北京中考几何压轴

合集下载

2022北京中考数学一模分类《几何综合压轴题》含答案解析

2022北京中考数学一模分类《几何综合压轴题》含答案解析

2022北京中考一模数学分类——几何综合压轴题一、倍长八字共5小题1.(2022朝阳一模27题)在ABC △中,D 是BC 的中点,且90BAD ∠≠︒,将线段AB 沿AD 所在直线翻折,得到线段AB ',作//CE AB 交直线AB '于点E . (1)如图,若AB AC >, ①依题意补全图形;②用等式表示线段,,AB AE CE 之间的数量关系,并证明;(2)若AB AC <,上述结论是否仍然成立?若成立,简述理由;若不成立,直接用等式表示线段,,AB AE CE 之间新的数量关系(不需证明).2.(2022顺义一模27题)如图,在Rt ABC △中,90ACB ∠=︒,CD 是斜边AB 上的中线,EF 垂直平分CD ,分别交AC ,BC 于点E ,F ,连接DE ,DF . (1)求∠EDF 的度数;(2)用等式表示线段AE ,BF ,EF 之间的数量关系,并证明.3.(2022平谷一模27题)如图,在△ABC 中,∠ACB =90°,AC =BC ,点D 为AB 边上一点(不与点A ,B 重合),作射线C D ,过点A 作AE ⊥CD 于E ,在线段AE 上截取EF=EC ,连接BF 交CD 于G.(1)依题意补全图形; (2)求证:∠CAE=∠BCD(3)判断线段BG 与GF 之间的数量关系,并证明.4.(2022丰台一模27题)如图,在△ABC 中,∠BAC=α,点D 在边BC 上(不与B,C 重合),连接AD,以点A 为中心,将线段AD 逆时针旋转180°-α得到线段AE,连接BE. (1)∠BAC+∠DAE= °(2)取CD 的中点F ,连接AF ,用等式表示线段AF 与BE 的数量关系,并证明。

5.(2022石景山一模27题)如图,△ACB 中,AC =BC ,∠ACB =90°,D 为边BC 上一点(不与点C 重合),CD <BD ,点E 在AD 的延长线上,且ED =AD ,连接BE ,过点B 作BE 的垂线, 交边AC 于点F . (1)依题意补全图形; (2)求证:BE =BF ;(3)用等式表示线段AF 与CD 的数量关系,并证明.ABCDABCD二、一线三垂直共1小题6.(2022通州一模27题)如图,在Rt ACB △中, 90ACB ∠=︒ ,AC BC =.点D 是BC 延长线上一点,连接AD .将线段AD 绕点A 逆时针旋转90°,得到线段AE .过点E 作//EF BD ,交AB 于点F . (1)①直接写出AFE ∠的度数是____________;②求证:DAC E ∠=∠; (2)用等式表示线段AF 与DC 的数量关系,并证明.三、三线合一共1小题7.(2022大兴一模27题)已知:如图,OB =BA ,∠OBA =150°,线段BA 绕点A 逆时针旋转90°得到线段AC .连接BC ,OA ,OC ,过点O 作OD ⊥AC 于点D .(1)依题意补全图形; (2)求∠DOC 的度数.四、手拉手共5小题8.(2022燕山一模27题)如图,在三角形ABC 中,AB =AC ,∠BAC <60°,AD 是BC 边的高线,将线段AC 绕点A 逆时针旋转60°得到线段AE ,连接BE 交AD 于点F . (1)依题意补全图形,写出∠CAE= ° (2)求∠BAF+∠ABF 和∠FBC 的度数;(3)用等式表示线段AF ,BF ,EF 之间的数量关系,并证明.9.(2022门头沟一模27题)如图,在等边△ABC 中,将线段AC 绕点A 顺时针旋转(060)αα<<,得到线段AD ,连接CD ,作∠BAD 的平分线AE ,交BC 于E . (1)① 根据题意,补全图形;② 请用等式写出∠BAD 与∠BCD 的数量关系,并证明.(2)分别延长CD 和AE 交于点F ,用等式表示线段AF ,CF ,DF 的数量关系,并证明.AB C A B C AB C10.(2022房山一模27题)已知:等边ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点,A B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;∠=∠;①求证:BDP PCBBC BD BP之间的数量关系,并证明;②用等式表示线段,,BC BD BP之间的数量关系.(2)点P在线段AB的延长线上,直接写出线段,,11.(2022海淀一模27题)27.在Rt ABC △中,90ABC ∠=︒,30BAC ∠=︒,D 为边BC 上一动点,点E 在边AC 上, C E CD =.点D 关于点B 的对称点为点F ,连接AD ,P 为AD 的中点,连接,,PE PF EF .(1)如图1,当点D 与点B 重合时,写出线段PE 与PF 之间的位置关系与数量关系;(2)如图2,当点D 与点,B C 不重合时,判断(1)中所得的结论是否仍然成立?若成立,请给出证明,若不成立,请举出反例。

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学:以三角形为载体的几何压轴问题真题+模拟(原卷版北京专用)

中考数学以三角形为载体的几何压轴问题【方法归纳】北京市中考的倒数第二道大题多数是已三角形为载体的几何综合问题,主要涉及特殊的三角形及相似三角形,这类问题的解决要熟知知各种图形的性质与判定,并且这类题目的解决有时还需要全等三角形和相似三角形、勾股定理、方程思想与分类讨论的相关知识,因此能熟练应用各种知识是解决此类问题的关键.常用到的三角形的知识有:(1)涉及全等问题解题要领:①探求两个三角形全等的条件:SSS,SAS,ASA,AAS及HL,注意挖掘问题中的隐含等量关系,防止误用“SSA”;②掌握并记忆一些基本构成图形中的等量关系;③把握问题中的关键,通过关键条件,发现并添加辅助线.(2)涉及到计算边的关系解题要领:①线段的垂直平分线常常用于构造等腰三角形;②在直角三角形中求边的长度,常常要用到勾股定理;③根据三角形的三边长度,利用勾股定理的逆定理可判断其为直角三角形;④已知直角三角形斜边的中点,考虑运用直角三角形斜边上中线的性质;⑤直角三角形斜边上中线的性质存在逆定理.(3)涉及角平分线问题的解题要领:①已知角的平分线及角平分线上的点到角一边的垂线段,考虑用角平分线的性质;②角平分线的性质常常与三角形的面积相结合.解题要领:(4)涉及到直角三角形方面的解题要领:①已知直角三角形及其锐角求线段长度时,运用锐角三角函数是最常用的方法;②通过等腰三角形的性质,特殊平行四边形的性质及圆的性质构建直角三角形,再运用锐角三角函数求解;③熟记特殊直角三角形的三边关系:30°角的直角三角形的三边的比为1∶∶2,等腰直角三角形的三边关系为1∶1∶;④锐角三角函数也常常作为相似三角形中,求对应边的比值的补充.【典例剖析】【例1】(2021·北京·中考真题)如图,在△ABC中,AB=AC,∠BAC=α,M为BC的中点,点D在MC上,以点A为中心,将线段AD顺时针旋转α得到线段AE,连接BE,DE.(1)比较∠BAE与∠CAD的大小;用等式表示线段BE,BM,MD之间的数量关系,并证明;(2)过点M作AB的垂线,交DE于点N,用等式表示线段NE与ND的数量关系,并证明.6.(2022·北京·中考真题)在△ABC中,∠ACB=90∘,D为△ABC内一点,连接BD,DC,延长DC到点E,使得CE=DC.(1)如图1,延长BC到点F,使得CF=BC,连接AF,EF,若AF⊥EF,求证:BD⊥AF;(2)连接AE,交BD的延长线于点H,连接CH,依题意补全图2,若AB2=AE2+BD2,用等式表示线段CD与CH的数量关系,并证明.【真题再现】1.(2013·北京·中考真题)在△ABC中,AB=AC,∠BAC=α(0°<α<60°),将线段BC绕点B逆时针旋转60°得到线段BD.(1)如图1,直接写出∠ABD的大小(用含α的式子表示);(2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE的形状并加以证明;(3)在(2)的条件下,连接DE,若∠DEC=45°,求α的值.2.(2017·北京·中考真题)在等腰直角△ABC中,∠ACB=90°,P是线段BC上一动点(与点B、C不重合),连接AP,延长BC至点Q,使得CQ=CP,过点Q作QH⊥AP于点H,交AB于点M.(1)若∠P AC=α,求∠AMQ的大小(用含α的式子表示).(2)用等式表示线段MB与PQ之间的数量关系,并证明.3.(2019·北京·中考真题)已知∠AOB=30°,H为射线OA上一定点,OH=√3+1,P为射线OB上一点,M为线段OH上一动点,连接PM,满足∠OMP为钝角,以点P为中心,将线段PM顺时针旋转150°,得到线段PN,连接ON.(1)依题意补全图1;(2)求证:∠OMP=∠OPN;(3)点M关于点H的对称点为Q,连接QP.写出一个OP的值,使得对于任意的点M总有ON=QP,并证明.4.(2020·北京·中考真题)在△ABC中,∠C=90°,AC>BC,D是AB的中点.E为直线上一动点,连接DE,过点D作DF⊥DE,交直线BC于点F,连接EF.(1)如图1,当E是线段AC的中点时,设AE=a,BF=b,求EF的长(用含a,b的式子表示);(2)当点E在线段CA的延长线上时,依题意补全图2,用等式表示线段AE,EF,BF之间的数量关系,并证明.【模拟精练】一、解答题1.(2022·北京市广渠门中学模拟预测)如图,等腰Rt△ABC中,∠BAC=90°,AB=AC,点P为射线BC上一动点(不与点B、C重合),以点P为中心,将线段PC逆时针旋转α角,得到线段PQ,连接AP、BQ、M为线段BQ的中点.(1)若点P在线段BC上,且M恰好也为AP的中点,的值;①依题意在图1中补全图形:②求出此时α的值和BPPC(2)写出一个α的值,使得对于任意线段BC延长线上的点P,总有AP的值为定值,并证明;PM2.(2022·北京房山·二模)如图1,在四边形ABCD中,∠ABC=∠BCD,过点A作AE∥DC交BC边于点E,过点E作EF∥AB交CD边于点F,连接AF,过点C作CH∥AF交AE于点H,连接BH.(1)求证:△ABH≌△EAF;(2)如图2,若BH的延长线经过AF的中点M,求BE的值.EC3.(2022·北京东城·二模)如图,在△ABC中,AB=AC,∠CAB=2α,在△ABC的外侧作直线AP(90°−a<∠PAC<180°−2a),作点C关于直线AP的对称点D,连接AD,BD,BD交直线AP于点E.(1)依题意补全图形;(2)连接CE,求证:∠ACE=∠ABE;(3)过点A作AF⊥CE于点F,用等式表示线段BE,2EF,DE之间的数量关系,并证明.4.(2022·北京·二模)在Rt△ABC中,∠ACB=90°,CD是AB边的中线,DE⊥BC于E,连接CD,点P在射线CB上(与B,C不重合)(1)如果∠A=30°①如图1,DE与BE之间的数量关系是______②如图2,点P在线段CB上,连接DP,将线段DP绕点D逆时针旋转60°,得到线段DF,连接BF,补全图2猜想CP、BF之间的数量关系,并证明你的结论.(2)如图3,若点P在线段CB的延长线上,且∠A=α(0°<α<90°),连接DP,将线段DP 绕点逆时针旋转2α得到线段DF,连接BF,请直接写出DE、BF、BP三者的数量关系(不需证明).5.(2022·北京密云·二模)如图,在等边△ABC中,点D在BA的延长线上,点P是BC边上的一个动点(点P不与点B重合),将线段PD绕点P逆时针旋转60°得到线段PE,连接BE和DE.(1)依据题意,补全图形;(2)比较∠BDE与∠BPE的大小,并证明;(3)用等式表示线段BE、BP与BD之间的数量关系,并证明.6.(2022·北京西城·二模)在△ABC中,AB=AC,过点C作射线CB′,使∠ACB′=∠ACB(点B′与点B在直线AC的异侧)点D是射线CB′上一动点(不与点C重合),点E在线段BC上,且∠DAE+∠ACD=90°.(1)如图1,当点E与点C重合时,AD 与CB′的位置关系是______,若BC=a,则CD的长为______;(用含a的式子表示)(2)如图2,当点E与点C不重合时,连接DE.①用等式表示∠BAC与∠DAE之间的数量关系,并证明;②用等式表示线段BE,CD,DE之间的数量关系,并证明.7.(2022·北京门头沟·二模)如图,在△ABC中,∠ACB = 90°,D是BC的中点,过点C作CE⊥AD,交AD于点E,交AB于点F,作点E关于直线AC的对称点G,连接AG和GC,过点B作BM⊥GC交GC的延长线于点M.(1)①根据题意,补全图形;②比较∠BCF与∠BCM的大小,并证明.(2)过点B作BN⊥CF交CF的延长线于点N,用等式表示线段AG,EN与BM的数量关系,并证明.8.(2022·北京顺义·二模)如图,在△ABC中,∠ACB=90°,AC=BC,P,D为射线AB上两点(点D在点P的左侧),且PD=BC,连接CP.以P为中心,将线段PD逆时针旋转n°(0<n<180)得线段PE.(1)如图1,当四边形ACPE是平行四边形时,画出图形,并直接写出n的值;(2)当n=135°时,M为线段AE的中点,连接PM.①在图2中依题意补全图形;②用等式表示线段CP与PM之间的数量关系,并证明.9.(2022·北京北京·二模)在△ABC中,∠ACB=90°,CA=CB,D是AB的中点,E为边AC上一动点(不与点A,C重合),连接DE,将线段BA绕点B逆时针旋转90°得到线段BF,过点F作FH⊥DE于点H,交射线BC于点G.(1)如图1,当AE<EC时,比较∠ADE与∠BFG的大小;用等式表示线段BG与AE的数量关系,并证明;(2)如图2,当AE>EC时,依题意补全图2,用等式表示线段DE,CG,AC之间的数量关系.10.(2022·北京四中模拟预测)已知,点B是射线AP上一动点,以AB为边作△ABC,∠BCA= 90°,∠A=60°,将射线BC绕点B顺时针旋转120°,得到射线BD,点E在射线BD上,BE+BC= m.(1)如图1,若BE=BC,求CE的长(用含m的式子表示);(2)如图2,点F在线段AB上,连接CF、EF.添加一个条件:AF、BC、BE满足的等量关系为______,使得EF=CF成立,补全图形并证明.11.(2022·北京昌平·二模)如图,已知∠MON=α(0°<α<90°),OP是∠MON的平分线,点A是射线OM上一点,点A关于OP对称点B在射线ON上,连接AB交OP于点C,过点A作ON 的垂线,分别交OP,ON于点D,E,作∠OAE的平分线AQ,射线AQ与OP,ON分别交于点F,G.(1)①依题意补全图形;②求∠BAE度数;(用含α的式子表示)(2)写出一个α的值,使得对于射线OM上任意的点A总有OD=√2AF(点A不与点O重合),并证明.12.(2022·北京海淀·二模)已知AB = BC,∠ABC = 90°,直线l是过点B的一条动直线(不与直线AB,BC重合),分别过点A,C作直线l的垂线,垂足为D,E.(1)如图1,当45°<∠ABD<90°时,①求证:CE +DE =AD;②连接AE,过点D作DH⊥AE于H,过点A作AF∥BC交DH的延长线于点F.依题意补全图形,用等式表示线段DF,BE,DE的数量关系,并证明;(2)在直线l运动的过程中,若DE的最大值为3,直接写出AB的长.13.(2022·北京市十一学校二模)如图,已知∠AOB=60°,点P为射线OA上的一个动点,过点P作PE⊥OB,交OB于点E,点D在∠AOB内,且满足∠DP A=∠OPE,DP+PE=5.(1)当DP=PE时,求DE的长;(2)在点P的运动过程中,请判断射线OA上是否存在一个定点M,使得DM的值不变?并证ME明你的判断.14.(2022·北京平谷·一模)如图,在△ABC中,∠ACB=90°,AC=BC,点D为AB边上一点(不与点A,B重合),作射线CD,过点A作AE⊥CD于E,在线段AE上截取EF=EC,连接BF交CD于G.(1)依题意补全图形;(2)求证:∠CAE=∠BCD;(3)判断线段BG与GF之间的数量关系,并证明.15.(2022·北京房山·一模)已知:等边△ABC,过点B作AC的平行线l.点P为射线AB上一个动点(不与点A,B重合),将射线PC绕点P顺时针旋转60°交直线l于点D.(1)如图1,点P在线段AB上时,依题意补全图形;①求证:∠BDP=∠PCB;②用等式表示线段BC,BD,BP之间的数里关系,并证明;(2)点P在线段AB的延长线上,直接写出线段BC,BD,BP之间的数量关系.16.(2022·北京市第一六一中学分校一模)已知点P为线段AB上一点,将线段AP绕点A 逆时针旋转60°,得到线段AC;再将线段BP绕点B逆时针旋转120°,得到线段BD;连接AD,取AD中点M,连接BM,CM.(1)如图1,当点P在线段CM上时,求证:PM//BD;(2)如图2,当点P不在线段CM上,写出线段BM与CM的数量关系与位置关系,并证明.17.(2022·北京·二模)如图,在等边ΔABC中,点D是边BC的中点,点E是直线BC上一动点,将线段AE绕点E逆时针旋转60°,得到线段EG,连接AG,BG.(1)如图1,当点E与点D重合时.①依题意补全图形;②判断AB与EG的位置关系;(2)如图2,取EG的中点F,写出直线DF与AB夹角的度数以及FD与EC的数量关系,并证明.18.(2022·北京朝阳·一模)在△ABC中,D是BC的中点,且∠BAD≠90°,将线段AB沿AD所在直线翻折,得到线段AB′,作CE∥AB交直线AB′于点E.(1)如图,若AB>AC,①依题意补全图形;②用等式表示线段AB,AE,CE之间的数量关系,并证明;(2)若AB<AC,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段AB,AE,CE之间新的数量关系(不需证明).19.(2022·北京·中国人民大学附属中学分校一模)如图,正方形ABCD中,P为BD上一动点,过点P作PQ⊥AP交CD边于点Q.(1)求证:PA=PQ;(2)用等式表示PB、PD、AQ之间的数量关系,并证明;(3)点P从点B出发,沿BD方向移动,若移动的路径长为4,则AQ的中点M移动的路径长为(直接写出答案).20.(2022·北京·东直门中学模拟预测)在Rt△ABC中,∠ABC=90°,∠BAC=30°.D为边BC上一动点,点E在边AC上,CE=CD.点D关于点B的对称点为点F,连接AD,P 为AD的中点,连接PE,PF,EF.(1)如图1,当点D与点B重合时,写出线段PE与PF之间的位置关系与数量关系;(2)如图2,当点D与点B,C不重合时,判断(1)中所得的关系是否仍然成立?若成立,请给出证明,若不成立,请举出反例.21.(2022·北京西城·一模)已知正方形ABCD,将线段BA绕点B旋转α(0°<α<90°),得到线段BE,连接EA,EC.(1)如图1,当点E在正方形ABCD的内部时,若BE平分∠ABC,AB=4,则∠AEC=______°,四边形ABCE的面积为______;(2)当点E在正方形ABCD的外部时,①在图2中依题意补全图形,并求∠AEC的度数;②作∠EBC的平分线BF交EC于点G,交EA的延长线于点F,连接CF.用等式表示线段AE,FB,FC之间的数量关系,并证明.22.(2022·北京市三帆中学模拟预测)已知:如图所示△ABC绕点A逆时针旋转α得到△ADE (其中点B与点D对应).(1)如图1,点B关于直线AC的对称点为B′,求线段B′E与CD的数量关系;(2)当α=32°时,射线CB与射线ED交于点F,补全图2并求∠AFD.23.(2022·北京市第五中学分校模拟预测)如图,在△ABC中,AB=AC,∠BAC=40°,作射线CM,∠ACM=80°.D上,连接AD,E是AD的中点,C关于点E的对称点为F,连接DF.(1)依题意补全图形;(2)判断AB与DF的数量关系并证明;(3)平面内一点G,使得DG=DC,FG=FB,求∠CDG的值.24.(2022·北京朝阳·模拟预测)如图①,Rt△ABC和Rt△BDE重叠放置在一起,∠ABC=∠DBE=90°,且AB=2BC,BD=2BE.(1)观察猜想:图①中线段AD与CE的数量关系是,位置关系是;(2)探究证明:把△BDE绕点B顺时针旋转到图②的位置,连接AD,CE,判断线段AD与CE的数量关系和位置关系如何,并说明理由;(3)拓展延伸:若BC=√5,BE=1,当旋转角α=∠ACB时,请直接写出线段AD的长度.25.(2022·北京市师达中学模拟预测)四边形ABCD是正方形,将线段CD绕点C逆时针旋转2α(0°<α<45°),得到线段CE,连接DE,过点B作BF⊥DE交DE的延长线于F,连接BE.(1)依题意补全图1;(2)直接写出∠FBE的度数;(3)连接AF,用等式表示线段AF与DE的数量关系,并证明.26.(2012·北京顺义·中考模拟)如图1,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.(1)如果AB=AC,∠BAC=90°.①当点D在线段BC上时(与点B不重合),如图2,线段CF、BD所在直线的位置关系为,线段CF、BD的数量关系为.②当点D在线段BC的延长线上时,如图3,①中的结论是否仍然成立?并说明理由;(2)如图4,如果AB≠AC,∠BAC是锐角,点D在线段BC上,当∠ACB满足什么条件时,CF⊥BC(点C、F不重合),并说明理由.27.(2015·北京·模拟预测)(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP的距离.28.(2021·北京·二模)在等腰三角形ABC中,AB=AC,∠BAC=α (0°<α<60°).点P是△ABC内一动点,连接AP,BP,将△APB绕点A逆时针旋转α,使AB边与AC重合,得到△ADC,射线BP与CD或CD延长线交于点M(点M与点D不重合).(1)依题意补全图1和图2;由作图知,∠BAP与∠CAD的数量关系为;(2)探究∠ADM与∠APM的数量关系为;(3)如图1,若DP平分∠ADC,用等式表示线段BM,AP,CD之间的数量关系,并证明.。

