8金属学原理重要知识点

合集下载

金属学原理重要知识点

金属学原理重要知识点

1.配位数:直接同中心离子(或原子)配位的原子数目叫中心离子(或原子)的配位数2..粗糙界面:液固两相之间的界面从微观上来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据,由于过渡层很薄,所以,从宏观上来看,界面反而显得平直,不出现曲折小平面,这类界面又称非小平面界面。

3. 交滑移:两个或两个以上的滑移面沿同一滑移方向进行交替滑移的过程4. 有效分配系数:结晶过程中固体在相界处的浓度比上此时余下液体的平均浓度。

5. 应变时效:低碳钢拉伸时,若在超过下屈服点以后卸载并立即重新拉伸,则拉伸曲线不出现屈服点;若卸载后放置一段时间或在200℃左右加热后再进行拉伸,则屈服现象又复出现,且屈服应力进一步提高。

这种现象通常称为应变时效。

6. 过冷度:相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度7. 形变组织:金属在合金塑性变形时,由于各晶粒的转动,当形变量很大时,各晶粒的取向会大致趋于一致,形变中的这种组织状态叫做形变织构8. 动态过冷度:能保证凝固速度大于融化速度的过冷度称为动态过冷度9. 加工硬化:随着塑性变形的增大,塑性变形抗力不断增加的现象,即强度和硬度升高,塑性和韧性降低。

10. 上坡扩散:由低浓度向高浓度进行的扩散11. 割阶: 位错线上垂直于原位错滑动面的曲折部分12. 伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶13. 柯氏气团:溶质原子与位错的交互作用,溶质原子将偏聚在位错线附近以降低体系的畸变能形成溶质原子气团。

1、金属的退火处理包括哪三个阶段?简述这三个阶段中晶粒大小、结构的变化答:退火过程分为回复、再结晶和晶粒长大三个阶段。

回复是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段;再结晶是指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程;晶粒长大是指再结晶结束之后晶粒的继续长大。

01-第一章 金属学基本原理

01-第一章  金属学基本原理

第一章金属学基本原理金属学是研究金属和合金的成分、组织、性能及其变化规律的一门科学。

学习金属学基础知识,重点在于掌握组织、组织的形成及其变化规律等方面的基本概念和基本原理,因为这是物理金相实验工借以了解各种金属材料的成分、热处理、组织与性能之间关系的基础。

本章的主要内容是:金属及合金的结构和结晶方面的基础知识;合金的基本组织及状态图;有关铁—碳平衡图的一些基本知识。

第一节纯金属的结构与结晶一、纯金属的晶体结构金属晶体是由原子在空间严格按照一定的规律周期性重复排列所构成的,这是把晶格中的原子排列看成是绝对完整的。

其实这是一种完全理想化的晶体结构,因此被称为理想晶体。

但在实际金属晶体中,原子的排列不可能这样规则和完整。

在晶体内部,由于种种原因,在局部区域或局部地带内原子的规则排列往往受到干扰和破坏,形成了各种形式的晶体缺陷。

因此,实际晶体是以结构的规则排列为主,兼有不规则排列,这就是实际金属晶体结构的特点。

金属晶体中缺陷的种类较多,根据晶体缺陷的几何形态特征,可以将它们分为点缺陷、线缺陷和面缺陷三类。

点缺陷:是指长、宽、高的尺寸都很小(相当于原子的尺寸)的缺陷,包括空位、间隙原子、杂质或溶质原子以及由它们组合而成的复合点缺陷。

线缺陷:是在两个方向上(晶体的某一个平面上)的尺寸很小,第三个方向的尺寸相对很大的缺陷,是指各类位错。

其中较简单的有刃型位错和螺型位错。

面缺陷:是在两个方向上尺寸很大,而第三个方向上尺寸很小的缺陷。

有晶界、亚结构、相界、孪晶界和堆垛层错等。

1.空位和间隙原子金属晶体中的原子应处在晶格的结点上。

但在实际金属晶体结构中,并非每个结点都有原子占据,而在某些应该占据原子而实际空缺的结点位置称为空位。

见图1-1。

晶格内部除了原子占有绝大部分体积外,还有空隙存在,其中某些尺寸较大的空间有可能被原子挤入,这种占据晶格空隙的原子称为间隙原子,见图1-1。

在空位和间隙原子的附近,由于原子间作用力的平衡被破坏,使其周围的其他原子发生靠拢(如空位附近的原子)或撑开(如间隙原子附近的原子)的现象,这种变化称为晶格畸变,见图1-2。

