【推荐】2019年高考物理一轮复习第十章电磁感应专题强化十二电磁感应中的动力学和能量问题学案.doc
高考物理一轮复习 第十章 第2讲 法拉第电磁感应定律 自感现象教案 新人教版-新人教版高三全册物理教

第2讲 法拉第电磁感应定律 自感现象考点1 法拉第电磁感应定律的理解和应用1.法拉第电磁感应定律的理解(1)感应电动势的大小由线圈的匝数和穿过线圈的磁通量的变化率ΔΦΔt 共同决定,而与磁通量Φ的大小、变化量ΔΦ的大小没有必然联系.(2)磁通量的变化率ΔΦΔt 对应Φt 图线上某点切线的斜率.2.应用法拉第电磁感应定律的三种情况(1)磁通量的变化是由面积变化引起时,ΔΦ=B ·ΔS ,则E =n B ΔSΔt ; (2)磁通量的变化是由磁场变化引起时,ΔΦ=S ·ΔB ,则E =nS ·ΔBΔt; (3)磁通量的变化是由面积和磁场共同变化引起时,则根据定义,ΔΦ=|Φ末-Φ初|,E =n|B 2S 2-B 1S 1|Δt ≠n |ΔB ΔS |Δt.1.(2018·全国卷Ⅲ)(多选)如图甲,在同一平面内固定有一长直导线PQ 和一导线框R ,R 在PQ 的右侧.导线PQ 中通有正弦交流电i ,i 的变化如图乙所示,规定从Q 到P 为电流正方向.导线框R 中的感应电动势( AC )A .在t =T 4时为零B .在t =T 2时改变方向C .在t =T2时最大,且沿顺时针方向D .在t =T 时最大,且沿顺时针方向解析:本题考查楞次定律的应用及法拉第电磁感应定律.由i t 图象可知,在t =T4时,Δi Δt =0,此时穿过导线框R 的磁通量的变化率ΔΦΔt=0,由法拉第电磁感应定律可知,此时导线框R 中的感应电动势为0,选项A 正确;同理在t =T 2和t =T 时,Δi Δt 为最大值,ΔΦΔt为最大值,导线框R 中的感应电动势为最大值,不改变方向,选项B 错误;根据楞次定律,t =T2时,导线框R 中的感应电动势的方向为顺时针方向,而t =T 时,导线框R 中的感应电动势的方向为逆时针方向,选项C 正确,选项D 错误.2.如图甲所示,用一根横截面积为S 、电阻率为ρ的硬质导线做成一个半径为r 的圆环,ab 为圆环的直径.在ab 的右侧存在一个足够大的匀强磁场,t =0时刻磁场方向垂直于竖直圆环平面向里,磁场磁感应强度B 随时间t 变化的关系如图乙所示,则0~t 1时间内( D )A .圆环中产生感应电流的方向为逆时针B .圆环中产生感应电流的方向先顺时针后是逆时针C .圆环一直具有扩X 的趋势D .圆环中感应电流的大小为B 0rS4t 0ρ解析:磁通量先向里减小再向外增大,由楞次定律“增反减同”可知,线圈中的感应电流方向为一直为顺时针,故A 、B 错误;由楞次定律的“来拒去留”可知,0~t 0为了阻碍磁通量的减小,线圈有扩X 的趋势,t 0~t 1为了阻碍磁通量的增大,线圈有缩小的趋势,故C 错误;由法拉第电磁感应定律,得E =ΔBS 2Δt =B 0πr 22t 0,感应电流I =E R =B 0πr 22t 0·Sρ×2πr=B 0rS4t 0ρ,故D 正确. 3.(2019·某某某某质检)如图甲所示,导体棒MN 置于水平导轨上,P 、Q 之间有阻值为R 的电阻,PQNM 所围的面积为S ,不计导轨和导体棒的电阻.导轨所在区域内存在沿竖直方向的磁场,规定磁场方向竖直向上为正,在0~2t 0时间内磁感应强度的变化情况如图乙所示,导体棒MN 始终处于静止状态.下列说法正确的是( D )A .在0~t 0和t 0~2t 0内,导体棒受到导轨的摩擦力方向相同B .在t 0~2t 0内,通过电阻R 的电流方向为P 到QC .在0~t 0内,通过电阻R 的电流大小为2B 0SRt 0D .在0~2t 0内,通过电阻R 的电荷量为B 0S R解析:本题考查法拉第电磁感应定律的图象问题,定性分析加定量计算可快速求解.由图乙所示图象可知,0~t 0内磁感应强度减小,穿过回路的磁通量减小,由楞次定律可知,为阻碍磁通量的减少,导体棒具有向右的运动趋势,导体棒受到向左的摩擦力,在t 0~2t 0内,穿过回路的磁通量增加,为阻碍磁通量的增加,导体棒有向左的运动趋势,导体棒受到向右的摩擦力,在两时间段内摩擦力方向相反,故A 错误;由图乙所示图象可知,在t 0~2t 0内磁感应强度增大,穿过闭合回路的磁通量增大,由楞次定律可知,感应电流沿顺时针方向,通过电阻R 的电流方向为Q 到P ,故B 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~t 0内感应电动势E 1=ΔΦΔt =S ·ΔB Δt =B 0S t 0,感应电流为I 1=E 1R =B 0S Rt 0,故C 错误;由图乙所示图象,应用法拉第电磁感应定律可得,在0~2t 0内通过电阻R 的电荷量为q 1=N ΔΦR=2B 0S -B 0S R =B 0SR,故D 正确.应用电磁感应定律需注意的三个问题(1)公式E =n ΔΦΔt 求解的是一个回路中某段时间内的平均电动势,在磁通量均匀变化时,瞬时值才等于平均值.(2)利用公式E =nS ΔBΔt 求感应电动势时,S 为线圈在磁场X 围内的有效面积.(3)通过回路截面的电荷量q 仅与n 、ΔΦ和回路电阻R 有关,与时间长短无关,与Φ是否均匀变化无关.推导如下:q =I Δt =n ΔΦΔtR Δt =n ΔΦR.考点2 导体切割磁感线产生的感应电动势考向1 平动切割1.计算公式:E =BLv 或E =BLv sin θ. 2.E =Blv 的三个特性(1)正交性:本公式要求磁场为匀强磁场,而且B 、l 、v 三者互相垂直.(2)有效性:公式中的l 为导体棒切割磁感线的有效长度.下图中,导体棒的有效长度为ab 间的距离.(3)相对性:E =Blv 中的速度v 是导体棒相对磁场的速度,若磁场也在运动,应注意速度间的相对关系.(2019·某某某某统考)(多选)半径为a 右端开小口的导体圆环和长为2a 的导体直杆,单位长度电阻均为R 0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B .杆在圆环上以速度v 平行于直径CD 向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O 开始,杆的位置由θ确定,如图所示.则( )A .θ=0时,杆产生的电动势为2BavB .θ=π3时,杆产生的电动势为3BavC .θ=0时,杆受的安培力大小为2B 2av(π+2)R 0D .θ=π3时,杆受的安培力大小为3B 2av(5π+3)R 0[审题指导] (1)导体棒长度指处在磁场中的长度,称为有效长度.θ=0和θ=π3时二者不同.(2)先计算感应电动势,再计算感应电流,最后计算安培力.【解析】 当θ=0时,杆产生的电动势E =BLv =2Bav ,故A 正确;当θ=π3时,根据几何关系得出此时导体棒的有效切割长度为a ,所以杆产生的电动势为E =Bav ,故B 错误;当θ=0时,由于单位长度电阻均为R 0,所以电路中总电阻为(2+π)aR 0,所以杆受的安培力大小为F =BIL =B ·2a 2Bav (2+π)aR 0=4B 2av (2+π)R 0,故C 错误;当θ=π3时,电路中总电阻为⎝⎛⎭⎪⎫1+5π3aR 0,所以杆受的安培力大小为F ′=BI ′L ′=3B 2av (3+5π)R 0,故D 正确.【答案】 AD1.(2019·某某某某模拟)如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L ,左端接有阻值为R 的电阻,一质量为m 、长度为L 的匀质金属棒cd 放置在导轨上,金属棒的电阻为r ,整个装置置于方向竖直向上的匀强磁场中,磁场的磁感应强度为B .金属棒在水平向右的外力作用下,由静止开始做加速度大小为a 的匀加速直线运动,经过的位移为s 时,则( C )A .金属棒中感应电流方向由d 到cB .