北京中考数学几何压轴题

北京中考数学几何压轴题

1.在平行四边形ABCD中,若∠A = 110°,则∠B的度数为:
A.70°(答案)
B.80°
C.90°
D.100°
2.一个圆的半径为r,其内接正方形的边长为:
A.r
B.√2r(答案)
C.2r
D.πr
3.在直角三角形ABC中,∠C = 90°,若AC = 3,BC = 4,则AB的长度为:
A.5(答案)
B. 6
C.7
D.8
4.已知等腰三角形的两边长分别为3和7,则这个等腰三角形的周长为:
A.13
B.17(答案)
C.13或17
D.无法确定
5.圆的切线垂直于过切点的半径,这是:
A.公理
B.定理(答案)
C.推论
D.假设
6.在梯形ABCD中,AD∥BC,若∠A = 120°,则∠D的度数为:
A.60°
B.120°
C.60°或120°(答案)
D.无法确定
7.正方形的对角线长度为d,则其边长为:
A.d/2
B.d/√2(答案)
C. d
D.√2d
8.在圆O中,弦AB的长度为8,圆心O到弦AB的距离为3,则圆O的半径为:
A. 4
B.5(答案)
C. 6
D.7
9.已知三角形的三边长为连续整数,且最长边为8,则这个三角形的最短边长为:
A. 4
B. 5
C.6(答案)
D.7
10.在平行四边形ABCD中,若AB = CD,且∠A = ∠C,则平行四边形ABCD是:
A.矩形
B.菱形(答案)
C.正方形
D.无法确定。