八年级物理金属结构知识点

八年级物理金属结构知识点

八年级物理金属结构知识点金属是一种常见的物质,在我们的日常生活中,金属的应用广泛。

例如,我们通常用金属来制作各种工具、电子设备、建筑材料等,这都离不开对金属结构的认识和理解。

下面,就让我们来了解一下八年级物理金属结构的相关知识点吧。

一、金属元素的结构金属元素的基本结构是由一个或多个金属原子构成。

金属原子的结构和一般原子不同,金属原子内部含有大量自由电子,这些自由电子可以在原子间自由流动,并形成网络状结构,从而形成金属的晶体结构。

二、金属晶体结构金属晶体结构通常分为密排结构和稀排结构两种。

密排结构的金属晶体中,金属原子的排列比较紧密,相邻原子之间没有很多空隙。

稀排结构的金属晶体中,金属原子的排列比较稀疏,原子之间有较多的空隙。

三、常见的金属晶体结构常见的金属晶体结构包括立方晶系、六方晶系和单斜晶系。

其中,立方晶系金属的晶体结构呈立方体状;六方晶系金属的晶体结构呈六角形柱状;单斜晶系金属的晶体结构呈斜的四棱锥状。

四、金属的力学性能金属的力学性能是指金属在受力下的变形和破坏特性。

金属的力学性能与其晶体结构有关,密排结构的金属更加硬而脆,稀排结构的金属则往往更加柔软和延展。

五、金属的导电性和热导性金属的导电性和热导性直接跟金属的晶体结构和自由电子有关。

由于金属原子之间的电子距离较大,自由电子在整个金属中流动起来比较容易,因此,金属是一种良好的导电材料。

同时,金属的自由电子在运动过程中会产生热能,因此金属也是一种优良的导热材料。

六、金属的磁性金属的磁性与其电子结构、晶体结构及温度有关。

有些金属具有自发磁性,如铁、镍、钴等,称为磁性金属;而一些金属则不具有磁性,如铝、铜等,称为非磁性金属。

以上就是八年级物理金属结构的相关知识点,希望能够帮助大家更加深入地了解金属结构的特点和性质。

在今后的学习和生活中,我们也要更加善于利用这些知识,为我们的生产和生活创造更大的价值。

金属学原理

金属学原理

屬隨溫度的改變﹐由一種晶格轉變到另一種晶格。以鐵 為例﹔液態純鐵在1538º C時﹐進行結晶﹐得到某種晶格
●的
δ–Fe ﹐繼續冷卻到1394º C時發生同素異構轉變 ﹐
● δ–Fe轉變為另一種結構的γ–Fe﹐再冷卻到912º C時發生
同素異構轉變﹐轉變為α–Fe。由于同素異構轉變與
● 液態金屬的結晶過程有很多相似之處﹕有一定的轉變溫
奧氏體:碳溶于γFe中的間隙固溶體,稱為奧氏體。
用 符號“A”表示。奧氏體的最大固溶度 為 2.11% (1148℃)。奧氏體是鐵碳合金的高溫組織,在平衡 條件下,它最低存在溫度是727℃。在該溫度下奧 氏體的成份是一固定值:含碳0.77%。
滲碳體:滲碳體是鐵和碳形成的間隙化合物。 用符號“Fe3C”表示。它的含碳量為6.69%, 是一個固定值。滲碳體具有復雜的晶體結構, 很硬、很脆、幾乎沒有塑性,它是鐵碳合金 中的強化相。因此滲碳體的形態、大小、多 少及分佈對鐵碳合金的性能有直接影響。通 過不同的熱處理方法,可以改變滲碳體在鐵 碳合金中的形態、大小、多少及分佈,從而 改變材料的性能。這正是熱處理的重要原理 之一 。 通常把碳化物分為﹕一次碳化物﹔ 二次碳化物﹔三次碳化物。它們的來源和形 態有所不同﹐而本質并無區冸。
三﹑ 鐵﹑碳合金相圖
鐵素體﹕碳溶于αFe中的間隙固溶體,稱為鐵素體。
用符號“F”表示。在α- 中碳的溶解度很小﹐在727º Fe C
時 最大溶解度僅為0.02%。隨著溫度的下降﹐αFe中的 溶碳量減小﹐在室溫時几乎降到零。由于鐵素體中的 含
碳 量極少﹐所以鐵素體的組織與性能與純鐵相似﹐ 即
具有 良好的塑性和韌性﹐強度與硬度較低。 材料﹕ S45C (白色帶狀鐵素體) X500
珠光體:珠光體是鐵素體和滲碳體的機械混合物。用符