金属棒产生的感应电动势为BL asC .金属棒中感应电流为BL 2asR +rD .水平拉力F 的大小为B 2L 22asR +r解析:根据楞次定律可知电流I 的方向从c 到d ,故A 错误;设金属棒cd 的位移为s 时速度为v ,则有v 2=2as ,金属棒产生的电动势为E =BLv =BL 2as ,故B 错误;金属棒中感应电流的大小为I =ER +r,解得I =BL 2asR +r,故C 正确;金属棒受到的安培力大小为f =BIL ,根据牛顿第二定律可得F -f =ma ,联立解得F =B 2L 22asR +r+ma ,故D 错误.考向2 导体棒转动切割磁感线当导体棒在垂直于磁场的平面内绕一端以角速度ω匀速转动时,产生的感应电动势为E =Bl v =12Bl 2ω,如图所示.如图,直角三角形金属框abc 放置在匀强磁场中,磁感应强度大小为B ,方向平行于ab 边向上.当金属框绕ab 边以角速度ω逆时针转动时,a 、b 、c 三点的电势分别为U a 、U b 、U c .已知bc 边的长度为l .下列判断正确的是( )A .U a >U c ,金属框中无电流B .U b >U c ,金属框中电流方向沿a —b —c —aC .U bc =-12Bl 2ω,金属框中无电流D .U bc =12Bl 2ω,金属框中电流方向沿a —c —b —a[审题指导] (1)金属框在转动过程中,磁通量不变,无感应电流产生. (2)金属框bc 边和ac 边都在切割磁感线,所以有感应电动势.【解析】 穿过金属框的磁通量始终为零,没有发生变化,故金属框中无电流,B 、D 项错误;bc 边切割磁感线的等效速度为12lω,根据右手定则U b <U c ,故U bc =-12Bl 2ω,C 项正确;ac 边切割磁感线,根据右手定则得U a <U c ,A 项错误.【答案】 C2.(2018·全国卷Ⅰ)如图,导体轨道OPQS 固定,其中PQS 是半圆弧,Q 为半圆弧的中点,O 为圆心.轨道的电阻忽略不计.OM 是有一定电阻、可绕O 转动的金属杆,M 端位于PQS 上,OM 与轨道接触良好.空间存在与半圆所在平面垂直的匀强磁场,磁感应强度的大小为B .现使OM 从OQ 位置以恒定的角速度逆时针转到OS 位置并固定(过程Ⅰ);再使磁感应强度的大小以一定的变化率从B 增加到B ′(过程Ⅱ).过程Ⅰ、Ⅱ中,流过OM 的电荷量相等,则B ′B等于( B )A.54B.32C.74D .2 解析:本题考查法拉第电磁感应定律及电荷量公式.由公式E =ΔΦΔt ,I =ER ,q =It 得q =ΔΦR ,设半圆弧半径为r ,对于过程Ⅰ,q 1=B ·πr 24·R ,对于过程Ⅱ,q 2=(B ′-B )·πr22R ,由q 1=q 2得,B ′B =32,故B 项正确.四种求电动势的方法考点3 自感现象涡流考向1 通电自感与断电自感1.自感现象的四大特点(1)自感电动势总是阻碍导体中原电流的变化.(2)通过线圈中的电流不能发生突变,只能缓慢变化.(3)电流稳定时,自感线圈就相当于普通导体.(4)线圈的自感系数越大,自感现象越明显,自感电动势只是延缓了过程的进行,但它不能使过程停止,更不能使过程反向.2.自感中“闪亮”与“不闪亮”问题电流突然增大,灯泡立刻变亮,然后逐12开关S1瞬间,灯A1突然闪亮,然后逐渐变暗;闭合开关S2,灯A2逐渐变亮,而另一个相同的灯A3立刻变亮,最终A2与A3的亮度相同.下列说法正确的是( C )A.图1中,A1与L1的电阻值相同B.图1中,闭合S1,电路稳定后,A1中电流大于L1中电流C.图2中,变阻器R与L2的电阻值相同D.图2中,闭合S2瞬间,L2中电流与变阻器R中电流相等解析:本题考查自感现象判断.在图1中断开S1瞬间,灯A1突然闪亮,说明断开S1前,L1中的电流大于A1中的电流,故L1的阻值小于A1的阻值,A、B选项均错误;在图2中,闭合S2瞬间,由于L2的自感作用,通过L2的电流很小,D错误;闭合S2后,最终A2与A3亮度相同,说明两支路电流相等,故R与L2的阻值相同,C项正确.2.(2019·某某模拟)在如图所示的电路中,S闭合时流过线圈L的电流是2 A,流过灯泡A的电流是1 A.将S突然断开,则S断开前后,能正确反映流过灯泡的电流I随时间t变化关系的是图中的( D )解析:当电键断开时,由于线圈中自感电动势阻碍电流减小,线圈中的电流逐渐减小,线圈与灯泡A构成回路,所以灯泡中的电流与线圈中电流大小相等,灯泡中电流也逐渐减小,但与断开前方向相反.故D正确,A、B、C错误.分析自感现象的两点注意(1)断电自感现象中灯泡是否“闪亮”的判断:关键在于对电流大小的分析,只有断电瞬间通过灯泡的电流比原来大,灯泡才先闪亮后慢慢熄灭.(2)断电自感现象中电流方向是否改变的判断:与线圈在同一支路的用电器的电流方向不变,与线圈不在同一支路的用电器中的电流方向改变.考向2 对涡流的考查3.(多选)1824年,法国科学家阿拉果完成了著名的“圆盘实验”.实验中将一铜圆盘水平放置,在其中心正上方用柔软细线悬挂一枚可以自由旋转的磁针,如图所示,实验中发现,当圆盘在磁针的磁场中绕过圆盘中心的竖直轴旋转时,磁针也随着一起转动起来,但略有滞后.下列说法正确的是( AB )A.圆盘上产生了感应电动势B.圆盘内的涡电流产生的磁场导致磁针转动C.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化D.圆盘中的自由电子随圆盘一起运动形成电流,此电流产生的磁场导致磁针转动解析:小磁针在圆盘所在处形成的磁场是非匀强磁场,圆盘可以等效为许多环形闭合线圈,圆盘转动过程中,穿过每个环形闭合线圈的磁通量不断地发生变化,在每一环形线圈上产生电动势和涡电流,A正确;环形线圈随圆盘转动,由楞次定律可知,线圈会受到小磁针施加的阻碍相对运动的力,根据牛顿第三定律可知,小磁针会受到与线圈即圆盘转动方向相同的力的作用,此力来源于电磁感应形成的涡电流,而不是自由电子随圆盘转动形成的电流,B正确,D错误.从圆盘的整个盘面上看,圆盘转动过程中穿过整个圆盘的磁通量不变,C 错误.4.扫描隧道显微镜(STM)可用来探测样品表面原子尺度上的形貌.为了有效隔离外界振动对STM的扰动,在圆底盘周边沿其径向对称地安装若干对紫铜薄板,并施加磁场来快速衰减其微小振动,如图所示.无扰动时,按下列四种方案对紫铜薄板施加恒磁场;出现扰动后,对于紫铜薄板上下及左右振动的衰减最有效的方案是( A )解析:本题考查电磁阻尼.若要有效衰减紫铜薄板上下及左右的微小振动,则要求施加磁场后,在紫铜薄板发生上下及左右的微小振动时,穿过紫铜薄板横截面的磁通量都能发生变化.由选项图可知只有A满足要求,故选A.对安培力是动力、阻力的理解技巧电磁阻尼是安培力总是阻碍导体运动的现象,电磁驱动是安培力使导体运动起来的现象,但实质上均是感应电流使导体在磁场中受到安培力.学习至此,请完成课时作业34。
高中物理高考 高考物理一轮复习专题课件 专题10+电磁感应(全国通用)

【典例2】 (2015·辽宁葫芦岛六校联考)(多选)如图所示,水平放 置的两条光滑轨道上有可自由移动的金属棒PQ、MN,MN的左 边有一闭合电路,当PQ在外力的作用下运动时,MN向右运动. 则PQ所做的运动可能是( )
A.向右加速运动 B.向左加速运动 C.向右减速运动 D.向左减速运动
解析 MN 向右运动,说明 MN 受到向右的安培力,因为 ab 在 MN 处的磁场 垂 直 纸 面 向 里 左―手―定→则 MN 中 的 感 应 电 流 由 M→N安―培―定→则L1 中感应电流的磁 场 方 向 向 上 楞―次―定→律 LL22中 中磁 磁场 场方 方向 向向 向上 下减 增弱 强;若 L2 中磁场方向向上减弱安―培―定→则 PQ 中电流为 Q→P 且减小右―手―定→则向右减速运动;若 L2 中磁场方向向 下增强安―培―定→则PQ 中电流为 P→Q 且增大右―手―定→则向左加速运动.