北京市大兴区第八中学中考数学几何综合压轴题模拟专题

北京市大兴区第八中学中考数学几何综合压轴题模拟专题

北京市大兴区第八中学中考数学几何综合压轴题模拟专题一、中考几何压轴题1.(问题探究)课堂上老师提出了这样的问题:“如图①,在ABC 中,108BAC ∠=︒,点D 是BC 边上的一点,7224BAD BD CD AD ∠=︒==,,,求AC 的长”.某同学做了如下的思考:如图②,过点C 作CE AB ∥,交AD 的延长线于点E ,进而求解,请回答下列问题:(1)ACE ∠=___________度;(2)求AC 的长.(拓展应用)如图③,在四边形ABCD 中,12075BAD ADC ∠=︒∠=︒,,对角线AC BD 、相交于点E ,且AC AB ⊥,22EB ED AE ==,,则BC 的长为_____________.2.综合与实践(1)问题发现:正方形ABCD 和等腰直角△BEF 按如图①所示的方式放置,点F 在AB 上,连接AE 、CF ,则AE 、CF 的数量关系为 ,位置关系为 .(2)类比探究:正方形ABCD 保持固定,等腰直角△BEF 绕点B 顺时针旋转,旋转角为α(0°<α ≤360°),请问(1)中的结论还成立吗?请就图②说明你的理由:(3)拓展延伸:在(2)的条件下,若AB = 2 BF = 4,在等腰直角△BEF 旋转的过程中,当CF 为最大值时,请直接写出DE 的长.3.(教材呈现)下面是华师版八年级下册教材第89页的部分内容.如图,G ,H 是平行四边形ABCD 对角线AC 上的两点,且AG =CH ,E ,F 分别是边AB 和CD 的中点求证:四边形EHFG 是平行四边形证明:连接EF 交AC 于点O∵四边形ABCD 是平行四边形∴AB =CD ,AB ∥CD又∵E ,F 分别是AB ,CD 的中点∴AE =CF又∵AB ∥CD∴∠EAO =∠FCO又∵∠AOE =∠COF∴△AOE ≌△COF请补全上述问题的证明过程.(探究)如图①,在△ABC 中,E ,O 分别是边AB 、AC 的中点,D 、F 分别是线段AO 、CO 的中点,连结DE 、EF ,将△DEF 绕点O 旋转180°得到△DGF ,若四边形DEFG 的面积为8,则△ABC 的面积为 .(拓展)如图②,GH 是正方形ABCD 对角线AC 上的两点,且AG =CH ,GH =AB ,E 、F 分别是AB 和CD 的中点.若正方形ABCD 的面积为16,则四边形EHFG 的面积为 .4.综合与实践背景阅读:“旋转”即物体绕一个点或一个轴做圆周运动.在中国古典专著《百喻经·口诵乘船法而不解用喻》中记载:“船盘回旋转,不能前进.”而图形旋转即:在平面内,将一个图形绕一点按某个方向转动一个角度,这样的运动叫做图形的旋转,这个定点叫做旋转中心,转动的角叫做旋转角.综合实践课上,“睿智”小组专门探究了正方形的旋转,情况如下:在正方形ABCD 中,点O 是线段BC 上的一个动点,将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D ''''(点A ',B ',C ',D 分别是点A ,B ,C ,D 的对应点).设旋转角为α(0180α<<︒).操作猜想:(1)如图1,若点O 是BC 中点,在正方形ABCD 绕点旋转过程中,连接AA ',BB ',DD ',则线段AA '与DD '的数量关系是_______;线段AA '与BB '的数量关系是________. 探究验证:(2)如图2,在(1)的条件下,在正方形ABCD 绕点O 旋转过程中,顺次连接点B ,B ',C ,C ',B .判断四边形''BB CC 的形状,并说明理由.拓展延伸:(3)如图3,若2BO CO =,在正方形ABCD 绕点O 顺时针旋转的过程中,设直线BB '交线段AA '于点P .连接OP ,并过点O 作OQ BB '⊥于点Q .请你补全图形,并直接写出OP OQ 的值. 5.(问题探究)(1)如图1,△ABC 和△DEC 均为等腰直角三角形,∠ACB =∠DCE =90°,点B ,D ,E 在同一直线上,连接AD ,BD .①请探究AD 与BD 之间的位置关系?并加以证明.②若AC =BC =10,DC =CE =2,求线段AD 的长.(拓展延伸)(2)如图2,△ABC 和△DEC 均为直角三角形,∠ACB =∠DCE =90°,AC =21,BC =7,CD =3,CE =1.将△DCE 绕点C 在平面内顺时针旋转,设旋转角∠BCD 为α(0°≤α<360°),作直线BD ,连接AD ,当点B ,D ,E 在同一直线上时,画出图形,并求线段AD 的长.6.综合与实践:利用矩形的折叠开展数学活动,探究体会图形在轴对称,旋转等变换过程中的变化,及其蕴含的数学思想和方法.动手操作:如图①,矩形纸片ABCD 的边AB =3ABCD 对折,使点A 与点D 重合,点B 与点C 重合,折痕为EF ,然后展开,EF 与AC 交于点H ;如图②,将矩形ABCD 沿过点A 的直线折叠,使点B 落在对角线AC 上,且点B 与点H 重合,展开图形,折痕为AG ,连接GH ;若在图①中连接BH ,得到如图③,点M 是线段BH 上的动点,点N 是线段AH 上的动点,连接AM ,MN ,且∠AMN =∠ABH ;若在图②中连接BH ,交折痕AG 于点Q ,隐去其它线段,得到如图④.解决问题:(1)在图②中,∠ACB = ,BC = ,AG GF = ,与△ABG 相似的三角形有 个; (2)在图②中,AH 2=AE ·(从图②中选择一条线段填在空白处),并证明你的结论; (3)在图③中,△ABH 为 三角形,设BM 为x ,则NH = (用含x 的式子表示); 拓展延伸:(4)在图④中,将△ABQ 绕点B 按顺时针方向旋转α(0°≤α≤180°),得到△A ′BQ ′,连接DQ ′,则DQ ′的最小值为 ,当tan ∠CBQ ′= 时,△DBQ ′的面积最大值为 . 7.综合与实践操作探究(1)如图1,将矩形ABCD 折叠,使点A 与点C 重合,折痕为EF ,AC 与EF 交于点G .请回答下列问题:①与AEG △全等的三角形为______,与AEG △相似的三角形为______.并证明你的结论:(相似比不为1,只填一个即可):②若连接AF 、CE ,请判断四边形AFCE 的形状:______.并证明你的结论; 拓展延伸(2)如图2,矩形ABCD 中,2AB =,4BC =,点M 、N 分別在AB 、DC 边上,且AM NC =,将矩形折叠,使点M 与点N 重合,折痕为EF ,MN 与EF 交于点G ,连接ME .①设22m AM AE =+,22n ED DN =+,则m 与n 的数量关系为______;②设AE a =,AM b =,请用含a 的式子表示b :______;③ME 的最小值为______.8.等腰△ABC ,AB =AC ,∠BAC =120°,AF ⊥BC 于F ,将腰AB 绕点A 逆时针旋转至AB ′,记旋转角为α,连接BB ′,过C 作CE 垂直于直线BB ′,垂足为E ,连接CB ′.(1)问题发现:如图1,当40α=︒时,CB E ∠'的度数为_______;连接EF ,则EF AB '的值为________.(2)拓展探究:当0360α︒<<︒,且120α≠︒时,①(1)中的两个结论是否仍然成立?如果成立,请仅就图2的情形进行证明;如果不成立,请说明理由; ②解决问题:当A ,E ,F 三点共线时,请直接写出BB BE'的值. 9.类比、转化、从特殊到一般等思想方法,在数学学习和研究中经常用到,如下是一个案例,请补充完整.原题:如图1,在平行四边形ABCD 中,点E 是BC 的中点,点F 是线段AE 上一点,BF 的延长线交射线CD 于点G .若3AF EF =,求CD CG的值.(1)尝试探究在图1中,过点E 作//EH AB 交BG 于点H ,则AB 和EH 的数量关系是_________,CG 和EH 的数量关系是_________,CD CG的值是_________.(2)类比延伸如图2,在原题的条件下,若()0AF m m EF =>,则CD CG的值是_________(用含有m 的代数式表示),试写出解答过程.(3)拓展迁移如图3,梯形ABCD 中,//DC AB ,点E 是BC 的延长线上的一点,AE 和BD 相交于点F .若AB a CD =,BC b BE=,()0,0a b >>,则AF EF 的值是________(用含a 、b 的代数式表示). 10.(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE . 填空:①∠AEB 的度数为 ;②线段AD ,BE 之间的数量关系为 .(2)拓展探究如图2,△ACB 和△DCE 均为等腰直角三角形,∠ACB =∠DCE =90°,点A ,D ,E 在同一直线上,CM 为△DCE 中DE 边上的高,连接BE ,请判断∠AEB 的度数及线段CM ,AE ,BE 之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD 中,CD =2,若点P 满足PD =1,且∠BPD =90°,请直接写出点A 到BP 的距离.11.如图l ,在正方形ABCD ABCD 中,8AB =AB=8,点E E 在AC AC 上,且22AE =,22AE =过E 点作EF AC ⊥于点E ,交AB 于点F ,连接CF ,DE .(问题发现)(1)线段DE 与CF 的数量关系是________,直线DE 与CF 所夹锐角的度数是___________;(拓展探究)(2)当AEF绕点A顺时针旋转时,上述结论是否成立?若成立,请写出结论并结合图2给出证明;若不成立,请说明理由;(解决问题)(3)在(2)的条件下,当点E到直线AD的距离为2时,请直接写出CF的长.12.(问题情境)(1)如图1,四边形ABCD是正方形,点E是AD边上的一个动点,以CE为边在CE的右侧作正方形CEFG,连接DG、BE,则DG与BE的数量关系是;(类比探究)(2)如图2,四边形ABCD是矩形,AB=2,BC=4,点E是AD边上的一个动点,以CE为边在CE的右侧作矩形CEFG,且CG:CE=1:2,连接DG、BE.判断线段DG与BE有怎样的数量关系和位置关系,并说明理由;(拓展提升)(3)如图3,在(2)的条件下,连接BG,则2BG+BE的最小值为.13.(1)问题发现如图1,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=45°,点E是线段AC 上一动点,连接DE.填空:①则ADEC的值为______;②∠EAD的度数为_______.(2)类比探究如图2,在Rt△ABC和Rt△DBE中,∠ABC=∠DBE=90°,∠ACB=∠BED=60°,点E是线段AC上一动点,连接DE.请求出ADEC的值及∠EAD的度数;(3)拓展延伸如图3,在(2)的条件下,取线段DE的中点M,连接AM、BM,若BC=4,则当△ABM是直角三角形时,求线段AD的长.14.(探究证明)(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明:如图①,在矩形ABCD 中,EF ⊥GH ,EF 分别交AD 、BC 于点E 、F ,GH 分别交AB 、DC 于点G 、H ,求证:EF AB GH AD=;(结论应用)(2)如图②,将矩形ABCD 沿EF 折叠,使得点B 和点D 重合,若AB =2,BC =3.求折痕EF 的长;(拓展运用)(3)如图③,将矩形ABCD 沿EF 折叠.使得点D 落在AB 边上的点G 处,点C 落在点P 处,得到四边形EFPG ,若AB =2,BC =3,EF =2103,请求BP 的长. 15.我们定义:连结凸四边形一组对边中点的线段叫做四边形的“准中位线”.(1)概念理解:如图1,四边形ABCD 中,F 为CD 的中点,90ADB ∠=︒,E 是AB 边上一点,满足DE AE =,试判断EF 是否为四边形ABCD 的准中位线,并说明理由.(2)问题探究:如图2,ABC ∆中,90ACB ∠=︒,6AC =,8BC =,动点E 以每秒1个单位的速度,从点A 出发向点C 运动,动点F 以每秒6个单位的速度,从点C 出发沿射线CB 运动,当点E 运动至点C 时,两点同时停止运动.D 为线段AB 上任意一点,连接并延长CD ,射线CD 与点,,,A B E F 构成的四边形的两边分别相交于点,M N ,设运动时间为t .问t 为何值时,MN 为点,,,A B E F 构成的四边形的准中位线.(3)应用拓展:如图3,EF 为四边形ABCD 的准中位线,AB CD =,延长FE 分别与BA ,CD 的延长线交于点,M N ,请找出图中与M ∠相等的角并证明.16.(1)问题发现如图1,ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,若∠ADE =60°,则AB ,CE ,BD ,DC 之间的数量关系是 .(2)拓展探究如图2,ABC 是等腰三角形,AB =AC ,∠B =α,点D ,E 分别在边BC ,AC 上.若∠ADE =α,则(1)中的结论是否仍然成立?请说明理由.(3)解决问题如图3,在ABC 中,∠B =30°,AB =AC =4cm ,点P 从点A 出发,以1cm/s 的速度沿A→B 方向勾速运动,同时点M 从点B 出发,以3cm/s 的速度沿B→C 方向匀速运动,当其中一个点运动至终点时,另一个点随之停止运动,连接PM ,在PM 右侧作∠PMG =30°,该角的另一边交射线CA 于点G ,连接PC .设运动时间为t (s ),当△APG 为等腰三角形时,直接写出t 的值.17.问题呈现:已知等边三角形ABC 边BC 的中点为点D ,120EDF ∠=︒,EDF ∠的两边分别交直线AB ,AC 于点E ,F ,现要探究线段BE ,CF 与等边三角形ABC 的边长BC 之间的数量关系.(1)特例研究:如图1,当点E ,F 分别在线段AB ,AC 上,且DE AB ⊥,DF AC ⊥时,请直接写出线段BE ,CF 与BC 的数量关系:________;(2)问题解决:如图2,当点E 落在射线BM 上,点F 落在线段AC 上时,(1)中的结论是否成立?若不成立,请通过证明探究出线段BE ,CF 与等边三角形ABC 的边长BC 之间的数量关系;(3)拓展应用:如图3,当点E 落在射线BA 上,点F 落在射线AC 上时,若2CD =,45CDF ∠=︒62sin CFD -∠=BE 的长和此时DEF ∆的面积. 18.如图1,已知ABC EBD △≌△,90ACB EDB ∠=∠=︒,点D 在AB 上,连接CD 并延长交AE 于点F ,(1)猜想:线段AF 与EF 的数量关系为_____;(2)探究:若将图1的EBD △绕点B 顺时针方向旋转,当CBE ∠小于180︒时,得到图2,连接CD 并延长交AE 于点F ,则(1)中的结论是否还成立?若成立,请证明;若不成立,请说明理由;(3)拓展:图1中,过点E 作EG CB ⊥,垂足为点G .当ABC ∠的大小发生变化,其它条件不变时,若EBG BAE ∠=∠,6BC =,直接写出AB 的长.19.综合与实践——探究特殊三角形中的相关问题问题情境:某校学习小组在探究学习过程中,将两块完全相同的且含60︒角的直角三角板ABC 和AFE 按如图1所示位置放置,且Rt ABC 的较短直角边AB 为2,现将Rt AEF 绕A 点按逆时针方向旋转α(090)α︒<<︒,如图2,AE 与BC 交于点M ,AC 与EF 交于点N ,BC 与EF 交于点P .(1)初步探究:勤思小组的同学提出:当旋转角α= 时,AMC 是等腰三角形;(2)深入探究:敏学小组的同学提出在旋转过程中,如果连接AP ,CE ,那么AP 所在的直线是线段CE 的垂直平分线.请帮他们证明;(3)再探究:在旋转过程中,当旋转角30α=︒时,求ABC 与AFE △重叠的面积;(4)拓展延伸:在旋转过程中,CPN 是否能成为直角三角形?若能,直接写出旋转角α的度数;若不能,说明理由.20.问题发现:(1)正方形ABCD 和正方形AEFG 如图①放置,AB =4,AE =2.5,则DG CF =___________.问题探究:(2)如图②,在矩形ABCD中,AB=3,BC=4,点P在矩形的内部,∠BPC=135°,求AP长的最小值.问题拓展:(3)如图③,在四边形ABCD中,连接对角线AC、BD,已知AB=6,AC=CD,∠ACD=90°,∠ACB=45°,则对角线BD是否存在最大值?若存在,求出最大值;若不存在,请说明理由.【参考答案】***试卷处理标记,请不要删除一、中考几何压轴题1.【问题探究】(1);(2).【拓展应用】.【分析】问题探究:(1)由平行线的性质得出∠ACE+∠BAC=180°,即可得出结果;(2)由平行线的性质得出∠E=∠BAD=72°,证出AC=AEAC=.【拓展应用】26解析:【问题探究】(1)72︒;(2)6【分析】问题探究:(1)由平行线的性质得出∠ACE+∠BAC=180°,即可得出结果;(2)由平行线的性质得出∠E=∠BAD=72°,证出AC=AE,由平行线证明△ABD∽△ECD,求出AD=2;ED=4,ED=2,得出AC=AE=AD+ED=6;拓展应用:过点D作DF∥AB交AC于点F.证明△BAE∽△DFE,得出AB AE BE== =2,得DF EF DEAE=1,AF=AE+EF=3,证出AC=AD,在Rt△ADF中,求出出AB=2DF,EF=12DF=AF×tan∠333AC=AB,在Rt△ABC 中,求出26即可.【详解】解:(1)∵CE∥AB,∴∠ACE+∠BAC=180°,∴∠ACE=180°-108°=72°;故答案为:72;(2)∵CE∥AB,∴∠E=∠BAD=72°,∴∠E=∠ACE,∴AC=AE,∵CE∥AB,∴△ABD∽△ECD,∴AD BD=,ED CD∵BD=2CD,∴AD=2,ED∴AD=2ED=4,∴ED=2,∴AC=AE=AD+ED=4+2=6;拓展应用::如图3中,过点D作DF∥AB交AC于点F.∵AC⊥AB,∴∠BAC=90°,∵DF∥AB,∴∠DFA=∠BAC=90°,∵∠AEB=∠DEF,∴△BAE∽△DFE,∴AB AE BE===2,DF EF DE∴AB=2DF,EF=1AE=1,AF=AE+EF=3,2∵∠BAD=120°,∴∠CAD=30°,∴∠ACD=75°=∠ADC,∴AC=AD,在Rt△ADF中,∵∠CAD=30°,∴DF=AF×tan∠33,∴∴AC=AB,在Rt△ABC中,∵∠BAC=90°,∴故答案为:【点睛】此题考查四边形综合题,相似三角形的判定与性质,直角三角形的性质,等腰三角形的判定,勾股定理,本题综合性强,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.2.(1)相等,垂直;(2)成立,见解析;(3)2.【分析】(1)利用SAS证明△ABE≌△CBF,延长CF交AB于点M,证明∠AMC=90°即可;(2)仿照(1)的证明方法求解即可;(3)根据解析:(1)相等,垂直;(2)成立,见解析;(3)【分析】(1)利用SAS证明△ABE≌△CBF,延长CF交AB于点M,证明∠AMC=90°即可;(2)仿照(1)的证明方法求解即可;(3)根据题意,得点F在以B为圆心,BF为半径的圆上运动,根据直径最大原理,知道当C,B,F三点一线时,CF最大,此时点E恰好在AB的延长线上,连接DE,利用勾股定理求值即可.【详解】(1)如图①,∵正方形ABCD和等腰直角△BEF,∴BA=BC,∠EBA=∠FBC=90°,BE=BF,∴△ABE≌△CBF,∴AE=CF,延长CF交AE于点M,∵△ABE≌△CBF,∴∠EAB=∠FCB,∵∠AFM=∠BFC,∴∠AMF=∠FBC=90°,∴AE⊥CF,故答案为:相等,垂直;(2)结论还成立.理由如下:如图②,∵正方形ABCD和等腰直角△BEF,∴BA=BC,∠EBF=∠ABC=90°,BE=BF,∴∠EBF-∠ABF =∠ABC-∠ABF,∴∠EBA =∠FBC,∴△ABE≌△CBF,∴AE=CF,延长CF交AE于点N,交AB于点G,∵△ABE≌△CBF,∴∠EAB=∠FCB,∵∠AGN=∠BGC,∴∠ANG=∠GBC=90°,∴AE⊥CF,故结论成立;(3)如图③,根据题意,得点F在以B为圆心,BF为半径的圆上运动,根据直径最大原理,知道当C,B,F三点一线时,CF最大,此时点E恰好在AB的延长线上,连接DE,∵AB= 2BF = 4,∴AE=AB+BE=6,在直角三角形ADE中,DE2222++1364AE AB【点睛】本题考查了正方形的性质,等腰直角三角形的性质,三角形的全等,勾股定理,直径是圆中的最大的弦,垂直的定义,熟练掌握三角形全等,垂直的证明是解题的关键. 3.