初中金属重要知识点总结

初中金属重要知识点总结

初中金属重要知识点总结1. 金属的性质金属的性质通常包括导电性、导热性、延展性、强度和光泽。

金属通常具有良好的导电性和导热性,这是因为金属中存在着大量的自由电子,它们能够在金属内部自由移动,传导电流和热量。

金属还具有良好的延展性和强度,这意味着金属能够被拉伸成细丝或者压制成薄片,并且具有一定的抗拉力和抗压力。

此外,金属还具有良好的光泽,通常呈现出银白色或者金黄色的外观。

2. 金属的晶体结构金属的晶体结构通常表现为紧密堆积的排列,这种排列方式使得金属具有良好的延展性和强度。

在晶体结构中,金属原子通常排列成紧密的球状结构,具有较大的自由空间,并且具有良好的平衡性能。

3. 金属的熔点和沸点金属的熔点通常比较高,这是因为金属原子之间存在着较强的金属键,需要较高的温度才能够克服金属间的相互作用力而使金属熔化。

金属的沸点也较高,通常需要较高的温度才能使金属发生汽化。

4. 常见金属材料在学习初中金属知识时,通常会接触到一些常见的金属材料,例如铁、铝、铜、锌等。

这些金属材料在日常生活和工业生产中都有着广泛的应用。

例如,铁是最常见的金属材料之一,被广泛应用于建筑、交通工具、机械制造等领域。

铝具有较低的密度和良好的耐腐蚀性,被广泛应用于航空航天、食品包装等领域。

铜具有良好的导电性和导热性,被广泛应用于电子、电气和通信设备制造等领域。

锌具有良好的耐腐蚀性能,被广泛应用于镀锌、防腐蚀等领域。

5. 金属的提纯和合金在工业生产中,通常需要对金属进行提纯,以去除杂质和提高金属的纯度。

提纯金属的方法包括电解法、冶炼法、萃取法等。

此外,金属还可以通过合金的方式来改善其性能,合金是两种或两种以上金属元素以一定的比例混合而成的材料。

合金通常具有比单一金属更优异的性能,例如更高的强度、硬度、耐腐蚀性等。

6. 金属的加工和铸造金属通常需要经过加工和铸造才能够被制成各种物品。

金属的加工包括锻造、压延、挤压等工艺,通过这些工艺,金属可以得到所需要的形状和尺寸。

金属学原理(金属学与热处理)重点名词解释

金属学原理(金属学与热处理)重点名词解释

金属:具有正的电阻温度特性的物质。

晶体:物质的质点(原子、分子或离子)在三维空间作有规则的周期性重复排列的物质叫晶体。

原子排列规律不同,性能也不同。

点阵或晶格:从理想晶体的原子堆垛模型可看出,是有规律的,为清楚空间排列规律性,人们将实际质点(原子、分子或离子)忽略,抽象成纯粹几何点,称为阵点或节点。

为便于观察,用许多平行线将阵点连接起来,构成三维空间格架。

这种用以描述晶体中原子(分子或离子)排列规律的空间格架称为空间点阵,简称点阵或晶格。

晶胞:由于排列的周期性,简便起见,可从晶格中取出一个能够完全反映晶格特征的最小几何单元来分析原子排列的规律性。

这个用以完全反映晶格特征最小的几何单元称为晶胞。

多晶型转变或同素异构转变:当外部条件(如温度和压强)改变时,金属内部由一种晶体结构向另一种晶体结构的转变称为多晶型转变或同素异构转变。

空位:某一温度下某一瞬间,总有一些原子具有足够能量克服周围原子约束,脱离原平能位置迁移到别处,在原位置上出现空节点,形成空位。

到晶体表面,称为肖脱基空位;到点阵间隙中,称弗兰克尔空位;位错:它是晶体中某处有一列或若干列原子发生了有规律的错排现象,使长达几百至几万个原子间距、宽约几个原子间距范围内原子离开平衡位置,发生有规律的错动,所以叫做位错。