ΔΦ
E 的大小由 Δt 和线圈的匝数共同决定.
【特别提示】 (1)E 的大小与 Φ、ΔΦ的大小无必然联系. (2)Φ=0 时,ΔΔΦt 不一定为零.
【典例3】 如图所示,匀强磁场中有一矩形闭合线圈abcd,线圈 平面与磁场垂直.已知线圈的匝数N=100,边长ab=1.0 m、bc= 0.5 m,电阻r=2 Ω.磁感应强度B在0~1 s内从零均匀变化到0.2 T. 在1~5 s内从0.2 T均匀变化到-0.2 T,取垂直纸面向里为磁场的 正方向.求:
(1)0.5 s时线圈内感应电动势的大小E和感应电流的方向; (2)在1~5 s内通过线圈的电荷量q; (3)在0~5 s内线圈产生的焦耳热Q.
审题指导 (1)0~1 s内谁引起线圈中的磁通量发生变化?
(2)感应电动势的计算公式E= .
2019年高考物理一轮复习学案 专题:法拉第电磁感应定律

高考物理一轮复习[小题快练]线圈中磁通量越大,产生的感应电动势越大.( × )线圈中磁通量变化越大,产生的感应电动势越大.( × )线圈中磁通量变化越快,产生的感应电动势越大.( √ )越多,磁通量越大,产生的感应电动势也越大.( × )对于同一线圈,当电流变化越快时,线圈中的自感电动势越大.( √ )自感电动势阻碍电流的变化,但不能阻止电流的变化.( √ ).下面关于涡流的说法中正确的是( A ).涡流跟平时常见的感应电流一样,都是因为穿过导体的磁通量变化而产生的B.越来越小D.无法判断如图为无线充电技术中使用的受电线圈示意图,线圈匝数为,感应电流均沿逆时针方向,感应电流均沿顺时针方向,感应电流均沿逆时针方向内线圈的磁通量不断增大内的感应电流大小相等;中的速度v是导体相对磁场的速度,若磁场也在运动,应注意速度间的相对关aR是绕在铁芯上的线圈,它与电阻R、R0、开关和电池E可构成闭合电路.线圈中的箭头表示线圈电流的正方向,当电流的流向与箭头的方向相同时,该电流为正,否则为负.开关都处在断开状态.设在t=0时刻接通K1,经过一段时间后,在t=t1时刻,再接通解析:只闭合K1,由于线圈的自感现象,L中的电流逐渐增大;最后增大到稳定值,再闭合L和电阻R短路,由于线圈的自感现象,L中的电流由原值开始逐渐减小,方向不变,最后减小到零.故选A..由于铜是非磁性材料,故强磁体运动的加速度始终等于重力加速度.由于铜是金属材料,能够被磁化,使得强磁体进入铜管时加速度大于重力加速度,离开铜管时.由于铜是金属材料,在强磁体穿过铜管的整个过程中,铜管中都有感应电流,强磁体的加速度.当磁感应强度增大时,线框中的感应电流可能减小.当磁感应强度增大时,线框中的感应电流一定增大D.Bav切割磁感线的瞬时感应电动势正确.匀强磁场的磁感应强度随时间均匀变化,设t时刻的磁感应强度为增反减同”,线框从进入磁场到穿过线框的磁通量最大的过程中,电流沿逆时针方向,且先增大后减小;从穿过线框的磁通量最大的位置到离开磁场的过程中,电流沿顺时针方向,且先增大后减小.设∠C为θ,刚进入磁场时的切割有效长度为2tan θ·vt,所以电流与0.25 Wb10-2 Wb/sv由断开变为闭合,通过传感器1的电流随时间变化的情况由断开变为闭合,通过传感器1的电流随时间变化的情况由闭合变为断开,通过传感器2的电流随时间变化的情况由闭合变为断开,通过传感器2的电流随时间变化的情况断开或闭合时,电路中电流要发生突变,但是,由于自感现象的存在,电流只能逐渐变化,最终达到稳定.开关S一直闭合时,通过传感器2的电流方向向右,开关金属棒的电荷量q 随时间t 变化的图象中,正确的是( ).解析 设导轨间距为L ,通过R 的电流I =E R +r =BLv R +r,因通过R 的电流I 随时间均匀增大,即金属棒ab 的速度v 随时间t 均匀增大,金属棒ab 的加速度a 为恒量,故金属棒ab 做匀加速运动.磁通量Φ=Φ0+BS =Φ0+BL ×12at 2=Φ0+BLat 22,Φ∝t 2,A 错误;ΔΦΔt =BLv =BLat ,ΔΦΔt ∝t ,B 正确;因U ab =IR ,且I ∝t ,所以U ab ∝t ,C 正确;q =I -Δt =ΔΦΔt R +r Δt =ΔΦR +r =BLat 2R +r ,q ∝t 2,D 错误. 答案 BC11.如图所示,在绝缘光滑水平面上,有一个边长为L 的单匝正方形线框abcd ,在外力的作用下以恒定的速率v 向右运动进入磁感应强度为B 的有界匀强磁场区域.线框进入磁场的过程中线框平面保持与磁场方向垂直,线框的ab 边始终平行于磁场的边界,已知线框的四个边的电阻值相等,均为R .求:(1)在ab 边刚进入磁场区域时,线框内的电流大小. (2)在ab 边刚进入磁场区域时,ab 边两端的电压.(3)在线框进入磁场的整个过程中,线框中的电流产生的热量.解析 (1)ab 边切割磁感线产生的感应电动势为E =BLv ,所以通过线框的电流为I =BLv4R .求匀强磁场的磁感应强度B ;求线框进入磁场的过程中,通过线框的电荷量q ; 判断线框能否从右侧离开磁场?说明理由.图象可知,线框加速度a =F 2m =2 m/s 2, -1at 2= ⎛⎪⎫4×1-1×2×12 m =3 m ,表指针向右摆表指针向左摆的电阻值相同,电路稳定后,A1中电流大于L1中电流的电阻值相同中电流与变阻器R中电流相等.圆盘内的涡电流产生的磁场导致磁针转动.在圆盘转动的过程中,磁针的磁场穿过整个圆盘的磁通量发生了变化点电势低于Q点电势时间内电压表的读数为n(B1-B0)S2t1上的电流为nB1S 2(t-t)R的速度相等的大小.和感应电流的方向;21。
高考物理一轮总复习专题10电磁感应第2讲法拉第电磁感应定律自感涡流课后提能演练

专题十 第2讲知识巩固练1.如图甲所示,100匝的线圈(图中只画了2匝)两端A 、B 与一个理想电压表相连.线圈内有指向纸内方向的匀强磁场,线圈中的磁通量在按图乙所示规律变化.下列说法正确的是( )A .A 端应接电压表正接线柱,电压表的示数为150 VB .A 端应接电压表正接线柱,电压表的示数为50.0 VC .B 端应接电压表正接线柱,电压表的示数为150 VD .B 端应接电压表正接线柱,电压表的示数为50.0 V【答案】B 【解析】线圈相当于电源,由楞次定律可知A 相当于电源的正极,B 相当于电源的负极,故A 应该与理想电压表的正接线柱相连.由法拉第电磁感应定律得E =nΔΦΔt =100×0.15-0.10.1V =50.0 V ,电压表的示数为50.0 V ,故B 正确.2.如图所示,闭合导线框的质量可以忽略不计,将它从如图所示的位置匀速拉出匀强磁场.若第一次用0.3 s 时间拉出,外力所做的功为W 1,通过导线截面的电荷量为q 1;第二次用0.9 s 时间拉出,外力所做的功为W 2,通过导线截面的电荷量为q 2,则( )A .W 1<W 2,q 1<q 2B .W 1<W 2,q 1=q 2C .W 1>W 2,q 1=q 2D .W 1>W 2,q 1>q 2【答案】C 【解析】第一次用0.3 s 时间拉出,第二次用0.9 s 时间拉出,两次速度比为3∶1,由E =BLv ,两次感应电动势比为3∶1,两次感应电流比为3∶1,由于F 安=BIL ,两次安培力比为3∶1,由于匀速拉出匀强磁场,所以外力比为3∶1,根据功的定义W =Fx ,所以W 1∶W 2=3∶1;根据电量q =I Δt ,感应电流I =E R ,感应电动势E =ΔΦΔt ,得q =ΔΦR,所以q 1∶q 2=1∶1,故W 1>W 2,q 1=q 2.