教材呈现:见解析;探究:16;拓展:4【分析】教材呈现:先根据三角形全等的性质可得,再根据线段的和差可得,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得,再根据等底同高可得,从而可解析:教材呈现:见解析;探究:16;拓展:2【分析】教材呈现:先根据三角形全等的性质可得,OE OF OA OC ==,再根据线段的和差可得OG OH =,然后根据平行四边形的判定即可得证;探究:先由旋转的性质可得4DGF S =,再根据等底同高可得2ADE DOE EOF S S S ===,从而可得4AOE S =,然后根据三角形中位线定理即可得;拓展:先根据正方形的性质和面积可得4,90AB BC B ==∠=︒,从而可得2,4,2AC GH AE ===,再根据等腰直角三角形和勾股定理可得2OE =角形的面积公式可得22EGH S =【详解】 解:教材呈现:补充完整证明过程如下:∴OE =OF ,OA =OC ,又∵AG =CH ,∴OA -AG =OC -CH ,即OG =OH ,∴四边形EHFG 是平行四边形;探究:如图,连接OE ,BO , 由旋转的性质得:118422DGF DEF DEFG S S S ===⨯=四边形, 点O 是AC 的中点,点D 是AO 的中点,点F 是CO 的中点,AD OD OF CF ∴===,由等底同高得:114222ADE DOE EOF DEF S S S S ====⨯=,224AOE ADE DOE S S S ∴=+=+=, 又点E 是AB 的中点,点O 是AC 的中点,∴S △BEO =S △AEO =4,∴S △ABO = S △BEO +S △AEO =8,22816ABC AOB S S ∴==⨯=,故答案为:16;拓展:如图,过点E 作EO GH ⊥于点O ,四边形ABCD 是面积为16的正方形,4,90AB BC B ∴==∠=︒,在Rt △ABC 中,由勾股定理得22224424A C B B A C ++=∵AC 为正方形的对角线,∴∠EAO =45°,点E 是AB 的中点,122AE AB ∴==, ∵EO GH ⊥,∴45AEO EAO ∠=∠=︒,∴AO =EO ,在Rt △AEO 中由勾股定理的AO 2+EO 2=AE 2,即2OE 2=4 解得2OE =GH AB =,4GH ∴=,11422222EGH S GH OE ∴=⋅=⨯ 由教材呈现可知,四边形EHFG 是平行四边形,则四边形EHFG 的面积为222242EGH S=⨯, 故答案为:42【点睛】本题考查了旋转的性质、三角形中线性质、平行四边形的判定与性质、正方形的性质,等腰直角三角形性质,勾股定理等知识点,较难的是拓展,通过作辅助线,构造等腰直角三角形是解题关键.4.(1);;(2)矩形,见解析;(3)见解析,.【分析】(1)如图,连接OA 、OA′、OD 、OD′,根据旋转的性质可得OA=OA′、OD=OD′,∠AOA′=∠DOD′=,根据勾股定理可得OA=O解析:(1)AA DD ''=;5AA BB ''=;(2)矩形,见解析;(3)见解析,13OP OQ 【分析】(1)如图,连接OA 、OA ′、OD 、OD ′,根据旋转的性质可得OA =OA ′、OD =OD ′,∠AOA ′=∠DOD ′=α,根据勾股定理可得OA =OD ,利用SAS 可证明△AOA ′≌△DO D′,根据全等三角形的性质可得AA ′=DD ′,根据旋转的性质可得∠BOB ′=α,根据5OB OB OA OA'='△OAA ′∽△OBB ′,根据相似三角形的性质即可得答案;(2)根据旋转的性质可得BC B C ''=,OB OB '=,OC OC '=,根据点O 是BC 中点即可得出OB OC OB OC ''===,根据对角线相等且互相平分的四边形是矩形即可证明四边形''BB CC 是矩形; (3)根据题意,补全图形,连接OA 、OA ′,作AM ⊥BP 于M ,A ′N ⊥BP 于N ,根据勾股定理可得13OA OA ''==,根据平角的定义及直角三角形两锐角互余的性质可得''ABM A B N ∠=∠,利用AAS 可证明△ABM ≌△A ′B ′N ,可得AM =A ′N ,利用AAS 可证明△APM ≌△A ′PN ,可得AP A P '=,根据等腰三角形“三线合一”的性质可得∠A ′OP =12∠AOA ′=12α,∠QOB ′=1122BOB α'∠=,根据角的和差关系可得∠POQ =∠A ′OB ′,即可证明△OQP ∽△OB ′A ′,根据相似三角形的性质即可得答案.【详解】(1)如图,连接OA 、OA ′、OD 、OD ′,∵将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',旋转角为α,∴OA =OA ′、OD =OD ′,∠AOA ′=∠DOD ′=α,∴△AOA ′≌△DO D′,∴AA ′=DD ′,∵点O 是BC 中点,∴OB =1122BC AB =, ∴OA =225OB AB OB +=,∵将正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',旋转角为α,∴∠BOB ′=∠AOA ′=α,∵5OB OB OA OA'==', ∴△OAA ′∽△OBB ′,∴''AA OA BB OB==5, ∴5AA BB ''=,故答案为:AA DD ''=;5AA BB ''=(2)四边形''BB CC 是矩形;理由如下:∵正方形ABCD 绕点O 顺时针旋转得到正方形A B C D '''',∴BC B C ''=,OB OB '=,OC OC '=,∵点O 是BC 中点,∴OB OC OB OC ''===四边形''BB CC 是平行四边形,∵BC B C ''=,∴四边形''BB CC 是矩形.(3)如图,补全图形如下:连接OA 、OA ′,作AM ⊥BP 于M ,A ′N ⊥BP 于N , ∵2BO CO =,∴AB =BC =32OB , ∴OA ′=OA =22132AB OB OB +=='132OB , ∵∠OB ′A ′=90°, ∴'''90A B N OB B ∠+∠=︒,∵'OB OB =,∴''OB B OBB ∠=∠,∵'90ABM OBB ∠+∠=︒,∴ABM A B N ''∠=∠,∵''AB A B =,''AMB A NB ∠=∠,∴△ABM ≌△A ′B ′N ,∴AM =A ′N (AAS ),∵''AMB A NB ∠=∠,'APM A PN ∠=∠,∴△APM ≌△A ′PN ,∴AP=A′P ,∵OA =OA ′,∴∠A ′OP =12∠AOA ′=12α, ∵OB =OB ′,OQ ⊥BB ′,∴∠QOB ′='1122BOB α∠=, ∴∠QOB ′+∠B ′OP =∠A ′OP +∠B ′OP ,即∠POQ =∠A ′OB ′,∵∠OQP =∠OB ′A ′=90°,∴△OQP ∽△OB ′A ′,∴''132OP OA OQ OB ==.【点睛】本题考查旋转的性质、矩形的判定、全等三角形的判定与性质及相似三角形的判定与性质,熟练掌握全等三角形及相似三角形的判定定理并正确作出辅助线构造全等三角形及相似三角形是解题关键.5.(1)①,证明见解析;②4;(2)画图见解析,或【分析】(1)①由“”可证,可得,可得;②过点作于点,由勾股定理可求,,的长,即可求的长;(2)分点在左侧和右侧两种情况讨论,根据勾股定理和相似解析:(1)①AD BD ⊥,证明见解析;②4;(2)画图见解析,33或23【分析】(1)①由“SAS ”可证ACD BCE ≅∆∆,可得45ADC BEC ∠=∠=︒,可得AD BD ⊥;②过点C 作CF AD ⊥于点F ,由勾股定理可求DF ,CF ,AF 的长,即可求AD 的长; (2)分点D 在BC 左侧和BC 右侧两种情况讨论,根据勾股定理和相似三角形的性质可求解.【详解】解:(1)ABC ∆和DEC ∆均为等腰直角三角形,AC BC ∴=,CE CD =,45ABC DEC CDE ∠=∠=︒=∠,90ACB DCE ∠=∠=︒,ACD BCE ∠∠∴=,且AC BC =,CE CD =,()ACD BCE SAS ∴∆≅∆,45ADC BEC ∴∠=∠=︒,90ADE ADC CDE ∴∠=∠+∠=︒,AD BD ∴⊥,故答案为:AD BD ⊥;②如图,过点C 作CF AD ⊥于点F ,45ADC ∠=︒,CF AD ⊥,2CD =,1DF CF ∴==,223AF AC CF ∴-=,4AD AF DF ∴=+=,故答案为:4;(2)若点D 在BC 右侧,如图,过点C 作CF AD ⊥于点F ,90ACB DCE ∠=∠=︒,21AC =,7BC =,3CD =,1CE =.ACD BCE ∠∠∴=,3AC CD BC CE==, ACD BCE ∴∆∆∽, ADC BEC ∠∠∴=, 3CD =,1CE =,222DE DC CE ∴=+=,ADC BEC ∠=∠,90DCE CFD ∠=∠=︒,DCE CFD ∴∆∆∽,∴DE DC CE DC CF DF==, 即2313CF DF ==, 32CF ∴=,32DF =, 22532AF AC CF ∴=-=, 33AD DF AF ∴=+=,若点D 在BC 左侧,90ACB DCE ∠=∠=︒,21AC 7BC =3CD =1CE =.ACD BCE ∠∠∴=,3AC CD BC CE=, ACD BCE ∴∆∆∽, ADC BEC ∠∠∴=,CED CDF ∴∠=∠,3CD =1CE =,2DE ∴,CED CDF ∠=∠,90DCE CFD ∠=∠=︒,DCE CFD ∴∆∆∽, ∴DE DC CE DC CF DF==,1DF =,32CF ∴=,DF =,AF ∴=AD AF DF ∴=-=【点睛】本题是几何变换综合题,考查了全等三角形的判定和性质,相似三角形的判定和性质,勾股定理,等腰三角形的性质等知识点,关键是添加恰当辅助线.6.(1)30°,6,4,7;(2)AG ;(3)等边,;(4)3,,6【分析】(1)由点H 为AC 中点,可得AC=2AH ,由折叠,点B 与点H 重合,与四边形ABCD 为矩形,可证GH 为AC 的垂直平分线,可解析:(1)30°,6,4,7;(2)AG ;(3)等边,2+x x ;(4)6 【分析】(1)由点H 为AC 中点,可得AC =2AH ,由折叠,点B 与点H 重合,与四边形ABCD 为矩形,可证GH 为AC 的垂直平分线,可得AG =CG ,∠GCH =∠GAH ,可求∠ACB =30°,利用三角函数可求BC =6,AG =4,BF =FC =3,可求4==41AG GF ,与△ABG 相似的三角形由7个;(2)由EF 为折痕,可证△AEH ∽△AHG ,可得2=AH AE AG ⋅即可;(3)由四边形ABCD 为矩形,点H 为对角线AC 中点,可证△ABH 为等边三角形,再证△ABM ∽△MHN ,可得x HN =即可;(4)连结BD ,当点Q′在BD 上时,Q′D 最小,先求BC =Q′D 最小=BD BQ '-BQ′⊥BD 时,△BDQ′面积最大∠CB Q′=60°,S △BDQ′最大=162BD Q B '⋅=. 【详解】解(1)∵点H 为AC 中点,∴AC =2AH ,∵折叠,点B 与点H 重合,∴AB =AH =23,BG =HG ,∠BAG =∠HAG =12BAC ∠,∠B =∠AHG , ∵四边形ABCD 为矩形,∴∠B =90°,∴∠AHG =∠B =90°,∴GH 为AC 的垂直平分线,∴AG =CG ,∠GCH =∠GAH ,∴∠BAG =∠HAG =∠GCH ,∵∠BAH +∠BCH =180°-∠B =90°,∴3∠ACB =90°∴∠ACB =30°,∴∠BAG =∠HAG =∠GCH =30°,∴tan30°=33AB BC =,AB =23, ∴BC =3=6AB ,∵tan ∠BAG =tan30°=33BG AB =, ∴BG =33=23=233AB ⨯, ∴AG =2BG =4,BF =FC =116322BC =⨯=, ∴GF =BF -BG =3-2=1,∴4==41AG GF , ∵AD ∥BC ,∴∠DAC =∠ACB =30°,∴∠BAG =∠HAG =∠GHF =∠HCF =∠GCH =∠EAH =∠DAC =∠BCA =30°,∵∠B =∠AHG =∠HFG =∠HFC =∠AEH =∠D =∠GHC =∠CBA =90°,∴△ABG ∽△AHG ∽△HFG ∽△CFH ∽△CHG ∽△AEH ∽△ADC ∽△CBA ,∴与△ABG 相似的三角形由7个,故答案为:30°;6;4;7;(2)∵EF 为折痕,∴EH ⊥AD ,∵∠EAH =∠HAG =30°∠AHG =∠AEH =90°∴△AEH ∽△AHG , ∴AE AH AH AG=, ∴2=AH AE AG ⋅故答案为AG ;(3)∵四边形ABCD 为矩形,点H 为对角线AC 中点,∴AH =CH =BH ,由图2知AB =AH ,∴AH =BH =AB ,∴△ABH 为等边三角形,∴∠ABH =∠AHB =60°,∵∠AMN =∠ABH ;∴∠AMN =∠ABH =∠AHB =60°,∴∠BAM +∠AMB =180°-∠ABH =120°,∠AMB +∠NMH =180°-∠AMN =120°,即∠BAM +∠AMB =∠AMB +∠NMH ,∴∠BAM =∠NMH ,∴△ABM ∽△MHN , ∴AB BM MH HN=, ∵AB =MH =x ,∴x HN =,∴2x xHN x x ,故答案为:等边;2x x , (4)连结BD ,当点Q′在BD 上时,Q′D 最小 ∵AB AD =BC =6,∴BC∵AQ′=Q′H=12AB ∴Q′D最小=BD BQ '-=当BQ′⊥BD 时,△BDQ′面积最大∵tan ∠DAC =CD BC ==, ∴∠DAC =30°,∴∠CBQ′=90°-∠DBC =90°-30°=60°∴tan ∠CBQ'S △BDQ′最大=11433622BD Q B '⋅=⨯=; 故答案为3336.【点睛】本题考查折叠性质,矩形性质,线段垂直平分线,锐角三角函数,三角形相似判定与性质,等边三角形判定与性质,两图形的最小距离,最大面积,掌握查折叠性质,矩形性质,线段垂直平分线,锐角三角函数,三角形相似判定与性质,等边三角形判定与性质,两图形的最小距离,最大面积求法是解题关键.7.(1)①;或;证明见解析;②菱形,证明见解析;(2)①;②;③【分析】(1)①利用矩形的性质与轴对称的性质证明 如图1,连接 证明 即可得到答案; ②如图1,由①得: 再证明四边形为平行四边形解析:(1)①CFG △;ACD △或CAB △;证明见解析;②菱形,证明见解析;(2)①m n =;②b =52a -;5【分析】(1)①利用矩形ABCD 的性质与轴对称的性质证明.AEG CFG ≌ 如图1,连接,,CE AF 证明,AGE ADC ∽ ,AGE CBA ∽ 即可得到答案; ②如图1,由①得:.AEG CFG ≌,AE CF = 再证明四边形AFCE 为平行四边形与,AC EF ⊥ 可得结论; (2)①如图2,连接,,,MF FN EN 由折叠可得:,ME NE = 再利用勾股定理可得答案;②如图3,连接,AC 交MN 于,G ' 证明四边形MFNE 是菱形,2222,AM MB BF AE =+- 可得()()222224,b b a a =-+-- 从而可得答案;③由②得:AE a =, 52,AM a =- 可得()2222252ME AE AM a a =+=+- ,再利用二次函数的性质可得答案.【详解】解:(1)① 矩形,ABCD //,AD BC ∴ 90,∠=︒D,,AEF CFG EAG FCG ∴∠=∠∠=∠由折叠可得:,AG CG =.AEG CFG ∴≌如图1,连接,,CE AF由折叠可得:,,EA EC EGA EGC =∠=∠180,EGA EGC ∠+∠=︒90,AGE D ∴∠=︒=∠,GAE DAC ∠=∠,AGE ADC ∴∽同理:,AGE CBA ∽故答案为:CFG △,ACD △或CAB △②如图1,由①得:.AEG CFG ≌,AE CF ∴=矩形,ABCD//,AD BC ∴∴ 四边形AFCE 为平行四边形,90,AGE ∠=︒,AC EF ∴⊥∴ 四边形AFCE 为菱形,(2)①如图2,连接,,,MF FN EN由折叠可得:,ME NE =矩形,ABCD90,A D ∴∠=∠=︒222222,,ME AE AM EN ED DN ∴=+=+22m AM AE =+,22n ED DN =+,∴ m n =故答案为:m n =②如图3,连接,AC 交MN 于,G '矩形,ABCD ,AM CN =//,,90,AB CD AB CD BAD B D ∴=∠=∠=∠=︒,,,AMG CNG MAG NCG BM DN ''''∴∠=∠∠=∠=,AMG CNG ''∴≌,,MG NG AG CG ''''∴==,MG NG =,G G '∴重合,同理可得:,AEG CFG ≌,EG FG ∴=由对折可得:,,MG NG EF MN =⊥∴ 四边形MFNE 是菱形,,EM MF NF EN ∴===222222,,BF MF BM DE EN DN =-=-,BF DE ∴=22222222,AM ME AE MF AE MB BF AE ∴=-=-=+-,,AE a AM b == 2AB =,4BC =,()()222224,b b a a ∴=-+--∴ b =52a - 故答案为:b =52a -③由②得:AE a =, 52,AM a =-()2222252ME AE AM a a ∴=+=+-252025,a a =-+ 50,> 当20225a -=-=⨯时, 2ME 最小,最小值为252202255,⨯-⨯+=0,ME >ME ∴ 5. 5.本题考查的是全等三角形的判定与性质,平行四边形的判定,矩形的性质,菱形的判定与性质,勾股定理的应用,二次函数的性质,熟练掌握以上知识是解题的关键.8.(1)∠CB′E=60°,;(2)①两个结论成立,理由见解析;(3)或.【分析】(1)根据旋转的性质和等腰三角形的性质以及直角三角形的性质解答即可; (2)①根据旋转的性质和等腰三角形的性质和直解析:(1)∠CB ′E =60°,32EF AB '=;(2)①两个结论成立,理由见解析;(3)333-或333+. 【分析】(1)根据旋转的性质和等腰三角形的性质以及直角三角形的性质解答即可;(2)①根据旋转的性质和等腰三角形的性质和直角三角形的性质解答即可;②当A ,E ,F 三点共线时,分两种情况讨论,利用三角函数解答即可.【详解】解:(1)∵AB =AC ,∠BAC =120°,AF ⊥BC ,∴∠ABC =∠ACB =30°,BF =FC ,根据旋转的性质得:AB =AC =AB ′,∴∠ABB ′=∠AB ′B =180402︒-︒=70°, ∵AC =AB ′,∠B ′AC =120°-40°=80°,∴∠AB ′C =218080︒-︒=50°, ∴∠CB ′E =180°-70°-50°=60°,连接EF ,∵BF =FC ,则EF 为直角三角形BEC 斜边上的中线,∴EF = BF =FC ,在Rt △ABF 中,3cos30BF AB ︒== ∴3EF AB '= (2)①两个结论成立,理由如下:根据旋转的性质得:AB =AC =AB ′,等腰△ABB ′中,∠BAB ′=α,则∠AB ′B =1802α︒-=90°−12α, 等腰△AB ′C 中,∠CAB ′=α−120°,则∠AB ′C =()1801202α︒--︒=150°−12α, ∴11150906022CB E αα⎛⎫'∠=︒--︒-=︒ ⎪⎝⎭; ∵AB =AC ,AF ⊥BC .∴∠FAC =60°,Rt △CEB ′中,CE CB '==sin 60°=32, Rt △CFA 中,CF AC =sin 60°=32, ∴CE CF CB AC=', ∵∠FCE =∠ACB ′=30°+∠ACE ,∴△CEF ~△CB ′A∴32EF CE AB CB ='='; ②当A ,E ,F 三点共线时,分以下两种情况讨论,(Ⅰ)当点E 在FA 的延长线上时,如图,由①可知,∠B '=60°,∵CE ⊥BB ',90,CEB ∴∠=︒ 而,BF CF =∴ BC =2EF =2BF ,EB =CE ,设BF =x ,则EF =CF =x ,EB =CE 2x ,在Rt △CB 'E 中,B 'E =CE 36tan 30x ︒=, ∴BB '=EB +B 'E =3236x +, ∴32633332x BB BE x++=='; (Ⅱ)当点E 在AF 的延长线上时,如图,同理可得,∠CB 'E =60°,BC =2EF =2BF ,∵CE ⊥BB ',∴∠CEB '=∠CEB =90°,EB =CE ,设BF =x ,则EF =CF =x ,EB =CE 2x ,在Rt △CB 'E 中,B 'E =CE 6tan 30x ︒=, ∴BB '=EB -B 'E 326-, ∴3263332x BB BE x--=='; 综上,BB BE'33-33+ 【点睛】本题考查了旋转的性质、等腰三角形的性质、全等三角形的判定和性质、特殊角的三角函数值等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.9.(1);;;(2);(3).【分析】(1)本问体现“特殊”的情形,是一个确定的数值.如答图1,过E 点作平行线,构造相似三角形,利用相似三角形和中位线的性质,分别将各相关线段均统一用EH 来表示,最。

