseline for other sources of heat leak.These included vent,fill and pressurizations lines.This heat leak amounted to 0.29W.As shown in Appendix A ,heat load formulae,we scaled penetration heat leaks from MHTB test heat leak data.Small amounts of heat were added to account for mixer heat and electrical cables (some required for propulsion purposes).Typical values are shown in Fig.5and the cor-relations are given in Appendix A ,heat load formulae.3.6.MarginBecause of the uncertainty in the analysis of cryogenic systems and in order to comply with JPL design standards,we incorporated conservative design margins per Table 2.Note that JPL margins were developed for different appli-cations—with our larger application and better understood heating rates,these margins may be too conservative.In addition to thermal margin,mass margin was also incorpo-rated.We added 10%margin to the tank insulation and 25%margin for all other components.4.Results4.1.Titan ExplorerThe overall configuration of the Titan Explorer (TEx)is shown in Fig.3.The TEx concept incorporated a Sun Shade mounted on the spacecraft bus,to shield the propel-lant tanks from the spacecraft bus and from solar radia-tion.Also,an inter-tank shield was effective at reducing the radiative heat transfer from the oxygen tank to the hydrogen tank.These proved to be very effective in reduc-ing the heat leak from incident solar radiation (insolation).The boundary temperatures for TEx are shown in Fig.4.The loads are the insolation on the sun facing surfaces,a 250K fixed temperature on the spacecraft busTable 2Margin summaryConservatismMargin added RemarkMLI Uncertainty with SOTA,added 30%to scale factor 50%Q MLI overestimated by 70%,not consistent with substantial database for tank heating POD’s Heat scaled from c -Al 2O 3;T-300CFPR would reduce heat by 20%50%Flight proven technologya 0.2used;references use 0.09Absorbed heat would be reduced by halfeEffective e =0.004;SOTA used 0.00038(JWT)Order of magnitude difference.Unknown effect T environmentMissions did not consider cryogenic storage in their trajectory designNot done for consistent comparison tonon-cryogenic propulsion systems.Unknown effectMargins used comply with JPL design standards.Note that conservative properties were consistently used in themodel.Fig.2.Passive orbital disconnect struts.The use of these struts reduced our tank strut heat by a factor of ten.92 D.W.Plachta et al./Cryogenics 46(2006)89–97(S/C Bus)and deep space.The inter-tank shield,also shown in the Fig.4,helped to significantly reduce the LH 2tank MLI surface temperature.To reduce the thermal resistance of the insulation,its MLI was removed.Fur-thermore,we determined that if the temperature difference between the LO 2and LH 2was reduced,that the heat leak from struts connecting the LO 2and LH 2tanks could be reduced.Consequently,the LO 2temperature was allowed to float downward and the LH 2temperature upward.By removing half of the MLI from the LO 2tank,a heat bal-ance between the heat leaks and passive cooling was obtained at a LO 2tank temperature of 68.6K.This reduced the temperature difference across the struts from 70K to 45K and cut the heat leak by36%.Fig.3.Titan explorer vehicle configuration.Shown are the final component sizes used in the vehicledesign.Fig.4.Titan explorer thermal model,with heat loads and boundary temperatures determined.D.W.Plachta et al./Cryogenics 46(2006)89–9793The heat into and out of the LO 2and LH 2tanks is shown in Fig.5.The hydrogen tank temperature is depen-dent on the emissivity properties at deep space tempera-tures,which are not known.In this application,it is important to keep the LH 2temperature below 23.6K in order to prevent tank venting (at 35psi).If the emissivity properties are close to 0.9at roughly 10K,this will be eas-ily achievable,with substantial margin.This eliminates the need for cryocoolers,their power source,and their heat rejection system.et Nucleus Sample Return vehicleThe CNSR vehicle,shown in Fig.6,must generate power at 5.3AU’rge photovoltaic arrays are required at this distance from the sun.The tanks required protec-tion from the IR heat generated by these large solar arrays.Also while the heat load on the MLI decreases with increasing sun distance,the heat leak from the struts and other sources does not.At 5.3AU the MLI heat leak has decreased by 78%(of the 1AU value),but because of the other constant heat leak sources the total heat leak only deceased 70%.Passive shading and insulation concepts were explored in detail.After several iterations,it was found that by plac-ing two well-spaced shields between the tank and the arrays,the tanks could be cooled passively.The first shield blocked both cryogenic tank’s view of the arrays;the second blocked the LH 2tank’s view of the first shield.The shields needed to be well separated to actsimilarlyFig.5.Heat balance of hydrogen and oxygen tanks.The net heat is negative,suggesting passive ZBO ispossible.SR vehicle configuration.Shown are the component sizes of the final design selected.94 D.W.Plachta et al./Cryogenics 46(2006)89–97to V-Groove shields.The thermal model of final configura-tion for CNSR is shown in Fig.7.4.3.Historical perspectiveThese results are directly supported by previous space mission experience.However,related historical activities back up these conclusions.In 1977,analysis and a sup-porting test [10]was conducted at NASA GRC (then LeRC)that generally supports these conclusions.In that effort,a five-cubic