故C 正确.3.(2021年龙岩二模)如图所示,abcd 为水平放置的平行“”形光滑金属导轨,导轨间距为l ,电阻不计.导轨间有垂直于导轨平面向下的匀强磁场,磁感应强度大小为B .金属杆放置在导轨上,与导轨的接触点为M 、N ,并与导轨成θ角.金属杆以ω 的角速度绕N 点由图示位置匀速转动到与导轨ab 垂直,转动过程中金属杆与导轨始终接触良好,金属杆单位长度的电阻为r .则在金属杆转动的过程中( )A .M 、N 两点电势相等B .金属杆中感应电流的方向由N 流向MC .电路中感应电流的大小始终为Bl ω2rD .电路中通过的电荷量为Bl2r tan θ【答案】A 【解析】根据题意可知,金属杆MN 为电源,导轨为外电路,由于导轨电阻不计,外电路短路,M 、N 两点电势相等,A 正确;转动过程中磁通量减小,根据楞次定律可知金属杆中感应电流的方向是由M 流向N ,B 错误;由于切割磁场的金属杆长度逐渐变短,感应电动势逐渐变小,回路中的感应电流逐渐变小,C 错误;因为导体棒MN 在回路中的有效切割长度逐渐减小,所以接入电路的电阻逐渐减小,不能根据q =ΔΦR计算通过电路的电荷量,D 错误.4.(多选)如图所示的电路中,电感L 的自感系数很大,电阻可忽略,D 为理想二极管,则下列说法正确的有( )A .当S 闭合时,L 1立即变亮,L 2逐渐变亮B .当S 闭合时,L 1一直不亮,L 2逐渐变亮C .当S 断开时,L 1立即熄灭,L 2也立即熄灭D .当S 断开时,L 1突然变亮,然后逐渐变暗至熄灭 【答案】BD5.(2021年莆田质检)(多选)如图甲所示,边长为L 的正方形单匝线框水平放置,左侧一半置于沿竖直方向的匀强磁场中,线框的左侧接入电阻R ,右侧接入电容器,其余电阻不计.若磁场的磁感应强度B 随时间t 的变化规律如图乙所示(规定竖直向下为正方向),则在0~2t 0时间内( )A .电容器a 板带负电B .线框中磁通量变化为零C .线框中产生的电动势为B 0L 22t 0D .通过电阻R 的电流为B 0L 22Rt 0【答案】AC 【解析】由题图可知在0~t 0时间内磁场向上减小,根据楞次定律,可知线圈中产生逆时针方向的充电电流,则电容器a 板带负电,A 正确;因磁感应强度的变化率不为零,则线框中磁通量变化不为零,B 错误;线框中产生的电动势E =ΔΦΔt =ΔB ·12L2Δt =B 0L 22t 0,C 正确;因电动势恒定,则回路中只有瞬时的充电电流,电容器充电完毕后,回路中电流变为零,D 错误.6.(多选)如图所示,半径为2r 的弹性螺旋线圈内有垂直纸面向外的圆形匀强磁场区域,磁场区域的半径为r ,已知弹性螺旋线圈的电阻为R ,线圈与磁场区域共圆心,则以下说法正确的是( )A .保持磁场不变,线圈的半径由2r 变到3r 的过程中,有顺时针的电流B .保持磁场不变,线圈的半径由2r 变到0.5r 的过程中,有逆时针的电流C .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为k πr 2RD .保持半径不变,使磁场随时间按B =kt 变化,线圈中的电流为2k πr2R【答案】BC 【解析】在线圈的半径由2r 变到3r 的过程中,穿过线圈的磁通量不变,则线圈内没有感应电流,故A 错误;当线圈的半径由2r 变到0.5r 的过程中,穿过线圈的磁通量减小,根据楞次定律,则有逆时针的电流,故B 正确;保持半径不变,使磁场随时间按B =kt 变化,根据法拉第电磁感应定律,有E =ΔB Δt ·πr 2=k πr 2,因此线圈中的电流I =E R=k πr 2R,故C 正确,D 错误. 7.(2021年株洲质检) 零刻度在表盘正中间的电流计,非常灵敏,通入电流后,线圈所受安培力和螺旋弹簧的弹力作用达到平衡时,指针在示数附近的摆动很难停下,使读数变得困难.在指针转轴上装上的扇形铝框或扇形铝板,在合适区域加上磁场,可以解决此困难.下列方案合理的是( )A BC D【答案】D 【解析】当指针向左偏转时,铝框或铝板可能会离开磁场,产生不了涡流,起不到电磁阻尼的作用,指针不能很快停下,A、C方案不合理,A、C错误;磁场在铝框中间,当指针偏转角度较小时,铝框不能切割磁感线,不能产生感应电流,起不到电磁阻尼的作用,指针不能很快停下,B错误,D正确.8.(2021年郑州模拟)(多选)涡流检测是工业上无损检测的方法之一.如图所示,线圈中通以一定频率的正弦式交变电流,靠近待测工件时,工件内会产生涡流,同时线圈中的电流受涡流影响也会发生变化.下列说法正确的是( )A.涡流的磁场总是要阻碍穿过工件磁通量的变化B.涡流的频率等于通入线圈的交变电流的频率C.通电线圈和待测工件间存在恒定的作用力D.待测工件可以是塑料或橡胶制品【答案】AB综合提升练9.(多选)如图甲所示,螺线管内有一平行于轴线的磁场,规定图中箭头所示方向为磁感应强度B的正方向,螺线管与U形导线框cdef相连,导线框cdef内有一半径很小的金属圆环L,圆环面积为S,圆环与导线框cdef在同一平面内.当螺线管内的磁感应强度随时间按图乙所示规律变化时,下列说法正确的是( )A .在t 1时刻,金属圆环L 内的磁通量最大,最大值Φm =B 0S B .在t 2时刻,金属圆环L 内的磁通量最大C .在t 1~t 2时间内,金属圆环L 有扩张的趋势D .在t 1~t 2时间内,金属圆环L 内有顺时针方向的感应电流 【答案】BD10.(多选)空间有磁感应强度为B 的有界匀强磁场区域,磁场方向如图所示,有一边长为L 、电阻为R 、粗细均匀的正方形金属线框abcd 置于匀强磁场区域中,ab 边跟磁场的右边界平行,若金属线框在外力作用下以速度v 向右匀速运动,下列说法正确的是( )A .当ab 边刚离开磁场时,cd 边两端的电压为3BLv4B .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力所做的功为B 2L 3vRC .从ab 边到磁场的右边界至cd 边离开磁场的过程中,外力做功的功率为B 2L 2vRD .从ab 边到磁场的右边界至cd 边离开磁场的过程中,通过线框某一截面的电量为BL 2R【答案】ABD 【解析】当ab 边刚离开磁场时,线框只有cd 边切割磁感线,产生的电动势为E =BLv ,cd 边为等效电源,两端的电压为闭合电路的路端电压,电路等价为四个电阻串联,cd 边为一个内阻R 4,外电路为三个R 4的电阻,故有U dc =E R 4+3R 4×3·R 4=3BLv4,故A正确;从ab 边到磁场的右边界至cd 边离开磁场的匀速过程,产生的恒定电流为I =E R,由动能定理W F 外-W F 安=0,由功的定义W F 安=F 安·L =BIL ·L ,可解得W F 外=B BLv R L 2=B 2L 3vR ,故B 正确;由能量守恒定律P F 外·t -P F 安·t =0,可得P F 外=P F 安=F 安·v =B BLv R L ·v =B 2L 2v 2R,故C 错误;根据电量的定义q =I ·Δt ,I =ER,E =ΔΦΔt ,联立可得q =ΔΦR,从ab 边到磁场的右边界到cd 边离开磁场的过程中,磁通量的变化量为ΔΦ=B ΔS =BL 2,可得q=BL 2R,故D 正确. 11.