2024年北京市中考数学押题预测试卷

2024年北京市中考数学押题预测试卷

2024年北京市中考数学押题预测试卷一、单选题1.下列几何体中,三视图都是圆的是( )A .B .C .D . 2.2024年5.5G 技术正式开始商用,它的数据下载的最高速率从5G 初期的1Gbps 提升到10Gbps ,给我们的智慧生活“提速”.其中10Gbps 表示每秒传输10000000000 位(bit )的数据. 将10000000000用科学记数法表示应为( )A .110.110⨯B .10110⨯C .11110⨯D .91010⨯ 3.如图,ABCD Y 的顶点A ,B ,C 的坐标分别是()()()0,1,2,2,2,2---,则顶点D 的坐标是( )A .()4,1-B .()4,2-C .()4,1D . 2,14.实数a ,b ,c 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A .a >bB .a + b >0C .bc >0D .a <﹣c 5.已知点12(1,),(2,)P y Q y 是反比例函数3y x =图像上的两点,则( )A .120y y <<B .210y y <<C .120y y <<D .210y y << 6.如图,AB 为⊙O 的直径,弦 CD ⊥AB ,垂足为点E ,若 ⊙O 的半径为5,CD =8,则AE 的长为( )A.3 B.2 C.1 D7.小明和小刚分别从A、B、C三个组中随机选择一个组参加志愿者活动,假设每人参加这三个组的可能性都相同,小明和小刚恰好选择同一组的概率是()A.13B.23C.19D.298.如图,一个亭子的地基是半径为4m的正六边形,则该正六边形地基的面积是()A.224m B.2C.248m D.2二、填空题9有意义,则a的取值范围是.10.分解因式:2818a-=.11.方程43312x x=--的解为.12.已知x2-+m=0有两个不相等的实数根,则m的取值范围是.13.某居民小区共有300户家庭,有关部门对该小区的自来水管网系统进行改造,为此该部门通过随机抽样,调查了其中20户家庭,统计了这20户家庭的月用水量,如下表:根据上述数据,估计该小区300户家庭的月总用水量约为m3.14.如图,若AD 是ABC V 的高线,DBE DAC ∠=∠,BD AD =,120AEB ∠=︒,则C ∠=.15.如图,在ABC V 中,A α∠=,ABC ∠的平分线与ACD ∠的平分线交于点1A 得1A ∠,1A BC ∠的平分线与1ACD ∠的平分线交于点2A ,得2A ∠,…,5A BC ∠的平分线与5A CD ∠的平分线交于点6A ,得6A ∠,则6A ∠=.16.如图,在四边形ABCD 中,AB =AD =5,BC =CD 且BC >AB ,BD =8.给出以下判断: ①AC 垂直平分BD ;②四边形ABCD 的面积S =AC •BD ;③顺次连接四边形ABCD 的四边中点得到的四边形可能是正方形;④将△ABD 沿直线BD 对折,点A 落在点E 处,连接BE 并延长交CD 于点F ,当BF ⊥CD 时,四边形ABCD 的内切圆半径为227.其中正确的是.(写出所有正确判断的序号)三、解答题17.计算:112sin 605⎛⎫-+︒ ⎪⎝⎭. 18.解不等式组: 232113x x x x +≤+⎧⎪+⎨>-⎪⎩ 19.已知320x y --=,求代数式22264693x y x xy y x y-+-+-的值. 20.如图,在Rt ABC △中,90ACB ∠=︒,CD AB ⊥于D ,CE AB ∥,EB CD ∥,连接DE 交BC 于点O .(1)求证:四边形CDBE 是矩形;(2)如果5AC =,1tan 2ACD ∠=,求BC 的长. 21.小明对某塔进行了测量,测量方法如下,如图所示,先在点A 处放一平面镜,从A 处沿NA 方向后退1米到点B 处,恰好在平面镜中看到塔的顶部点M ,再将平面镜沿NA 方向继续向后移动15米放在D 处(即15AD =米),从点D 处向后退1.6米,到达点E 处,恰好再次在平面镜中看到塔的顶部点M 、已知小明眼睛到地面的距离 1.74CB EF ==米,请根据题中提供的相关信息,求出小雁塔的高度MN (平面镜大小忽略不计)22.在平面直角坐标系xOy 中,一次函数()0y kx b k =+≠的图象由正比例函数y x =的图象向上平移2个单位长度得到.(1)求这个一次函数的解析式;(2)当1x >-时,对于x 的每一个值,正比例函数()0y ax a =≠的值小于一次函数()0y kx b k =+≠的值,直接写出a 的取值范围.23.为弘扬民族精神,传播传统文化,某县教育系统将组织“弘扬传统文化,永承华夏辉煌”的演讲比赛.某校各年级共推荐了19位同学参加初赛(校级演讲比赛),初赛成绩排名前10的同学进入决赛.(1)若初赛结束后,每位同学的分数互不相同.某同学知道自己的分数后,要判断自己能否进入决赛,他只需知道这19位同学成绩的_____;(填:平均数或众数或中位数)(2)若初赛结束后,这19位同学的成绩如下:2号选手笑着说:“我的成绩代表着咱们这19位同学的平均水平呀!”14号选手说:“与我同分数的选手最多,我的成绩代表着咱们这19位选手的大众水平嘛!” 请问,这19位同学成绩的平均数为______,众数为______;(3)已知10号选手与15号选手经常参加此类演讲比赛,她俩想看看近期谁的成绩较好、较稳定,她俩用近三次同时参加演讲比赛的成绩计算得到平均分一样,10号选手的方差为0.5,15号选手的方差为0.38.你认为______号选手的成绩比较稳定.24.如图,AB 是O e 的直径,AC 是弦,D 是»AB 的中点,CD 与AB 交于点E ,F 是AB 延长线上的一点,且CF EF =.(1)求证:CF 为O e 的切线;(2)连接BD ,取BD 的中点G ,连接AG .若4CF =,1tan 2BDC ∠=,求AG 的长. 25.如图1,排球场长为18m ,宽为9m ,网高为2.24m .队员站在底线O 点处发球,球从点O 的正上方1.9m 的C 点发出,运动路线是抛物线的一部分,当球运动到最高点A 时,高度为2.88m .即BA =2.88m .这时水平距离OB =7m ,以直线OB 为x 轴,直线OC 为y 轴,建立平面直角坐标系,如图2.(1)若球向正前方运动(即x 轴垂直于底线),求球运动的高度y (m )与水平距离x (m )之间的函数关系式(不必写出x 取值范围).并判断这次发球能否过网?是否出界?说明理由;(2)若球过网后的落点是对方场地①号位内的点P (如图1,点P 距底线1m ,边线0.5m ),问发球点O 1.4)26.已知二次函数()2430y ax ax a =-+≠.(1)求该二次函数的图象与y 轴交点的坐标及对称轴.(2)已知点()()()()12343,1,12,,,,,y y y y --都在该二次函数图象上,①请判断1y 与2y 的大小关系:1y 2y (用“>”“=”“<”填空);②若1y ,2y ,3y ,4y 四个函数值中有且只有一个小于零,求a 的取值范围.27.在ABC V 中,D 是BC 的中点,且90≠︒∠BAD ,将线段AB 沿AD 所在直线翻折,得到线段AB ',作CE AB ∥交直线AB '于点E .(1)如图,若AB AC >,①依题意补全图形;②用等式表示线段,,AB AE CE 之间的数量关系,并证明;(2)若AB AC <,上述结论是否仍然成立?若成立,简述理由:若不成立,直接用等式表示线段,,AB AE CE 之间新的数量关系(不需证明).28.如图,(1)【提出问题】将一次函数24y x =-+的图象沿着y 轴向下平移3个单位长度,所得图象对应的函数表达式为______;(2)【初步思考】将一次函数24y x =-+的图象沿着x 轴向左平移3个单位长度,求所得图象对应的函数表达式,数学活动小组发现,图象的平移就是点的平移,因此,只需要在图象上任取两点(04)A ,,(20)B ,,将它们沿着x 轴向左平移3个单位长度,得到点A ',B '的坐标分别为______,从而求出经过点A ',B '的直线对应的函数表达式为______;(3)【深度思考】已知一次函数24y x =-+的图象与y 轴交于点A ,与x 轴交于点B . ①将一次函数24y x =-+的图象关于x 轴对称,求所得图象对应的函数表达式; ②如图①,将直线24y x =-+绕点A 逆时针旋转60o ,求所得图象对应的函数表达式; ③如图②,将直线24y x =-+绕点A 逆时针旋转45︒,求所得图象对应的函数表达式.。