meter tank insulated with 34layers of MLI,supported by 12fiber-glass struts,and pro-tected from a simulated spacecraft bus by two double aluminized mylar sheeted shadow shields,was enclosed in a 22K cold wall and tested in a vacuum chamber.The tank was filled with LH 2.Data extrapolations for a 1200day coast to Saturn predict that a non-vented tank would have risen in pressure by only 50psi.It is very likely that advances in tank supports,using 20MLI layer shadow shields instead of two layer,and the use of today’s insulating materials,with their better surface prop-erties,would result in a design with little or no pressure rise.5.ConclusionsIt was found,when not in low planetary orbit,zero boil-offcan be achieved through passive cooling of cryo-genic propellants.This requires the use of shading to pro-tect the cryogenic tanks from the sun,the spacecraft,and its solar arrays.Also,the thermal design requires passive orbital disconnect struts and restrictions on spacecraft attitude.Each vehicle configuration and mission scenario pre-sented unique problems that required unique solutions.These conclusions are:1.To achieve passive cooling,the LH 2tank needs protec-tion from the LO 2tank.2.LO 2tanks can be passively cooled with a single shade,protecting it from the spacecraft bus.3.Passive orbital disconnect struts are necessary to reduce strut heating.4.Reduce or eliminate MLI on the tanks to radiate heat to deep space.However,LO 2tanks may need a few layers of MLI to prevent excessive cooling.The complete study [1]found additional conclusions which are duplicated here.1.LO 2/LH 2with passive ZBO is the winner for high delta-V,large propellant fraction missions.2.Conventional propulsion systems win at lower Delta-V,lower propellant fractions.3.Even with ZBO costs added in,the cryo system should be able to meet the new frontiers cost cap of $$750M.AcknowledgementsThis effort was performed for the NASA Glenn Research center on task G380for NASA Contract No.NAS3-00145and through University Affiliated Research Center (UARC)Subcontract P0228861.The UARC is managed by the University of California,Santa Cruz under NASA Ames Research Center ContractNAS2-03144.SR thermal model.This thermal model shows the temperatures determined for one-half of a symmetrical vehicle configuration.D.W.Plachta et al./Cryogenics 46(2006)89–9795Appendix A.Heat load formulaeReferences[1]Guernsey C,Baker R,Plachta D,Kittel P,Christie R,Jurns J.Cryogenic propulsion with zero-boil-offstorage applied to outer planetary exploration.JPL D-31783,April,2005.[2]Plachta D,Christie R,Jurns J,Kittel P.ZBO cryogenic propellantstorage applied to a Mars sample return mission concept.Presented atthe Cryogenic Engineering Conference,Keystone,Colorado,August 31,2005.[3]Plachta D,Kittel P.An updated zero boil-offcryogenic propellantstorage analysis applied to upper stages or depots in an LEO environment.NASA TM-2003-211691.Presented at the2002 AIAA Joint Propulsion Conference,Indianapolis,Indiana,July8, 2002.Parameter Basis CommentsQ cryocooler Qcryocooler ¼gÃT coldheadÃP inputðT hotÀT coldheadÞg=efficiency as fraction of CarnotP input=cryocooler input power(W)T hot=rejection temperatureT cold head=cryocooler cold head temperature For discussion of estimate of efficiency see Appendix A of Ref.[1]Q MLI Q MLI¼ð8:95Â10À8ÞÂ152:6ÂT hotþT liq2ÂðT hotÀT liqÞþð5:39Â10À10ÞÂ0:031ÂT4:67hot ÀT4:67liq!Â1:8#layersAs shown in Ref.[6]Q struts(LO2)Q struts¼C1ÃC2ÃM tan kþM propellant2800ÃT hotÀT cold250À68:6C1=design margin,C=0.44Heat leak based on assuming PODS with heat leak0.10*c-Alumina SOTA heat leak.SOTA heat leak determined from strut conductivity data[1](LH2)Q struts¼C1ÃC2ÃM tan kþM propellant560ÃT hotÀT cold68:6À23:6C1=design margin,C2=0.021Q mixer Qmixer ¼C1ÃV tan k1:4Ã3:5ÃC2Ã1C3C1=design marginC2=duty cycleC3=buoyancy factorð42for LH2;64for LO2ÞMixer power calculations are based on SMIRF ZBO tests,[11]and are adjusted here for tank size andfluid buoyancyQ penetrations Qpenetrations ¼C1Ãð0:0025ÃðT hotÀT coldÞÃffiffiffiffiffiffiffiffiffiffiffiV tan kpÞPenetration heat leak scaled from testdata in Ref.[7]C1=design marginQ parasitic Qparasitic ¼0:75ÃC1ÃC2ÃT2hotÀT2coldÀÁP13inputÃ15:5Ã10C1=design margin C2=eclipse factor Offduty cryocooler heat leak defined by Kittel based on info in‘‘Spacecraft Thermal Control Handbook’’for AIRS cooler and makingfirst order adjustment for effect of coolersize.Ref.[1]96 D.W.Plachta et al./Cryogenics46(2006)89–97[4]Kittel P,Plachta DW.Propellant preservation for Mars missions.Adv cryo engin,vol.45.New York:Kluwer;2000.443.[5]Lin C,Van Dresar N,Hasan M.Pressure control analysis ofcryogenic storage systems.J Propul Power2004;20(3).[6]Thermal performance of multilayer insulations.NASA CR-134477,April1974.[7]Martin J,Hastings rge-scale liquid hydrogen testing of avariable density multilayer insulation with a foam substrate.NASA TM-2001-211089.[8]Spradley IE,Parmley RT.Design and test of a modified passiveorbital disconnect strut.Adv cryo engin,vol.33.New York:Plenum;1988.935.[9]Ross RG.Estimation of thermal conduction loads for struc-tural supports of cryogenic spacecraft assemblies.Cryogenics2004;44:421.[10]DeWitt R.Boyle R.Thermal performance of an integrated thermalprotection system for long-term storage of cryogenic propellants in space.NASA TN D-8320,NASA LeRC,May1977.[11]Plachta D.Results of an advanced development zero boil-offcryogenic propellant storage test.NASA TM-2004-213390.D.W.Plachta et al./Cryogenics46(2006)89–9797。

相关文档
最新文档