基本类型有两种:即刃型位错和螺型位错。

晶界:晶体结构相同但位相不同的晶粒之间的界面称为晶粒间界,简称晶界。

小角度晶界位相差小于10°,基本上由位错组成。

大角度晶界相邻晶粒位相差大于10°,晶界很薄。

亚晶界和亚结构:分别泛指尺寸比晶粒更小的所有细微组织及分界面。

柯氏气团:刃型位错的应力场会与间隙及置换原子发生弹性交互作用,吸引这些原子向位错区偏聚。

小的间隙原子如C、N 等,往往钻入位错管道;而大置换原子,原来处的应力场是受压的,正位错下部受拉,由相互吸引作用,富集在受拉区域;小的置换原子原来受拉,易于聚集在受压区域,即位错的上部。

金属学原理复习提纲及概念汇总

金属学原理复习提纲及概念汇总

金属学原理复习提纲一,晶体学掌握晶体结构、空间点阵、晶胞、晶系、点阵常数、晶面、晶向、晶面族、晶向族和晶面间距等基本概念;了解晶体结构与空间点阵的联系与区别;了解晶体的宏观特性;熟练掌握晶面指数和晶向指数特别是六角晶系指数的的标定;了解面间距和晶面夹角的计算以及晶带定理;了解晶体对称性和晶体投影的相关概念以及理解晶体投影的意义。

●晶体结构:实际原子在三维空间的规则排列。

●空间点阵:阵点在三维空间的规则排列。

●晶胞:表达空间点阵几何规律的基本空间单元。

●晶向晶面:原子列表示的方向和原子组成的平面。

●晶面晶向族:由于点阵对称性,某些非平行的晶面晶向经对称操作后会完全重合,在几何上表现为等价的系列晶面晶向。

●晶体结构与空间点阵的联系与区别:都是不随时间变化的三维空间的规则排列,但空间点阵是晶体结构的几何抽象,空间点阵加上结构基元为晶体结构。

●晶体宏观特性:自限性:自发生长成规则外形。

均匀性:任一部分的性质相同,课看做连续物体。

各向异性:晶体的不同方向上表现出不同性质。

对称性:对称操作可以让晶体重合的性质。

●晶体投影意义:用二维平面图的方式清晰表达点阵中的方向和晶面间关系,利于晶面夹角测量,晶带轴的确定等。

二,晶体结构熟悉三种典型金属晶胞中原子的排列形式,包括晶格常数与原子半径的关系、晶胞内原子数、配位数、致密度、四面体间隙和八面体间隙数目。

了解相、组织、固溶体、金属间化合物、固溶强化、置换固溶体、间隙固溶体、有序固溶体、电子化合物、间隙相和间隙化合物等基本概念;掌握固溶体与金属间化合物的区别;掌握间隙固溶体与间隙相及间隙化合物的联系和区别;熟悉影响置换固溶体和间隙固溶体固溶度的因素;了解金属间化合物的分类及形成控制因素。

●组织:指用显微镜观察到的材料微观形貌的总称。

●固溶体:晶体结构与其某一组元相同的相。

元素间在固态下相互溶解相。

置换,为溶质原子取代溶剂原子位置。

间隙,占据溶剂原子间隙而非结点。

两大特点:晶格畸变和微观不均匀性(溶质原子偏聚)。

人教版初中化学《第八单元-金属和金属材料》知识点总结

人教版初中化学《第八单元-金属和金属材料》知识点总结

人教版初中化学《第八单元金属和金属材料》知识点总结一、金属材料纯金属(90多种) 合金 (几千种)2、金属的物理性质: (1)常温下一般为固态(汞为液态),有金属光泽。

(2)大多数呈银白色(铜为紫红色,金为黄色)(3)有良好的导热性、导电性、延展性3、金属之最:(1)铝:地壳中含量最多的金属元素(2)钙:人体中含量最多的金属元素(3)铁:目前世界年产量最多的金属(铁>铝>铜)(4)银:导电、导热性最好的金属(银>铜>金>铝)(5)铬:硬度最高的金属 (6)钨:熔点最高的金属(7)汞:熔点最低的金属 (8)锇:密度最大的金属(9)锂 :密度最小的金属4、金属分类:黑色金属:通常指铁、锰、铬及它们的合金。