如图所示,匀强磁场的磁感应强度方向竖直向上,大小为B 0,用电阻率为ρ,横截面积为S 的导线做成的边长为l 的正方形线框abcd 水平放置,OO ′为过ad 、bc 两边中点的直线,线框全部都位于磁场中.现把线框右半部分固定不动,而把线框左半部分以OO ′为轴向上转动60°,如图中虚线所示.(1)求转动过程中通过导线横截面的电荷量;(2)若转动后磁感应强度随时间按B =B 0+kt 变化(k 为常量),求出磁场对线框ab 边的作用力大小随时间变化的关系式.解:(1)线框在转动过程中产生的平均感应电动势 E =ΔΦΔt=B 0·12l 2cos 60°Δt=B 0l 24Δt, ①在线框中产生的平均感应电流I =E R,② R =ρ4l S,③ 转动过程中通过导线横截面的电荷量q =I Δt , ④ 联立①~④解得q =B 0lS16ρ.⑤(2)若转动后磁感应强度随时间按B =B 0+kt 变化,在线框中产生的感应电动势大小E =ΔB ·S Δt=⎝ ⎛⎭⎪⎫12l 2cos 60°+l 22ΔB Δt=3l24k ,⑥在线框中产生的感应电流I =E R,⑦线框ab 边所受安培力的大小F =BIl ,⑧联立⑥~⑧解得F =(B 0+kt )3kl 2S16ρ.。
高考物理一轮复习第十章电磁感应专题强化十三电磁感应中的动力学和能量问题课件.ppt

2019-9-14
感谢您的聆听
16
3.求解电能应分清两类情况 (1)若回路中电流恒定,可以利用电路结构及W=UIt或Q=I2Rt直接进行 计算. (2)若电流变化,则 ①利用安培力做功求解:电磁感应中产生的电能等于克服安培力所做的功; ②利用能量守恒求解:若只有电能与机械能的转化,则减少的机械能等 于产生的电能.
感谢您的聆听
1 2 334
2.如图所示,两平行光滑金属导轨倾斜放置且固定,两导轨间距为L,与 水平面间的夹角为θ,导轨下端有垂直于轨道的挡板,上端连接一个阻 值R=2r的电阻,整个装置处在磁感应强度为B、方向垂直导轨向上的匀 强磁场中,两根相同的金属棒ab、cd放在导轨下端,其中棒ab靠在挡板 上,棒cd在沿导轨平面向上的拉力作用下, 由静止开始沿导轨向上做加速度为a的匀加速 运动.已知每根金属棒质量为m、电阻为r,导 轨电阻不计,棒与导轨始终接触良好.求:
解析 a= F-mgsin θ =12 m/s2 m
v= 2as=2.4 m/s
F
2019-9-14
感谢您的聆听
24
(2)CD棒进入磁场时所受的安培力FA的大小; 答案
解析
感应电动势E=Blv
感应电流I=
Blv R
安培力FA=IBl 代入得FA= BRl2v=48 N
48 N
2019-9-14
置在顶端附近无初速度释放,金属棒与导轨接触良好,金属棒与导轨间的
动摩擦因数μ=0.25,已知金属棒下滑到速度
稳定时,小灯泡恰能正常发光,重力加速度g
取10 m/s2,sin 37°=0.6,cos 37°=0.8,则
2019-9-14
感谢您的聆听
11
A.金属棒刚开始运动时的加速度大小为3 m/s2 答案 解析
高考物理一轮复习第十章电磁感应专题强化十三动力学、动量和能量观点在电学中的应用课件

类型1 动量定理和功能关系的应用 例1 如图1所示,两根电阻不计的光滑金属导轨竖直放 置,相距为L,导轨上端接电阻R,宽度相同的水平条 形区域Ⅰ和Ⅱ内有磁感应强度为B、方向垂直导轨平面 向里的匀强磁场,其宽度均为d,Ⅰ和Ⅱ之间相距为h且 无磁场.一长度为L、质量为m、电阻为r的导体棒,两端 套在导轨上,并与两导轨始终保持良好的接触,导体棒 从距区域Ⅰ上边界H处由静止释放,在穿过两段磁场区 域的过程中,流过电阻R上的电流及其变化情况相同,重力加速度图为1g.求: (1)导体棒进入区域Ⅰ的瞬间,通过电阻R的电流大小与方向.
2.方法技巧 解决此类问题时通常将两棒视为一个整体,于是相互作用的安培力是系 统的内力,这个变力将不影响整体的动量守恒.因此解题的突破口是巧 妙选择系统,运用动量守恒(动量定理)和功能关系求解.
例2 (2017·湖南长沙四县三月模拟)足够长的平行金属轨道M、N,相距L
=0.5 m,且水平放置;M、N左端与半径R=0.4 m的光滑竖直半圆轨道相
答案 mgB2RL+2dr+
2H-h g-
2H g
解析 答案
变式1 (2018·甘肃天水模拟)如图2所示,竖直放置的两光
滑平行金属导轨,置于垂直于导轨平面向里的匀强磁场中
,两根质量相同的导体棒a和b,与导轨紧密接触且可自由
滑动.先固定a,释放b,当b的速度达到10 m/s时,再释放a
,经过1 s后,a的速度达到12 m/s,g取10 m/s2,则:
竖直向上的匀强磁场.质量为m的绝缘棒a垂直于倾斜导轨静止释放,释
放位置与水平导轨的高度差为h.已知绝缘棒a滑到水平导轨上与金属棒b
发生弹性正碰,金属棒b进入磁场后始终未与金属棒c发生碰撞.重力加
速度为g.求:
2019高考物理-电磁感应专题解题高手28

d
c
B
0
B
0
t C
t D
i
0
i
S
N
t
A i
0
t
B i
[ B ]
t D
0
t C
0
4、一金属圆环位于纸面内,磁场垂直纸面,规定向里 为正,如图所示。现今磁场B随时间变化是先按oa图线 变化,又按图线bc和cd变化,令E1、E2、E3分别表示 这三段变化过程中感应电动势的大小,I1、I2、I3分别 表示对应的感应电流,则E1、E2、E3的大小关系是 ___________; 电流I1的方向是___________;I E 逆时针方向 2的方向是 2=E3>E1 顺时针方向 ___________;I3的方向是____________. 顺时针方向
× × × × × × ×
(2)金属棒在导轨上运动时 电阻丝R1上消耗的最大功率; (3)在滑动过程中通过金属
A
× × × ×
× × × ×
× × ×
V R1
R2
棒的电流I与时间t的关系。
O
×
C
x ×
(1)金属棒匀速运动 F外=F安 E=BLV I=E/R总 F外=BIL=B2L2v/R总 π Lmax = 2sin = 2(m) 2
根据能量守恒,减小的机械能等于增 加的电能,电流通过线圈,电能又转 化为内能,所以产生的焦耳热为 Q=2mgL=0.02J
a
× × × × ×
b
× ×
h
×
L
×
B
×
例4、如图所示,两根光滑的金属导轨,平行放置在倾角为 θ斜角上,导轨的左端接有电阻R, 斜面处在方向垂直于 斜面向上的匀强磁场中 。质量为m的金属棒ab,在沿着 斜面与棒垂直的恒力作用下沿导轨匀速上滑,并上升h高 度,导轨和金属棒的电阻忽路不计。在这过程中 A.作用于金属捧上的各个力的合力所作的功等于零 B.作用于金属捧上的各个力的合力所作的功等于mgh与 电阻R上发出的焦耳热之和 C.恒力F与安培力的合力所作 的功等于零 D.恒力F与重力的合力所作的 功等于电阻R上发出的焦耳热
高中物理高考 】高考物理一轮复习学案 10 3 电磁感应定律的综合运用 有解析

【备考2022】高考物理一轮复习学案10.3 电磁感应定律的综合运用(2)右手定则的研究对象为闭合回路的一部分导体,适用于一段导线在磁场中做切割磁感线运动。
2.对电源的理解(1)在电磁感应现象中,产生感应电动势的那部分导体相当于电源,如切割磁感线的导体棒、有磁通量变化的线圈等,这种电源将其他形式的能转化为电能。