北京国子监中学数学几何模型压轴题中考真题汇编[解析版]

北京国子监中学数学几何模型压轴题中考真题汇编[解析版]

北京国子监中学数学几何模型压轴题中考真题汇编[解析版]一、初三数学 旋转易错题压轴题(难)1.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断△PMN 的形状,并说明理由;(3)拓展延伸:把△ADE 绕点A 在平面内自由旋转,若AD =4,AB =10,请直接写出△PMN 面积的最大值.【答案】(1)PM =PN ,PM ⊥PN ;(2)△PMN 是等腰直角三角形.理由见解析;(3)S △PMN 最大=492. 【解析】【分析】(1)由已知易得BD CE =,利用三角形的中位线得出12PM CE =,12PN BD =,即可得出数量关系,再利用三角形的中位线得出//PM CE 得出DPM DCA ∠=∠,最后用互余即可得出位置关系;(2)先判断出ABD ACE ∆≅∆,得出BD CE =,同(1)的方法得出12PM BD =,12PN BD =,即可得出PM PN =,同(1)的方法由MPN DCE DCB DBC ACB ABC ∠=∠+∠+∠=∠+∠,即可得出结论;(3)方法1:先判断出MN 最大时,PMN ∆的面积最大,进而求出AN ,AM ,即可得出MN 最大AM AN =+,最后用面积公式即可得出结论.方法2:先判断出BD 最大时,PMN ∆的面积最大,而BD 最大是14AB AD +=,即可得出结论.【详解】解:(1)点P ,N 是BC ,CD 的中点,//PN BD ∴,12PN BD =, 点P ,M 是CD ,DE 的中点,//PM CE ∴,12PM CE =, AB AC =,AD AE =,BD CE ∴=,PM PN ∴=,//PN BD ,DPN ADC ∴∠=∠,//PM CE ,DPM DCA ∴∠=∠,90BAC ∠=︒,90ADC ACD ∴∠+∠=︒,90MPN DPM DPN DCA ADC ∴∠=∠+∠=∠+∠=︒,PM PN ∴⊥,故答案为:PM PN =,PM PN ⊥;(2)PMN ∆是等腰直角三角形.由旋转知,BAD CAE ∠=∠,AB AC =,AD AE =,()ABD ACE SAS ∴∆≅∆,ABD ACE ∴∠=∠,BD CE =, 利用三角形的中位线得,12PN BD =,12PM CE =, PM PN ∴=,PMN ∴∆是等腰三角形,同(1)的方法得,//PM CE ,DPM DCE ∴∠=∠,同(1)的方法得,//PN BD ,PNC DBC ∴∠=∠,DPN DCB PNC DCB DBC ∠=∠+∠=∠+∠,MPN DPM DPN DCE DCB DBC ∴∠=∠+∠=∠+∠+∠BCE DBC ACB ACE DBC =∠+∠=∠+∠+∠ACB ABD DBC ACB ABC =∠+∠+∠=∠+∠,90BAC ∠=︒,90ACB ABC ∴∠+∠=︒,90MPN ∴∠=︒,PMN ∴∆是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,PMN ∆是等腰直角三角形,MN ∴最大时,PMN ∆的面积最大,//DE BC ∴且DE 在顶点A 上面,MN ∴最大AM AN =+,连接AM ,AN ,在ADE ∆中,4AD AE ==,90DAE ∠=︒,22AM ∴=在Rt ABC ∆中,10AB AC ==,52AN =22522MN ∴=最大,222111149(72)22242PMN S PM MN ∆∴==⨯=⨯=最大. 方法2:由(2)知,PMN ∆是等腰直角三角形,12PM PN BD ==, PM ∴最大时,PMN ∆面积最大,∴点D 在BA 的延长线上,14BD AB AD ∴=+=,7PM ∴=,2211497222PMN S PM ∆∴==⨯=最大. 【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出12PM CE =,12PN BD =,解(2)的关键是判断出ABD ACE ∆≅∆,解(3)的关键是判断出MN 最大时,PMN ∆的面积最大.2.已知抛物线y=ax 2+bx-3a-5经过点A(2,5)(1)求出a 和b 之间的数量关系.(2)已知抛物线的顶点为D 点,直线AD 与y 轴交于(0,-7)①求出此时抛物线的解析式;②点B 为y 轴上任意一点且在直线y=5和直线y=-13之间,连接BD 绕点B 逆时针旋转90°,得到线段BC ,连接AB 、AC ,将AB 绕点B 顺时针旋转90°,得到线段BH .截取BC 的中点F 和DH 的中点G .当点D 、点H 、点C 三点共线时,分别求出点F 和点G 的坐标.【答案】(1)a+2b=10;(2)①y= 2x 2+4x-11,②G 1(478,91-8+),F 1(,,G 2,F 2,) 【解析】【分析】(1)把点A 坐标代入抛物线y=ax 2+bx-3a-5即可得到a 和b 之间的数量关系;(2)①求出直线AD 的解析式,与抛物线y=ax 2+bx-3a-5联立方程组,根据直线与抛物线有两个交点,结合韦达定理求出a ,b ,即可求出解析式;②作AI ⊥y 轴于点I ,HJ ⊥y 轴于点J.设B (0,t ),根据旋转性质表示粗H 、D 、C 坐标,应含t 式子表示直线AD 的解析式,根据D 、H 、C 三点共线,把点C 坐标代入求出131t -4+=,2t -4=,分两类讨论,分别求出G 、F 坐标。

北京市海淀区【中考数学】2022-2023学年专题提升训练—几何图形变换综合压轴题(含解析)

北京市海淀区【中考数学】2022-2023学年专题提升训练—几何图形变换综合压轴题(含解析)