重金属:如铜、锌、铅等有色金属轻金属:如钠、镁、铝等;有色金属:通常是指除黑色金属以外的其他金属。

5、合金:由一种金属跟其他一种或几种金属(或金属与非金属)一起熔合而成的具有金属特性的物质。

★:一般说来,合金的熔点比各成分低,硬度比各成分大,抗腐蚀性能更好因此可用来制造人造骨等。

(1)熔点高、密度小优点 (2)可塑性好、易于加工、机械性能好(3)抗腐蚀性能好二、金属的化学性质1、大多数金属可与氧气的反应2、金属 + 酸 → 盐 + H 2↑3、金属 + 盐 → 另一金属 + 另一盐(条件:“前换后,盐可溶”)Fe + CuSO 4 == Cu + FeSO 4 (“湿法冶金”原理)三、常见金属活动性顺序:K Ca Na Mg Al Zn Fe Sn Pb (H )Cu Hg Ag Pt Au金属活动性由强逐渐减弱在金属活动性顺序里:(1)金属的位置越靠前,它的活动性就越强1、金属材料(2)位于氢前面的金属能置换出盐酸、稀硫酸中的氢(不可用浓硫酸、硝酸)(3)位于前面的金属能把位于后面的金属从它们的盐溶液中置换出来。

(除K、Ca、Na)四、金属资源的保护和利用1、铁的冶炼(1)原理:在高温下,利用焦炭与氧气反应生成的一氧化碳把铁从铁矿石里还原出来。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.配位数:直接同中心离子(或原子)配位的原子数目叫中心离子(或原子)的配位数2..粗糙界面:液固两相之间的界面从微观上来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据,由于过渡层很薄,所以,从宏观上来看,界面反而显得平直,不出现曲折小平面,这类界面又称非小平面界面。

3.交滑移:两个或两个以上的滑移面沿同一滑移方向进行交替滑移的过程4.有效分配系数:结晶过程中固体在相界处的浓度比上此时余下液体的平均浓度。

5.应变时效:低碳钢拉伸时,若在超过下屈服点以后卸载并立即重新拉伸,则拉伸曲线不出现屈服点;若卸载后放置一段时间或在200℃左右加热后再进行拉伸,则屈服现象又复出现,且屈服应力进一步提高。

这种现象通常称为应变时效。

6.过冷度:相变过程中冷却到相变点以下某个温度后发生转变,平衡相变温度与该实际转变温度之差称过冷度7.形变组织:金属在合金塑性变形时,由于各晶粒的转动,当形变量很大时,各晶粒的取向会大致趋于一致,形变中的这种组织状态叫做形变织构8.动态过冷度:能保证凝固速度大于融化速度的过冷度称为动态过冷度9.加工硬化:随着塑性变形的增大,塑性变形抗力不断增加的现象,即强度和硬度升高,塑性和韧性降低。

10.上坡扩散:由低浓度向高浓度进行的扩散11.割阶:位错线上垂直于原位错滑动面的曲折部分12.伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶13.柯氏气团:溶质原子与位错的交互作用,溶质原子将偏聚在位错线附近以降低体系的畸变能形成溶质原子气团。

1、金属的退火处理包括哪三个阶段?简述这三个阶段中晶粒大小、结构的变化答:退火过程分为回复、再结晶和晶粒长大三个阶段。

回复是指新的无畸变晶粒出现之前所产生的亚结构和性能变化的阶段;再结晶是指出现无畸变的等轴新晶粒逐步取代变形晶粒的过程;晶粒长大是指再结晶结束之后晶粒的继续长大。

在回复阶段,由于不发生大角度晶界的迁移,所以晶粒的形状和大小与变形态的相同,仍保持着纤维状或扁平状,从光学显微组织上几乎看不出变化。

在再结晶阶段,首先是在畸变度大的区域产生新的无畸变晶粒的核心,然后逐渐消耗周围的变形基体而长大,直到形变组织完全改组为新的、无畸变的细等轴晶粒为止。

最后,在晶界表面能的驱动下,新晶粒互相吞食而长大,从而得到一个在该条件下较为稳定的尺寸,称为晶粒长大阶段。

2、简述影响固体中原子和分子扩散的因素有哪几方面?答:1、温度;2、固溶体类型;3、晶体结构;4、晶体缺陷;5、化学成分;6、应力的作用3、原子间的结合键共有几种?各自特点如何?(5分)a1、化学键包括:金属键:电子共有化,既无饱和性又无方向性离子键:以离子而不是以原子为结合单元,要求正负离子相间排列,且无方向性,无饱和性共价键:共用电子对;饱和性;配位数较小,方向性2、物理键如范德华力,系次价键,不如化学键强大3、氢键:分子间作用力,介于化学键与物理键之间,具有饱和性4、写出菲克第一定律的数学表达式,并说明其意义,简述影响扩散的因素。