(2)判断感应电流和感应电动势的方向,都是把相当于电源的部分根据右手定则或楞次定律判定的。
实际问题中应注意外电路电流由高电势处流向低电势处,而内电路则相反。
3.导体棒在匀强磁场运动过程中的变与不变(1)外电阻的变与不变若外电路由无阻导线和定值电阻构成,导体棒运动过程中外电阻不变;若外电路由考虑电阻的导线组成,导体棒运动过程中外电阻改变。
(2)内电阻与电动势的变与不变切割磁感线的有效长度不变,则内电阻与电动势均不变。
反之,发生变化。
处理电磁感应区别安培定则、左手定则、右手定则的关键是抓住因果关系(1)因电而生磁(I→B)→安培定则(判断电流周围磁感线的方向)。
(2)因动而生电(v、B→I感)→右手定则(闭合回路的部分导体切割磁感线产生感应电流)。
(3)因电而受力(I、B→F安)→左手定则(磁场对电流有作用力)。
核心素养二对电路的理解(1)内电路是切割磁感线的导体或磁通量发生变化的线圈,外电路由电阻、电容等电学元件组成。
(2)在闭合电路中,相当于“电源”的导体两端的电压与真实的电源两端的电压一样,等于路端电压,而不等于感应电动势。
核心素养三图像问题2.解决图像问题的一般步骤(1)明确图像的种类,即是Bt图像还是Φt图像,或者Et图像、It图像等。
(2)分析电磁感应的具体过程。
(3)用右手定则或楞次定律确定方向对应关系。
(4)结合法拉第电磁感应定律、欧姆定律、牛顿运动定律等规律写出函数关系式。
(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
专题强化十二电磁感应中的图象和电路问题专题解读1.本专题是运动学、动力学、恒定电流、电磁感应等观点的综合应用,高考常以选择题的形式命题.2.学好本专题,可以极大的培养同学们数形结合的推理能力和电路分析能力,针对性的专题强化,可以提升同学们解决数形结合、电路分析的信心.3.用到的知识有:左手定则、安培定则、右手定则、楞次定律、法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律、函数图象等.命题点一电磁感应中的图象问题1.题型简述借助图象考查电磁感应的规律,一直是高考的热点,此类题目一般分为两类:(1)由给定的电磁感应过程选出正确的图象;(2)由给定的图象分析电磁感应过程,定性或定量求解相应的物理量或推断出其他图象.常见的图象有B-t图、E-t图、i-t图、v-t图及F-t图等.2.解题关键弄清初始条件、正负方向的对应变化范围、所研究物理量的函数表达式、进出磁场的转折点等是解决此类问题的关键.3.解决图象问题的一般步骤(1)明确图象的种类,即是B-t图还是Φ-t图,或者E-t图、I-t图等;(2)分析电磁感应的具体过程;(3)用右手定则或楞次定律确定方向的对应关系;(4)结合法拉第电磁感应定律、闭合电路欧姆定律、牛顿运动定律等知识写出相应的函数关系式;(5)根据函数关系式,进行数学分析,如分析斜率的变化、截距等;(6)画图象或判断图象.4.求解电磁感应图象类选择题的两种常用方法(1)排除法:定性地分析电磁感应过程中物理量的变化趋势(增大还是减小)、变化快慢(均匀变化还是非均匀变化),特别是分析物理量的正负,以排除错误的选项.(2)函数法:根据题目所给条件定量地写出两个物理量之间的函数关系,然后由函数关系对图象进行分析和判断.例1(多选)(2016·四川理综·7)如图1所示,电阻不计、间距为L的光滑平行金属导轨水平放置于磁感应强度为B、方向竖直向下的匀强磁场中,导轨左端接一定值电阻R.质量为m、电阻为r的金属棒MN置于导轨上,受到垂直于金属棒的水平外力F的作用由静止开始运动,外力F与金属棒速度v的关系是F=F0+kv(F0、k是常量),金属棒与导轨始终垂直且接触良好.金属棒中感应电流为i,受到的安培力大小为F,电阻R两端的电压为U R,感应电流的功率为P,它安们随时间t变化图象可能正确的有( )图1答案BC解析设金属棒在某一时刻速度为v,由题意可知,感应电动势E=BLv,回路电流I=ER+r=BLR+rv,即I∝v;安培力F安=BIL=B2L2R+rv,方向水平向左,即F安∝v;R两端电压U R=IR=BLRR+rv,即UR∝v;感应电流功率P=EI=B2L2R+rv2,即P∝v2.分析金属棒运动情况,由牛顿运动第二定律可得F0+kv-B2L2R+rv=ma,即F+(k-B2L2R+r)v=ma.因为金属棒从静止开始运动,所以F0>0.(1)若k=B2L2R+r,金属棒水平向右做匀加速直线运动.所以在此情况下没有选项符合;(2)若k>B2L2R+r,F合随v增大而增大,即a随v增大而增大,说明金属棒在做加速度增大的加速运动,根据四个物理量与速度的关系可知B选项符合;(3)若k<B2L2R+r,F合随v增大而减小,即a随v增大而减小,说明金属棒在做加速度减小的加速运动,直到加速度减小为0后金属棒做匀速直线运动,根据四个物理量与速度关系可知C选项符合.综上所述,选项B、C符合题意.电磁感应中图象问题的分析技巧1.对于图象选择问题常用排除法:先看方向再看大小及特殊点.2.对于图象的描绘:先定性或定量表示出所研究问题的函数关系,注意横、纵坐标表达的物理量及各物理量的单位,画出对应物理图象(常有分段法、数学法).3.对图象的理解:看清横、纵坐标表示的量,理解图象的物理意义.1.如图2(a),线圈ab、cd绕在同一软铁芯上.在ab线圈中通以变化的电流,用示波器测得线圈cd间电压如图(b)所示.已知线圈内部的磁场与流经线圈的电流成正比,则下列描述线圈ab中电流随时间变化关系的图中,可能正确的是( )图2答案 C解析由题图(b)可知在cd间不同时间段内产生的电压是恒定的,所以在该时间段内线圈ab中的磁场是均匀变化的,则线圈ab中的电流是均匀变化的,故选项A、B、D错误,选项C正确.2.(多选)如图3甲所示,光滑绝缘水平面,虚线MN的右侧存在方向竖直向下、磁感应强度大小为B=2T的匀强磁场,MN的左侧有一质量为m=0.1kg的矩形线圈bcde,bc边长L1=0.2m,电阻R=2Ω.t=0时,用一恒定拉力F拉线圈,使其由静止开始向右做匀加速运动,经过1s,线圈的bc边到达磁场边界MN,此时立即将拉力F改为变力,又经过1s,线圈恰好完全进入磁场,在整个运动过程中,线圈中感应电流i随时间t变化的图象如图乙所示.则( )图3 A.恒定拉力大小为0.05NB.线圈在第2s内的加速度大小为1m/s2 C.线圈be边长L2=0.5mD.在第2s内流过线圈的电荷量为0.2C 答案ABD解析在第1s末,i1=ER,E=BL1v1,v1=a1t1,F=ma1,联立得F=0.05N,A项正确.在第2s内,由题图乙分析知线圈做匀加速直线运动,第2s末i2=E′R,E′=BL1v2,v2=v1+a2t2,解得a2=1m/s2,B项正确.在第2s内,v22-v21=2a2L2,得L2=1m,C项错误.q=ΔΦR=BL1L2R=0.2C,D项正确.3.如图4所示,一直角三角形金属框,向左匀速地穿过一个方向垂直于纸面向里的匀强磁场区域,磁场仅限于虚线边界所围的区域,该区域的形状与金属框完全相同,且金属框的下边与磁场区域的下边在一直线上.