北京市海淀区【中考数学】2022-2023学年专题提升训练—几何图形变换综合压轴题1.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,点O为AB的中点,点P为直线BC 上的动点(不与点B点C重合),连接OC、OP,将线段OP绕点P顺时针旋转60°,得到线段PQ,连接BQ.(1)观察猜想:如图①,线段BQ与CP的数量关系是 ;∠CBQ= ;(2)探究证明:如图②,当点P在CB的延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由.2.如图,平面直角坐标系中,点A在第一象限,AB⊥x轴于B,AC⊥y轴于C,A(a,b),且a,b满足|3a﹣4b|+=0.(1)求点A的坐标;(2)如图2,点D从点O出发以每秒1个单位的速度沿y轴正方向运动,点E从点B出发,以每秒2个单位的速度沿x轴负方向运动,设运动时间为t,当S△AOD<S△AOE时,求t的取值范围;(3)如图3,将线段BC平移,使点B的对应点M恰好落在y轴负半轴上,点C的对应点为N,连接BN交y轴于点P,当OM=3OP时,求点M的坐标.3.探究(1)如图①,在等腰直角三角形ABC中,∠ACB=90°,作CM⊥AB交AB于点M,点D为射线CM上一点,以点C为旋转中心将线段CD逆时针旋转90°得到线段CE,连接DE交射线CB于点F,连接BD、BE填空:①线段BD、BE的数量关系为 .②线段BC、DE的位置关系为 .推广:(2)如图②,在等腰三角形ABC中,∠ACB=β,作CM⊥AB交AB于点M,点D为△ABC外部射线CM上一点,以点C为旋转中心将线段CD逆时针旋转β度得到线段CE,连接DE、BD、BE,请判断(1)中的结论是否成立,并说明理由.应用:(3)如图③,在等边三角形ABC中,AB=3.作BM⊥AC交AC于点M,点D为射线BM上一点,以点B为旋转中心将线段BD逆时针旋转60°得到线段BE,连接DE交射线BA于点F,连接AD、AE.当以A、D、M为顶点的三角形与△AEF全等时,请直接写出DE的值.4.小圆同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.(一)猜测探究在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.(1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是 ;NB与MC的数量关系是 ;(2)如图2,点E是AB延长线上一点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.(二)拓展应用如图3,在△A1B1C1中,A1B1=7,∠A1B1C1=60°,∠B1A1C1=75°,P是B1C1上的一点,C1P=,连接A1P,将A1P绕点A1按顺时针方向旋转75°,得到线段A1Q,连接B1Q,则△A1B1Q的面积是 .5.已知在Rt△ABC中,∠ACB=90°,AC=BC,CD⊥AB于D.(1)如图1,将线段CD绕点C逆时针旋转90°得到CF,连接AF交CD于点G,连接DF,求证:AG=GF;(2)如图2,点E是线段CB上一点,连接ED,将线段ED绕点E逆时针旋转90°得到EF,连接AF交CD于点G,若=,求;(3)如图3,点K、E分别在边AB、BC上,将线段EK绕点E逆时针旋转90°得到EF,连AF交CD于点G,连接KG,若KG∥BC,则=,CE=3,则AF的长为 .6.在△ABC中,AB=AC,M是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB.【感知】如图①,若M是线段BC上的任意一点,易证△ABN≌△ACM,可知∠NAB=∠MAC,BN=MC.【探究】如图②,点E是AB延长线上的点,若点M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由.【拓展】如图③,在△DEF中,DE=8,∠DEF=60°,∠EDF=75°,P是EF上的任意点,连接DP,将DP绕点D按顺时针方向旋转75°,得到线段DQ,连接EQ,则EQ的最小值为 .7.同学们应该都见过光线照射在平面镜上出现反射光线的现象.如图1,AB是放置在第一象限的一个平面镜,一束光线CD经过反射后的反射光线是DE,DH是法线,法线垂直于镜面AB.入射光线CD和平面镜所成的角∠BDC叫做入射角,反射光线DE与平面镜所成的角∠ADE叫做反射角.镜面反射有如下性质:入射角等于反射角,根据以上材料完成下面问题:(1)如图1,法线DH交x轴于点F,交y轴于点H,试探究∠DFC与∠DAH之间的数量关系并加以证明;(2)如图2,第一象限的平面镜AB交x轴于点B,交y轴于点A,x轴负半轴上也放置了一块平面镜,入射光线CD经过两次反射后得到反射光线EG,DH是法线.射线CD和EG 的反向延长线交于点P.①若第一象限平面镜与x轴夹角为26°,问入射角∠BDC为多少时,反射光线EG与AB平行?②若∠DCE>∠DEC,平面镜AB绕点D旋转,是否存在一个定值k,使得∠DCE﹣∠DEC=k∠OHF总是成立,若存在请求出值,若不存在,请说明理由.8.已知△ABC为等边三角形,取△ABC的边AB,BC中点D,E,连接DE,如图1,易证△DBE为等边三角形,将△DBE绕点B顺时针旋转,设旋转的角度∠ABD=α,其中0<α<180°.(1)如图2,当α=30°,连接AD,CE,求证:AD=CE;(2)在△DBE旋转过程中,当α超过一定角度时,如图3,连接AD,CE会交于一点,记交点为点F,AD交BC于点P,CE交BD于点Q,连接BF,请问BF是否会平分∠CBD?如果是,求出α,如果不是,请说明理由;(3)在第(2)问的条件下,试猜想线段AF,BF和CF之间的数量关系,并说明理由.9.如图1,点C是线段AB上一点,将CA绕点C顺时针旋转90°得到CE,将CB绕点C旋转,使点B的对应点D落在CE上,连接BE,AD,并延长AD交BE于点F.(1)求证:AF⊥BE;(2)连接CF,猜想AF,EF,CF存在的等量关系,并证明你猜想的结论.(3)如图2,延长AB到G,使BG=CB,将线段BG沿直线BE上下平移,平移后的线段记为B'G',若∠ABE=60°,当CB'+CG'的值最小时,请直接写出tan∠G'CG的值.10.如图,在平面直角坐标系中,A(﹣6,0),B(0,8),AB=10,点C在线段OB上,现将△AOC翻折,使得线段AO的对应边AD落到AB上,点O的对应点是点D,折痕为AC.(1)求点C的坐标;(2)连接OD,过点O作OH⊥CD于点H,求OH的长;(3)在(2)的条件下,若点P从点C出发,沿着C﹣D﹣A运动,速度为每秒1个单位,时间为t,是否存在t值,使得△AOP的面积为12,若存在求出t的值;若不存在,请说明理由.11.【问题发现】在某次数学兴趣小组活动中,小明同学遇到了如下问题:(1)如图1,在等边△ABC中,点P在内部,且PA=3,PC=4,∠APC=150°,求PB 的长.经过观察、分析、思考,他对上述问题形成了如下想法:将△APC绕点A按顺时针方向旋转60°,得到△ABD,连接PD,寻找PA、PB、PC三边之间的数量关系…请你根据上面分析,完成该问题的解答过程;【学以致用】参考小明思考问题的方法,解决下面问题:(2)如图2,在等边△ABC中,AC=7,点P在△ABC内,且∠APC=90°,∠BPC=120°.求△APC的面积;(3)如图3,Rt△ABC中,∠ACB=90°,AC=BC,点P在△ABC内,且PA=1,PB=,PC=,求AB的长.12.(1)(问题发现)如图1,△ABC和△ADE均为等边三角形,点B,D,E在同一条直线上.填空:①线段BD,CE之间的数量关系为 ;②∠BEC= °.(2)(类比探究)如图2,△ABC和△ADE均为等腰直角三角形,∠ACB=∠AED=90°,AC=BC,AE=DE,点B,D,E在同一条直线上,请判断线段BD,CE之间的数量关系及∠BEC的度数,并给出证明.(3)(解决问题)如图3,在△ABC中,∠ACB=90°,∠A=30°,AB=5,点D在AB 边上,DE⊥AC于点E,AE=3,将△ADE绕点A旋转,当DE所在直线经过点B时,CE 的长是多少?(直接写出答案)13.已知菱形ABCD的边长为2,∠A=60°,点E、F分别在边AD、AB上,将△AEF沿EF 折叠,使得点A的对应点A′恰好落在边CD上.(1)延长CB、A′F交于点H,求证:;(2)若A′点为CD的中点,求EF的长;(3)AA′交EF于点G,再将四边形纸片BCA′F折叠,使C点的对应点C′恰好落在A′F上,折痕MN分别交边CD、BC于点M、N,连接C′G,则C′G的最小值为 .14.黄金三角形就是一个等腰三角形,且其底与腰的长度比为黄金比值.如图1,在黄金△ABC中,AB=AC,点D是AB上的一动点,过点D作DE∥AC交BC于点E.(1)当点D是线段AB的中点时,= ;当点D是线段AB的三等分点时,= ;(2)把△BDE绕点B逆时针旋转到如图2所示位置,连接AD,CE,判断的值是否变化,并给出证明;(3)把△BDE绕点B在平面内自由旋转,若AB=6,BD=2,请直接写出线段CE的长的取值范围.15.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=30°.【操作发现】①如图2,固定△ABC,使△DEC绕点C旋转.当点D恰好落在AB边上时,则∠ACD的度数是 ;②△BDC的面积与△AEC的面积之间的数量关系是 .【探究论证】当△DEC绕点C旋转到图3所示的位置时,猜想△BDC的面积与△AEC的面积的数量关系,并说明理由.【拓展应用】已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE∥AB交BC于点E(如图4).若在射线BA上存在点F,使△DCF与△BDE的面积相等,请直接写出相应的BF的长.16.对于平面直角坐标系xOy中的点P和图形W,给出如下定义:图形W关于经过点(m,0)且垂直于x轴的直线的对称图形为W',若点P恰好在图形W'上,则称点P是图形W关于点(m,0)的“关联点”.(1)若点P是点Q(3,2)关于原点的“关联点”,则点P的坐标为 ;(2)如图,在△ABC中,A(1,1),B(6,0),C(4,﹣2).①点C关于x轴的对称点为C',将线段BC'沿x轴向左平移d(d>0)个单位长度得到线段EF(E,F分别是点B,C'的对应点),若线段EF上存在两个△ABC关于点(1,0)的“关联点”,则d的取值范围是 .②已知点M(m+1,0)和点N(m+3,0),若线段MN上存在△ABC关于点(m,0)的“关联点”,求m的取值范围.17.如图①,△ABC、△ADE均为等边三角形,点D、E分别在边AB、AC上.将△ADE绕点A沿顺时针方向旋转,连接BD、CE.(1)如图②,可以根据三角形全等判定定理 证得△ADB≌△AEC.(A)边边边;(B)边角边;(C)角边角;(D)角角边.(2)如图③,求证:△ADB≌△AEC.(3)当点D、E、C在同一条直线上时,∠EDB的大小为 度.18.已知:在平面直角坐标系中,点A是x轴负半轴上一点且OA=3,点B在第二象限内,到x轴的距离是3,到y轴的距离是2.(1)直接写出点A,点B的坐标:点A( , ),点B( , );(2)在图①中的y轴上找到一点P,使得三角形ABP的周长最小,则这个最小周长是 ;(3)在图①中,若△ABC是等腰直角三角形,当点C在AB的左侧时,请直接写出点C 的坐标 ;(4)如图②,在△ABC中,∠ABC=90°,AB=BC,点D不与点A重合,是x轴上一个动点,点E是AD中点,连接BE.把BE绕着点E顺时针旋转90°得到FE即(∠BEF=90°,BE=FE),连接BF、CF、CD.直接写出∠FCD的度数 .19.已知四边形ABCD中,AB⊥AD,BC⊥CD,AB=BC,∠ABC=120°,∠MBN=60°,∠MBN绕B点旋转,它的两边分别交AD,DC(或它们的延长线)于E,F.(1)当∠MBN绕B点旋转到AE=CF时(如图1),试猜想线段AE、CF、EF之间存在的数量关系为 .(不需要证明);(2)当∠MBN绕B点旋转到AE≠CF时,在图2和图3这两种情况下,上述结论是否成立?若成立,请给予证明;若不成立,线段AE、CF、EF又有怎样的数量关系?请写出你的猜想,不需证明.20.(1)如图1,在正方形ABCD中,∠FAG=45°,请直接写出DG,BF与FG的数量关系,不需要证明.(2)如图2,在Rt△ABC中,∠BAC=90°,AB=AC,E,F分别是BC上两点,∠EAF=45°.①写出BE,CF,EF之间的数量关系,并证明;②若将(2)中的△AEF绕点A旋转至如图3所示的位置,上述结论是否仍然成立?若不成立,直接写出新的结论,无需证明.(3)如图4,△AEF中,∠EAF=45°,AG⊥EF于G,且GF=2,GE=3,则S△AEF= .答案1.解:(1)在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,在Rt△ABC中,∠ACB=90°,点O为AB的中点,∴OC=AB=OB,∴△COB为等边三角形,∴∠COB=60°,∴∠COP+∠BOP=60°,由旋转的性质可知,∠POQ=60°,OP=OQ,∴∠BOQ+∠BOP=60°,∴∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴BQ=CP,∠OBQ=∠OCP=60°,∴∠CBQ=∠CBO+∠OBQ=120°,故BQ=CP;120°;(2)当点P在CB的延长线上时,(1)中结论成立,理由如下:∵∠COB=∠POQ=60°,∴∠COB+∠BOP=∠POQ+∠BOP,即∠COP=∠BOQ,在△COP和△BOQ中,,∴△COP≌△BOQ(SAS),∴BQ=CP,∠OBQ=∠OCP=60°,∴∠CBQ=∠CBO+∠OBQ=120°.2.解:(1)|3a﹣4b|+=0,∴,∴,∴A(8,6);(2)由(1)知,A(8,6),∵AB⊥x轴于B,AC⊥y轴于C,∴AC=8,AB=6,由运动知,OD=t,OE=2t,当点E在OB上时,即0<t<4,则OE=8﹣2t,∴S△AOD=OD•AC=t×8=4t,S△AOE=OE•AB=×(8﹣2t)×6=3(8﹣2t),∵S△AOD<S△AOE,∴4t<3(8﹣2t),∴t<,即0<t<,当点E在BO的延长线上时,即t>4,则OE=2t﹣8,∴S△AOD=OD•AC=t×8=4t,S△AOE=OE•AB=×(2t﹣8)×6=3(2t﹣8),∵S△AOD<S△AOE,∴4t<3(2t﹣8),∴t>12,即0<t<或t>12;(3)如图,设点M(0,m),∴M(0,m)(m<0),则OM=﹣m,由平移的性质得,N(﹣8,m+6),过点N作NE⊥x轴于E,∴OB=OE=8,NE=m+6,S△BEN=BE×NE=×16×|m+6|=8|m+6|,S△BOP+S梯形OPNE=×OB×OP+(OP+NE)×OE=×8OP+(OP+|m+6|)×8=4OP+4OP+4|m+6|,∵S△BEN=S△BOP+S梯形OPNE,∴8|m+6|=4OP+4OP+4|m+6|,∴OP=|m+6|,∵OM=3OP,∴﹣m=3×|m+6|,∴m=﹣或m=﹣18,∴M(0,﹣)或(0,﹣18).3.解:(1)如图①中,∵CA=CB,∠ACB=90°,CM⊥AB,∴∠ACM=∠BCM=45°,∵∠ECD=90°,∴∠ECF=∠DCF=45°,∵CD=CE,CB=CB,∴△CBD≌△CBE(SAS),∴BD=BE,∵CD=CE,∴BC垂直平分线段DE,∴BC⊥DE.故BD=BE,BC⊥DE.(2)结论:(1)中的结论仍然成立.理由:如图②中,∵CA=CB,∠ACB=α,CM⊥AB,∴∠ACM=∠BCM=α,∵∠ECD=α,∴∠ECF=∠DCF=α,∵CD=CE,CB=CB,∴△CBD≌△CBF(SAS),∴BD=BE,∵CD=CE,∴BC垂直平分线段DE,∴BC⊥DE.(3)如图③中,当△AFE≌△AMD时,AF=AM,∵∠AFD=∠AMD=90°,∵AD=AD,∴Rt△ADF≌Rt△ADM(HL),∴∠DAF=∠DAM=30°,∴∠DBA=∠DAB=30°,∴DA=DB,∵DF⊥AB,∴∠BDF=60°,BF=AF=,∵BD=BE,∴△BDE是等边三角形,∴DF=EF=BF•tan30°=,∴DE=2EF=.如图③﹣1中,当点D在BM的延长线时,则AF=AM=,DE=2DF=3.如图③﹣2中,当EF=AM=DF时,也满足条件,此时DE=BD=AB=3,综上所述,满足条件的DE的值为或3或3.4.解:(一)(1)结论:∠NAB=∠MAC,BN=MC.理由:如图1中,∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.故∠NAB=∠MAC,BN=CM.