答:一维下,J=—Ddc/dx;J:扩散流量,单位时间通过单位面积扩散的物质量,g/s·m2;D:扩散系数,m2/s;dc/dx:浓度梯度,g/m4。

其意义为物质扩散量与该物质的浓度梯度成正比,方向相反。

影响扩散的因素:①温度。

满足D=Doe-Q/RT的关系,T升高,D增加;②界面表面及位错。

是扩散的快速通道;③第三组元。

可对二元扩散有不同影响,如Mo、W降低C在γ-Fe中的扩散系数,Co、Si加速C的扩散,Mn影响不大;④晶体结构。

低对称性的晶体结构中,存在扩散的各向异性,如六方结构晶体,平行与垂直于基面(0001)的扩散系数不同;⑤熔点。

同一合金系中,同一温度下熔点高的合金中扩散慢,熔点低的扩散5、简述固态相变的一般特点答:①相变阻力中多了应变能一项。

②形核方面:非均匀形核,存在特定的取向关系,常为共格或半共格界面。

③生长方面:出现惯习现象,即有脱溶贯序;特殊/规则的组织形态,如片状、针状。

④有亚稳相出现以减少相变阻力。

6、什么是固溶体?讨论影响固溶体溶解度的主要因素。

答:溶质原子以原子态溶人溶剂点阵中而组成的单一均匀固体;溶剂的点阵类型被保留。

影响固溶度的因素有:1.原子尺寸因素。

当溶剂、溶质原子直径尺寸相对差小于±15%时,有大的代位溶解度。

2.负电性因素。

溶剂、溶质的负电性差越小溶解度越大,一般小于0.4—0.5会有较大溶解度。

3.电子浓度因素。

有两方面的含义:一是原子价效应,即同一溶剂金属中,溶质的原子价越高,溶解度越小;二是相对价效应,即高价溶质溶人低价溶剂时的溶解度高于相反的情况。

7、影响扩散的因素有哪些?①温度:温度越高,扩散系数越大,扩散速率越快。

②固溶体类型:间隙固溶体间隙原子的扩散激活能要比置换固溶体中置换原子的扩散激活能小得多,扩散速度也快得多。

③晶体结构:在温度及成分一定的条件下任一原子在密堆点阵中的扩散要比在非密堆点阵中的扩散慢。

④浓度:扩散系数是随浓度而变化的,有些扩散系统如金-镍系统中浓度的变化使镍和金的自扩散系数发生显著地变化。

⑤第三组元的影响:在二元合金中加入第三元素时,扩散系数也会发生变化。

⑥晶体缺陷的影响:空位、位错等晶体缺陷,加速置换原子的扩散。

8、固溶体与金属化合物有何异同点相同点:都具有金属的特性;不同点:结构不同,固溶体的结构与溶剂的相同,金属化合物的结构不同于任一组元;键合方式不同,固溶体为金属键,金属化合物为金属键、共价键、离子键混合键;性能不同,固溶体的塑性好、强度、硬度低,金属化合物,硬度高、熔点高、脆性大;在材料中的作用不同固溶体多为材料的基体,金属化合物为强化相。

9、什么是再结晶温度?影响再结晶温度的因素有哪些?。

答:冷变形金属开始进行再结晶的最低温度称为再结晶温度,①变形程度②原始晶粒尺寸③微量溶质原子④第二相粒子⑤再结晶退火工艺参数莱特专用金属学原理310、为什么晶体的滑移通常在密排晶面并沿密排晶向进行?答:因为只有在最密排晶面之间的面间距及最密排晶向之间的原子间距才最大,原子结合力也最弱,所以在最小的切应力下便能引起它们之间的相对滑移11、写出布拉菲点阵的七大晶系答:单斜晶系、三斜晶系、菱形晶系、四方晶系、正交晶系、六方晶系、立方晶系12、晶界具有哪些特性1)晶界处点阵畸变变大,存在晶界能,故晶粒长大和晶界平直化是一个自发过程。