若取顺时针方向为电流的正方向,则金属框穿过磁场的过程中感应电流i随时间t变化的图象是( )图4答案 C解析在金属框进入磁场过程中,感应电流的方向为逆时针,金属框切割磁感线的有效长度线性增大,排除A、B;在金属框出磁场的过程中,感应电流的方向为顺时针方向,金属框切割磁感线的有效长度线性减小,排除D,故C正确.命题点二电磁感应中的电路问题1.题型简述:在电磁感应问题中,切割磁感线运动的导体或磁通量发生变化的线圈都相当于电源,该部分导体或线圈与其他电阻、灯泡、电容器等用电器构成了电路.在这类问题中,常涉及计算感应电动势大小、计算导体两端电压、通过导体的电流、产生的电热等.2.解决电磁感应中电路问题的“三部曲”“源”的分析→“路”的分析→分析“电源”和电路中其他元件的连接方式,弄清串、并联关系“式”的建立→根据E=Blv或E=n ΔΦΔt结合闭合电路欧姆定律等列式求解注意“等效电源”两端的电压指的是路端电压,而不是电动势或内压降.例2(多选)如图5(a)所示,一个电阻值为R、匝数为n的圆形金属线圈与阻值为2R的电阻R1连接成闭合回路.线圈的半径为r1.在线圈中半径为r2的圆形区域内存在垂直于线圈平面向里的匀强磁场,磁感应强度B随时间t变化的关系图线如图(b)所示.图线与横、纵轴的交点坐标分别为t0和B0.导线的电阻不计.在0至t1时间内,下列说法正确的是( )图5A .R 1中电流的方向由a 到b 通过R 1B .电流的大小为n πB 0r 223Rt 0C .线圈两端的电压大小为n πB 0r 223t 0D .通过电阻R 1的电荷量为n πB 0r 22t 13Rt 0①向里的匀强磁场;②B 随时间t 变化.答案 BD解析 由图象分析可以知道,0至t 1时间内由法拉第电磁感应定律有E =n ΔΦΔt=nΔB Δt S ,面积为S =πr 22,由闭合电路欧姆定律有I =E R 1+R,联立以上各式解得,通过电阻R 1的电流大小为I =n πB 0r 223Rt 0,由楞次定律可判断通过电阻R 1的电流方向为从b 到a ,故A 错误,B 正确;线圈两端的电压大小为U =I ·2R =2n πB 0r 223t 0,故C 错误;通过电阻R 1的电荷量为q =It 1=n πB 0r 22t 13Rt 0,故D 正确.电磁感应中图象问题的分析一般有定性与定量两种方法,定性分析主要是通过确定某一物理量的方向以及大小的变化情况判断对应的图象,而定量分析则是通过列出某一物理量的函数表达式确定其图象.4.(多选)如图6所示,在竖直方向上有四条间距均为L =0.5m 的水平虚线L 1、L 2、L 3、L 4,在L 1、L 2之间和L 3、L 4之间存在匀强磁场,磁感应强度大小均为1T ,方向垂直于纸面向里.现有一矩形线圈abcd ,长度ad =3L ,宽度cd =L ,质量为0.1kg ,电阻为1Ω,将其从图示位置由静止释放(cd 边与L 1重合),cd 边经过磁场边界线L 3时恰好做匀速直线运动,整个运动过程中线圈平面始终处于竖直方向,cd 边水平.(g 取10m/s 2)则( )图6A .cd 边经过磁场边界线L 3时通过线圈的电荷量为0.5CB .cd 边经过磁场边界线L 3时的速度大小为4m/sC .cd 边经过磁场边界线L 2和L 4的时间间隔为0.25sD .线圈从开始运动到cd 边经过磁场边界线L 4过程,线圈产生的热量为0.7J 答案 BD解析 cd 边从L 1运动到L 2,通过线圈的电荷量为q =ΔΦR =BL 2R =1×0.521C =0.25C ,故A 错误;cd 边经过磁场边界线L 3时恰好做匀速直线运动,根据平衡条件有mg =BIL ,而I =BLv R ,联立两式解得v =mgR B 2L 2=0.1×10×112×0.52m/s =4 m/s ,故B 正确;cd 边从L 2到L 3的过程中,穿过线圈的磁通量没有改变,没有感应电流产生,不受安培力,线圈做匀加速直线运动,加速度为g ,设此过程的时间为t 1,此过程的逆过程为匀减速运动,由运动学公式得L =vt 1-12gt 21,cd 边从L 3到L 4的过程做匀速运动,所用时间为t 2=L v=0.125s ,故cd 边经过磁 场边界线L 2和L 4的时间间隔为t 1+t 2>0.25s ,故C 错误;线圈从开始运动到cd 边经过磁场边界线L 4过程,根据能量守恒得Q =mg ·3L -12mv 2=0.7J ,故D 正确.5.(2015·福建理综·18)如图7,由某种粗细均匀的总电阻为3R的金属条制成的矩形线框abcd,固定在水平面内且处于方向竖直向下的匀强磁场B中.一接入电路电阻为R的导体棒PQ,在水平拉力作用下沿ab、dc以速度v匀速滑动,滑动过程PQ始终与ab垂直,且与线框接触良好,不计摩擦.在PQ从靠近ad 处向bc滑动的过程中( )图7A.PQ中电流先增大后减小B.PQ两端电压先减小后增大C.PQ上拉力的功率先减小后增大D.线框消耗的电功率先减小后增大答案 C解析如图所示,设PQ左侧电路的电阻为R x,则右侧电路的电阻为3R-R x,所以外电路的总电阻为R外=Rx(3R-R x)3R,外电路电阻先增大后减小,所以路端电压先增大后减小,所以B错误;电路的总电阻先增大后减小,再根据闭合电路的欧姆定律可得PQ中的电流I=ER+R外先减小后增大,故A错误;由于导体棒做匀速运动,拉力等于安培力,即F=BIL,拉力的功率P=BILv,故先减小后增大,所以C正确;外电路的总电阻R外=Rx(3R-R x)3R,最大值为34R,小于导体棒的电阻R,又外电阻先增大后减小,由电源的输出功率与外电阻的变化关系可知,线框消耗的电功率先增大后减小,故D错误.题组1 电磁感应中的图象问题1.如图1所示,有一等腰直角三角形的区域,其斜边长为2L ,高为L .在该区域内分布着如图所示的磁场,左侧小三角形内磁场方向垂直纸面向外,右侧小三角形内磁场方向垂直纸面向里,磁感应强度大小均为B .一边长为L 、总电阻为R 的正方形导线框abcd ,从图示位置开始沿x 轴正方向以速度v 匀速穿过磁场区域.取沿a →b →c →d →a 的感应电流方向为正,则图中表示线框中电流i 随bc 边的位置坐标x 变化的图象正确的是( )图1答案 D解析 bc 边的位置坐标x 在L ~2L 过程,线框bc 边有效切割长度为l 1=x -L ,感应电动势为E =Bl 1v =B (x -L )v ,感应电流i 1=E R =B (x -L )vR ,根据楞次定律判断出感应电流方向沿a →b →c →d →a ,为正值,x 在2L ~3L 过程,ad 边和bc 边都切割磁感线,产生感应电动势,根据楞次定律判断出感应电流方向沿a →d →c →b →a ,为负值,有效切割长度为l 2=L ,感应电动势为E =Bl 2v =BLv ,感应电流i 2=-BLvR.x 在3L ~4L 过程,线框ad 边有效切割长度为l 3=L -(x -3L )=4L -x ,感应电动势为E =Bl 3v =B (4L -x )v ,感应电流i 3=B (4L -x )vR,根据楞次定律判断出感应电流方向沿a →b →c →d →a ,为正值.根据数学知识可知,D 正确. 2.将一段导线绕成如图2甲所示的闭合回路,并固定在水平面(纸面)内.回路的ab 边置于垂直纸面向里为匀强磁场Ⅰ中.回路的圆环区域内有垂直纸面的磁场Ⅱ,以向里为磁场Ⅱ的正方向,其磁感应强度B 随时间t 变化的图象如图乙所示.