2)晶界处原子排列不规则,从而阻碍塑性变形,强度更高。

这就是细晶强化的本质。

3)晶界处存在较多缺陷(位错、空位等),有利原子扩散。

4)晶界处能量高,固态相变先发生,因此晶界处的形核率高。

5)晶界处成分偏析和内吸附,又富集杂质原子,因此晶界熔点低而产生“过热”现象。

6)晶界能高,导致晶界腐蚀速度比晶粒内部更高13、1、有原始组织为细晶粒的低碳钢(含碳约0.1%),将其拉伸至应变时卸载,拉伸曲线如图所示,请绘出下列情况下的曲线并扼要加以说明。

(1)卸载后立即重新加载,继续拉伸,使之产生塑性变形;(2)卸载后经室温时效一小时,继续拉伸,使之产生塑性变形;(3)卸载后经高于720℃退火1小时后继续拉伸,使之产生塑性变形;(4)卸载后经880℃退火15分钟后继续拉伸,使之产生塑性变形。

14、金属键:金属中的自有电子与金属正离子相互作用所构成的键合。

15、空间点阵:把原子(或原子集团)抽象成纯粹的几何点,而完全忽略它的物理性质,这种抽象的几何点在晶体所在空间作周期性规则排列的阵列称为空间点阵.16、晶向族:晶体中原子排列结构相同的一族晶向。

17、晶面族:晶体中,有些晶面的原子排列情况相同,面间距完全相等,其性质完全相同,只是空间位向不同,这样一族晶面称为晶面族。

18、配位数:晶体结构中,与任一原子最近邻并且等距的原子数。

19、致密度:若把金属晶体中的原子视为直径相等的钢球,原子排列的紧密程度可以用钢球所占空间的体积百分数来表示,称为致密度。

即:致密度=单位晶包中原子所占体积/单位晶包体积20、同素异构转变:当外界条件(主要指温度和压力)改变时,元素的晶体结构可以发生转变,这种转变称为同素异构转变。

21、晶胚:当温度降到熔点以下时,在液态金属中存在结构起伏,即有瞬时存在的有序原子集团,这种近程有序的原子集团就是晶胚。

22、形核功:形成临界晶核要有的自由能增加。

23、动态过冷度:能保证凝固速度大于融化速度的过冷度称为动态过冷度。

24、光滑界面:光滑界面以上为液相,一下为固相,液固两相截然分开,固相的表面为基本完整的原子密排面,所以,从微观上看界面是光滑的,从宏观上看,它往往由不同位向的小平面所组成,故呈折线状。

这类界面也称小平面界面。

25、粗糙界面:液固两相之间的界面从微观上来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据,由于过渡层很薄,所以,从宏观上来看,界面反而显得平直,不出现曲折小平面,这类界面又称非小平面界面。

26、伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。

27、离异共晶:在先共晶相数量多,而共晶体数量甚少的情况下,共晶体与先共晶相相同的那一相将依附于已有的粗大先共晶相长大,并把共晶体中的另一相推向最后凝固的边界处,从而使共晶组织特征消失。

这种两相分离的共晶称为离异共晶。

28、上坡扩散:由低浓度向高浓度进行的扩散。

29、反应扩散:通过扩散而产生新相的现象。

30、自扩散:不依赖于浓度梯度,而仅由热振动而产生的扩散。

31、互扩散:原子的运动形成浓度变化的扩散。

32、柯肯达尔效应:由置换互溶原子因相对扩散速度不同而引起标记移动的不均衡扩散现象,即柯肯达尔效应。

33、成分过冷:固溶体结晶时,尽管实际温度分布不变,但液、固界面前沿液相中溶质分布发生变化,液相的熔点也随着变化,这种由于液相成分改变而形成的过冷称为成分过冷。

34、区域熔炼:利用正常凝固的原理进行金属提纯的方法。

35、直线法则:在一定温度下,三元合金两相平衡时,合金的成分点和两个平衡相的成分点必然位于成分三角形内的同一直线上。

36、重心定律:当三元合金在一定温度下处于三相平衡时,合金的成分点为三个平衡相的成分点组成的三角形的质量重心,此即重心定律。

37、连接线:两平衡相成分存在着对应关系,连接对应成分的直线叫做连接线。

38、滑移系:一个滑移面和此面上的一个滑移方向的组合。

39、复滑移:由于晶体的转动,使得另一滑移系参加滑移,从而形成双滑移、多滑移系参加滑移,称为复滑移。

40、交滑移:两个或两个以上的滑移面沿同一滑移方向进行交替滑移的过程。

相关文档
最新文档