用F 表示ab 边受到的安培力,以水平向右为F 的正方向,能正确反映F 随时间t 变化的图象是( )图2答案 B解析 根据B -t 图象可知,在0~T2时间内,B -t 图线的斜率为负且为定值,根据法拉第电磁感应定律E =nΔBΔtS 可知,该段时间圆环区域内感应电动势和感应电流是恒定的,由楞次定律可知,ab 中电流方向为b →a ,再由左手定则可判断ab 边受到向左的安培力,且0~T2时间内安培力恒定不变,方向与规定的正方向相反;在T2~T 时间内,B -t 图线的斜率为正且为定值,故ab 边所受安培力仍恒定不变,但方向与规定的正方向相同.综上可知,B 正确.3.如图3所示的匀强磁场中有一根弯成45°的金属线POQ ,其所在平面与磁场垂直,长直导线MN 与金属线紧密接触,起始时OA =l 0,且MN ⊥OQ ,所有导线单位长度电阻均为r ,MN 匀速水平向右运动的速度为v ,使MN 匀速运动的外力为F ,则外力F 随时间变化的规律图象正确的是( )图3答案 C解析 设经过时间t ,则N 点距O 点的距离为l 0+vt ,直导线在回路中的长度也为l 0+vt ,此时直导线产生的感应电动势E =B (l 0+vt )v ;整个回路的电阻为R =(2+2)(l 0+vt )r ,回路的电流I =E R =B (l 0+vt )v (2+2)(l 0+vt )r =Bv(2+2)r;直导线受到的外力F 大小等于安培力,即F =BIL =B Bv (2+2)r(l 0+vt )=B 2v (2+2)r(l 0+vt ),故C 正确.4.(多选)在光滑水平桌面上有一边长为l 的正方形线框abcd ,bc 边右侧有一等腰直角三角形匀强磁场区域efg ,三角形腰长为l ,磁感应强度竖直向下,a 、b 、e 、f 在同一直线上,其俯视图如图4所示,线框从图示位置在水平拉力F 作用下以速度v 向右匀速穿过磁场区,线框中感应电流i -t 和F -t 图象正确的是(以逆时针方向为电流的正方向,以水平向右的拉力为正,时间单位为lv)( )图4答案 BD解析 从bc 边开始进入磁场到线框完全进入磁场的过程中,当线框bc 边进入磁场位移为x 时,线框bc 边有效切割长度也为x ,感应电动势为E =Bxv ,感应电流i =BxvR,根据楞次定律判断出感应电流方向沿a →b →c →d →a ,为正值.同理,从bc 开始出磁场到线框完全出磁场的过程中,根据ad 边有效切割长度逐渐变大,感应电流逐渐增大,根据数学知识可知A 错误,B 正确.在水平拉力F 作用下向右匀速穿过磁场区,因此拉力大小等于安培力,而安培力的表达式F 安=B 2L 2v R ,而L =vt ,则有F 安=B 2v 3R t 2,因此C 错误,D 正确.题组2 电磁感应中的电路问题5.(多选)如图5甲,固定在光滑水平面上的正三角形金属线框,匝数n =20,总电阻R =2.5Ω,边长L =0.3m ,处在两个半径均为r =L3的圆形匀强磁场区域中.线框顶点与右侧圆心重合,线框底边中点与左侧圆心重合.磁感应强度B 1垂直水平面向上,大小不变;B 2垂直水平面向下,大小随时间变化.B 1、B 2的值如图乙所示,则( )图5A.通过线框的感应电流方向为逆时针方向B.t=0时刻穿过线框的磁通量为0.1WbC.在0.6s内通过线框中的电荷量约为0.13CD.经过0.6s线框中产生的热量约为0.07J答案ACD解析磁感应强度B1垂直水平面向上,大小不变,B2垂直水平面向下,大小随时间增大,故线框向上的磁通量减小,由楞次定律可得,线框中感应电流方向为逆时针方向,选项A正确.t=0时刻穿过线框的磁通量Φ=B1×12πr2+B2×16πr2≈-0.0052Wb,选项B错误.在0.6s内通过线框的电荷量q=n ΔΦR=20×(5-2)×16π×0.122.5C≈0.13C,选项C正确.经过0.6s线框中产生的热量Q=I2RΔt=(nΔΦ)2RΔt≈0.07J,选项D正确.6.如图6所示,水平面上有两根光滑金属导轨平行固定放置,导轨的电阻不计,间距为l=0.5m,左端通过导线与阻值R=3Ω的电阻连接,右端通过导线与阻值为R L=6Ω的小灯泡L连接,在CDEF矩形区域内存在竖直向上、磁感应强度B =0.2T的匀强磁场.一根阻值r=0.5Ω、质量m=0.2kg的金属棒在恒力F=2N 的作用下由静止开始从AB位置沿导轨向右运动,经过t=1s刚好进入磁场区域.求金属棒刚进入磁场时:图6(1)金属棒切割磁感线产生的电动势;(2)小灯泡两端的电压和金属棒受到的安培力.答案(1)1V (2)0.8V 0.04N,方向水平向左解析(1)0~1s棒只受拉力,由牛顿第二定律得F=ma,金属棒进入磁场前的加速度a=Fm=10m/s2.设其刚要进入磁场时速度为v,v=at=10×1m/s=10 m/s.金属棒进入磁场时切割磁感线,感应电动势E=Blv=0.2×0.5×10V=1V.(2)小灯泡与电阻R并联,R并=R·RLR+RL=2Ω,通过金属棒的电流大小I=ER并+r=0.4A,小灯泡两端的电压U=E-Ir=1V-0.4×0.5V=0.8V.金属棒受到的安培力大小F A=BIl=0.2×0.4×0.5N=0.04N,由右手定则和左手定则可判断安培力方向水平向左.7.如图7甲所示,两足够长平行光滑的金属导轨MN、PQ相距0.8m,导轨平面与水平面夹角为α,导轨电阻不计.有一匀强磁场垂直导轨平面斜向上,长为1m的金属棒ab垂直于MN、PQ放置在导轨上,且始终与导轨接触良好,金属棒的质量为0.1kg、与导轨接触端间电阻为1Ω.两金属导轨的上端连接右端电路,电路中R2为一电阻箱.已知灯泡的电阻R L=4Ω,定值电阻R1=2Ω,调节电阻箱使R2=12Ω,重力加速度g取10m/s2.将开关S断开,金属棒由静止释放,1s 后闭合开关,如图乙所示为金属棒的速度随时间变化的图象,求:图7(1)斜面倾角α及磁感应强度B的大小;(2)若金属棒下滑距离为60m时速度恰达到最大,求金属棒由静止开始下滑100m 的过程中,整个电路产生的电热;(3)改变电阻箱R2的阻值,当R2为何值时,金属棒匀速下滑时R2的功率最大,消耗的最大功率为多少?答案(1)30°0.5T (2)32.42J (3)1.5625W解析(1)开关S断开,由题图甲、乙得a=g sinα=ΔvΔt=5m/s2,则sinα=12,α=30°.F安=BIL,I=BLvmR总,R总=R ab+R1+R2RLR2+R L=(1+2+4×124+12)Ω=6Ω,由图乙得v m=18.75m/s,当金属棒匀速下滑时速度最大,有mg sinα=F安,所以mg sinα=B2L2vmR总,得B=mg sinα·R总vm·L2=0.1×10×12×618.75×0.82T=0.5T.(2)由动能定理有mg·s·sinα-Q=12mv2m-0,得Q=mg·s·sinα-12mv2m≈32.42J.(3)改变电阻箱R2的阻值后,设金属棒匀速下滑时的速度为v m′,则有mg sinα=BI总L,R并′=R2RLR2+R L=4Ω×R24Ω+R2,R 2消耗的功率P2=U2并R2=(I总R并′)2R2=(mg sinαBL·R并′)2R2=(mg sinαBL)2·(4Ω×R24Ω+R2)2R2=(mg sinαBL)2·16R216+8R2+R22=(mg sinαBL)2·1616R2+8+R2,当R2=4Ω时,R2消耗的功率最大,P2m=1.5625W.。