(2)如图2中,(1)中结论仍然成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠NAB=∠MAC,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.(二)如图3中,方法一:在A1C1上截取A1N=A1B1,连接PN,作NH⊥B1C1于H,作A1M⊥B1C1于M.∵∠C1A1B1=∠PA1Q,∴∠QA1B1=∠PA1N,∵A1Q=A1P,A1B1=AN,∴△QA1B1≌△PA1N(SAS),∴B1Q=PN,在Rt△A1B1M中,∵∠A1B1M=60°,A1B1=7,∴B1M=,∴A1M==,∵∠MA1C1=∠B1A1C1﹣∠B1A1M=75°﹣30°=45°,∴A1C1=A1M=,∴NC1=A1C1﹣A1N=﹣7,在Rt△NHC1中,∵∠C1=45°,∴NH=NC1•=﹣,∴=×()=,∵=M=,∴=﹣==,方法二:如图4,过点Q作QG⊥A1B于点G,过点P作PH⊥A1C1于点H,∵∠QA1G=∠PA1H,∠A1GQ=∠PHA1=90°,A1Q=A1P,∴△A1QG≌△A1PH(AAS),∴QG=PH,∵∠A1B1C1=60°,∠B1A1C1=75°,∴∠C1=180°﹣∠A1B1C1﹣∠B1A1C1=45°,∴△PHC1是等腰直角三角形,∴PH==1,∴QG=1,∴△A1B1Q的面积为.故.5.(1)证明:如图1中,∵∠ACB=90°,CB=CA,CD⊥AB,∴CD=DB=AD,∵CD=CF,∠DCF=∠ADC=90°,∴AD∥CF,AD=CF,∴四边形ADFC是平行四边形,∴AG=GF.(2)解:如图2中,连接BF,过点E作EJ⊥BC交AB于J.∵CE:AC=2:7,∴可以假设CE=2k,AC=7k,∵AC=BC﹣EC=7k,∠ACB=90°,∴BE=BJ=5k,AB=7k,∵CD⊥AB,∴BD=AD=k,∴CD=AD=BD=k,∵EJ∥AC,∴==,∴AJ=×7k=2k,∴DJ=k,∵∠DEF=∠BEJ=90°,∴∠BEF=∠JED,∵∠ABC=45°,JE⊥BC,∴∠EBJ=∠E=45°,∴EB=EJ,∵EB=EJ,EF=DE,∴△BEF≌△JED(SAS),∴BF=DJ=k,∠EBF=∠EJD=45°,∴∠FBA=∠GDA=90°,∴GD∥BF,∵AD=DB,∴AG=GF,∴DG=BF=k,∴CG=CD﹣DG=k﹣k=k,∴==.(3)如图3中,连接BF,过点F作FH⊥BC于H.∵AK:KB=4:3,∴可以假设AK=4k,BK=3k,则AD=BD=k,DK=DB﹣BK=k,∵∠KBE=∠KFE=45°,∴K,B,F,E四点共圆,∴∠KBF+∠KEF=180°,∵∠KEF=90°,∴∠KBF=∠ADC=90°,∴DG∥BF,∵AD=DB,∴AG=GF,∴BF=2DG,∵KG∥BC,∴∠DKG=∠ABC=45°,∵∠KDG=90°,∴DG=DK=k,∴BF=k,∴KF===k,AF===5k ,∴EK=EF=KF=k,∵FH⊥BC,∠FBH=45°,∴BH=FH=k,EH===k,∴BE=BH+EH=2k,∵BC=AB,∴(2k+3)=7k,∴k=,∴AF=5×=10.故答案为10.6.解:【探究】如图②中,结论成立.理由:∵∠MAN=∠CAB,∴∠NAB+∠BAM=∠BAM+∠MAC,∴∠BAN=∠CAM,∵AB=AC,AN=AM,∴△NAB≌△MAC(SAS),∴BN=CM.【拓展】如图③中,在DF上取一点H,使DH=DE=8,连接PH,过点H作HM⊥EF 于M,由旋转知,DQ=DP,∠PDQ=75°,∵∠EDF=75°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,要使EQ最小,则有HP最小,而点H是定点,点P是EF上的动点,∴当HM⊥EF(点P和点M重合)时,HP最小,即:点P与点M重合,EQ最小,最小值为HM,过点D作DG⊥EF于G,在Rt△DEG中,DE=8,∠DEG=60°,∴∠EDG=30°,∴EG=DE=4,∴DG=EG=4,∵∠F=180°﹣75°﹣60°=45°,∠DGF=90°∴∠F=∠GDF=45°,∴DG=GF=4,∴DF=DG=4∴FH=DF﹣DH=4﹣8,在Rt△HMF中,∠F=45°,∴HM=FH=(4﹣8)=4﹣4,即:EQ的最小值为4﹣4.故4﹣4.7.解:(1)∠DFC=∠DAH,理由如下:∵∠ADF+∠DAH+∠AOF+∠DFO=360°,∠ADF=∠AOF=90°,∴∠DAH+∠DFO=180°,又∵∠DFO+∠DFC=180°,∴∠DAH=∠DFC;(2)①设∠BDC=x°=∠ADE,∵∠DBF=26°,∠FDB=90°,∴∠DFB=64°,∵∠BDC=x°,∴∠FDC=90°﹣x°=∠EDF,∵∠EDF+∠DEF=∠DFB,∴90°﹣x°+∠DEF=64°,∴∠DEF=x°﹣26°,∴∠DEP=2∠DEF=2x°﹣52°,∵EG∥AB,∴∠ADE=∠DEP,∴x°=2x°﹣52°,∴x=52,∴当入射角∠BDC为52°时,反射光线EG与AB平行;②k=2,理由如下:∵∠DCE=180°﹣∠CDF﹣∠DFC,∠EDF=∠DFC﹣∠DEC,∠EDF=∠CDF,∴∠DCE=180°﹣∠DFC﹣(∠DFC﹣∠DEC)=180°﹣2∠DFC+∠DEC,∵∠DFC=∠OFH,∠OFH=90°﹣∠OHF,∴∠DCE=180°﹣2(90°﹣∠OHF)+∠DEC,∴∠DCE﹣∠DEC=2∠OHF,又∵∠DCE﹣∠DEC=k∠OHF,∴k=2.8.证明:(1)∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE;(2)不存在,理由如下:如图3,过点B作BN⊥AD于N,过点B作BH⊥CE于H,∵△ABC,△DBE都是等边三角形,∴AB=BC,BD=BE,∠ABC=∠DBE=60°,∴∠ABD=∠CBE,在△ABD和△CBE中,,∴△ABD≌△CBE(SAS),∴AD=CE,S△ABD=S△CBE,∠BAD=∠BCE,∴×AD×BN=×CE×BH,∴BN=BH,又∵BF=BF,∴Rt△BFN≌Rt△BFH(HL),∴∠AFB=∠EFB,∵∠BAD=∠BCE,∠CPF=∠APB,∴∠AFC=∠ABC=60°,∴∠AFB=∠EFB=60°,∴∠CFB=∠DFB=120°,当BF平分∠CBD时,则∠CBF=∠DBF,∴∠BCF=180°﹣∠CBF﹣∠CFB=180°﹣∠DBF﹣∠DFB=∠ADB,∴∠DAB=∠ADB,∴AB=DB,与题干DB=BC=AB相矛盾,∴BF不会平分∠CBD;(3)AF=CF+BF,理由如下:如图4,在AF上截取MF=BF,连接BM,∵∠AFB=60°,MF=FB,∴△MFB是等边三角形,∴MB=BF,∠MBF=∠ABC=60°,∴∠ABM=∠CBF,在△ABM和△CBF中,,∴△ABM≌△CBF(SAS),∴AM=CF,∵AF=AM+MF,∴AF=CF+BF.9.(1)证明:如图1中,∵将CA绕点C顺时针旋转90°得到CE,∴CA=CE,∠ACD=∠ECB=90°,∵将CB绕点C旋转,使点B的对应点D落在CE上,∴CD=CB,∴△ACD≌△ECB(SAS),∴∠A=∠E,∵∠A+∠ADC=90°,∠ADC=∠EDF,∴∠E+∠EDF=90°,∴∠EFD=90°,∴AF⊥BE.(2)解:如图1中,连接CF.结论:AF﹣EF=CF.理由:过点C作CT⊥CF,交AF于T.∵∠DFB+∠DCB=90°+90°=180°,∴D,C,B,F四点共圆,∴∠DFC=∠DBC=45°,∵∠FCT=90°,∴∠CTF=∠CFT=45°,∴CT=CF,FT=CF,∵∠ACE=∠TCF=90°,∴∠ACT=∠ECF,∵CA=CE,CT=CF,∴△ACT≌△ECF(SAS),∴AT=EF,∴AF﹣EF=AF=AT=FT=CF.(3)解:如图2中,设CB=BG=m.∵CB=BG=B′G′,B′G′∥BC,∴四边形CBG′B′是平行四边形,∴CB′=BG′,∴CB′+CG′=CG′+G′B,作点C关于直线GG′的对称点T,连接BT交GG′于G′,此时CG′+G′B的值最小,作TH∥CG交GG′于H,设CT交GH于O.∵CO=OT,∠THO=∠OGC,∠HOT=∠COG,∴△THO≌△CGO(AAS),∴TH=CG=2m,OG=OH,在Rt△CGO中,∵∠CGO=∠CBE=60°,CG=2m,∴OG=OH=CG•cos60°=m,∵HT∥BG,∴HG′:GG′=HT:GB=2:1,∴HG′=m,GG′=m,过点G′作G′K⊥BG于K,则GK=GG′=m,G′K=m,CK=2m﹣m=m,∴tan∠GCG′===.10.解:(1)设C(0,m),∵A(﹣6,0),B(0,8),∴OA=6,OB=8,由翻折的性质可知,∠CDA=∠AOC=90°,OC=CD=m,∵S△AOB=S△AOC+S△ACB,∴•OA•OB=•OC•OA+•AB•CD,∴6×8=6m+10m,∴m=3,∴C(0,3).(2)如图2中,由翻折的性质可知,OA=AD=6,CD=OC=3,∵AB=10,∴BD=AB﹣AD=10﹣6=4,∴BD:AB=4:10=2:5,∴S△BOD=•S△AOB=××6×8=,∵OC:OB=3:8,∴S△CDO=S△BOD,∵OH⊥CD,∴×3×OH=×,∴OH=.(3)如图3中,设P(m,n).∴S△POA=12,∴×6×n=12,∴n=4,∴当点P在线段AB上时,PA=PB=5,此时P(3.4),∴PD=AD﹣PA=6﹣5=1,∴CD+PD=3+1=4,∴t=4(s).当点P′在线段CD上时,CP′=t,则有S四边形AOCD﹣S△ADP′﹣S△P′OC=S△P′OA,∴2××3×6﹣×6×(3﹣t)﹣××t=12,∴t=(s).综上所述,满足条件的t的值为4s或s.11.解:(1)∵△ABC是等边三角形,∴∠ABC=60°,将△APC绕点A按顺时针方向旋转60°,得到△ABD,连接PD,如图1所示:则△APD是等边三角形,∠APC=∠ADB=150°,PC=DB=4,∴∠ADP=60°,DP=AP=3,∴∠PDB=90°,∴PB===5;解:(2)将△APB绕点A按逆时针方向旋转60°,得到△AP′C,连接PP′,如答图1所示:则△APP′是等边三角形,∠AP′C=∠APB=360°﹣90°﹣120°=150°,∴PP′=AP,∠AP′P=∠APP′=60°,∴∠PP′C=90°,∠P′PC=30°,∴PP′=PC,即AP=PC,∵∠APC=90°,∴AP2+PC2=AC2,即(PC)2+PC2=72,∴PC=2,∴AP=,∴S△APC=AP•PC=××2=7;(2)如答图2中,把△ACP绕点C逆时针旋转90°得到△BCD.由旋转性质可知;BD=PA=1,CD=CP=2,∠PCD=90°,∴△PCD是等腰直角三角形,∴PD=PC=×2=4,∠CDP=45°,∵PD2+BD2=42+12=17,PB2=()2=17,∴PD2+BD2=PB2,∴∠PDB=90°,∴∠BDC=135°,∴∠APC=∠CDB=135°,∵∠CPD=45°,∴∠APC+∠CPD=180°,∴A,P,D共线,∴AD=AP+PD=5,在Rt△ADB中,AB===.12.解:(1)①∵△ACB和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE=60°,∠ADE=∠AED=60°,∴∠BAC﹣∠DAC=∠DAE﹣∠DAC,即∠BAD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△ACE(SAS),∴BD=CE,∠BDA=∠CEA,∵点B,D,E在同一直线上,∴∠ADB=180﹣60=120°,∴∠AEC=120°,∴∠BEC=∠AEC﹣∠AED=120﹣60=60°,综上,可得∠AEB的度数为60°;线段BD与CE之间的数量关系是:BD=CE.②∠BEC=∠AEC﹣∠AED=120﹣60=60°;故BD=CE;60;(2),∠BEC=45°.理由如下:△ABC和△ADE均为等腰直角三角形,∴∠BAC=∠ABC=∠ADE=∠DAE=45°,∠ACB=∠AED=90°,∴∠BAD=∠CAE,∠ADB=135°,∵Rt△ABC和Rt△ADE中,,,,∴,∴,又∠BAD=∠CAE,∴△ABD∽△ACE,∴∠ADB=∠AEC=135°,,∴∠BEC=∠AEC﹣∠AED=45°,∵,∴,∴,∴;(3)如图3中,∵AEB=∠ACB=90°,∴A,B,C,E四点共圆,∴∠CEB=∠CAB=30°,∠ABD=∠ACE,∵∠FAE=∠BAC=30°,∴∠BAD=∠CAE,∴△BAD∽△CAE,∴,∴EC=BD,在Rt△ADE中,∵DE=,∠DAE=30°,∴AE=DE=3,∴BE==4,∴BD=BE﹣DE=4﹣,∴CE=BD=2﹣,如图4中,当D,E,B在同一直线上时,同法可知BD=DE+EB=4+,CE=BD=2+,综上所述,CE的长为或.13.(1)证明:如图1中,延长CD到T,使得DT=DE,连接TE.∵四边形ABCD是菱形,∴DT∥AB,∠A=∠C=60°,∴∠TDE=∠A=60°,∵DT=DE,∴△DET是等边三角形,∴∠T=∠C=60°,∵∠EA′F=∠A=60°,∴∠TA′E+∠CA′H=120°,∵∠CA′H+∠A′HC=120°,∴∠TA′E=∠A′HC,∴△A′HC∽△EA′T,∴=,∵ET=DE,AE=A′E,∴=.(2)解:如图2中,延长CD,过点F作FM⊥CD于点M,交AB于H,连接A′B、BD,CF.∵∠A=60°,四边形ABCD是菱形,∴∠MDF=60°,∴∠MFD=30°,设MD=x,则DF=2x,FM=x,∵DA′=1,∴MA′=x+1,∴(x+1)2+(x)2=(2﹣2x)2,解得:x=0.3,∴DF=0.6,AF=1.4,∴AH=AF=0.7,FH=AF•sin∠A=1.4×=,∵CD=BC,∠C=60°,∴△DCB是等边三角形,∵A′是CD的中点,∴BA′⊥CD,∵BC=2,DA′=A′C=1,∴BA′=,设BE=y,则A′E=2﹣y,∴()2+y2=(2﹣y)2,解得:y=0.25,∴AE=1.75,∴EH=AE﹣AH=1.75﹣0.7=1.05,∴EF===.(3)解:如图3中,过点G作GH⊥AB于H,过点G作GP⊥A'F于P,过点A′作A'Q⊥AB于Q.∵四边形ABCD是菱形,∴DA=AB=BC=CD=2,AB∥CD,∵∠BAD=60°,∴A'Q=∵A'与A关于EF对称,∴EF垂直平分AA',AQ=QA′,∴AG=A'G,∠AFE=∠A'FE,∴GP=GH,又∵GH⊥AB,A'Q⊥AB∴GH∥A'Q,∴GH=A'Q=,所以GC'≥GP=,当且仅当C'与P重合时,GC'取得最小值.故答案为.14.解:(1)如图1中,由题意,=,∵DE∥AC,∴△BDE∽△BAC,∴=,∴==,∵AB=AC,∴∠B=∠C,∵DE∥AC,∴∠DEB=∠C=∠B,∴DB=DE,∵=,∴==.故答案为,.(2)结论:=的值不变.理由:如图2中,∵△BDE∽△BAC,∴=,∠DBE=∠ABC,∴∠DBA=∠EBC,∴△EBC∽△DBA,∴==.(3)∵AB=6,BD=2,又∵==,∴BC=3﹣3,BE=﹣1,∵BC﹣BE≤EC≤BE+BC,∴2﹣2≤EC≤4﹣4.15.解:(1)①∵∠C=90°,∠B=30°.∴∠BAC=60°,∵△DEC绕点C旋转,点D恰好落在AB边上.∴AC=CD,∴△ACD是等边三角形,∴∠ACD=60°;故60°;②∵∠B=30°,∠C=90°,∴CD=AC=AB,∴BD=AD=AC,根据等边三角形的性质,△ACD的边AC、AD上的高相等,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC;故S△BDC=S△AEC;(2)如图3,过点D作DM⊥BC于M,过点A作AN⊥CE交EC的延长线于N,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,在△ACN和△DCM中,∵,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S△BDC=S△AEC;(3)如图4,过点D作DF∥BE,∵∠ABC=60°,BD平分∠ABC,∴∠ABD=∠DBE=30°,∵DF∥BE,∴∠FDB=30°,∴∠FBD=∠FDB=30°,∴FB=FD,∴四边形DEBF是菱形,所以BE=DF,且BE、DF上的高相等,此时S△DCF=S△BDE;过点D作DF1⊥BD,∵∠ABC=60°,FD∥BE,∴∠F1FD=∠ABC=60°,∵BF=DF,∠FBD=∠ABC=30°,∠F1DB=90°,∴∠FDF1=∠ABC=60°,∴△DFF1是等边三角形,∴DF=DF1,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB=×60°=30°,∴∠CDF=180°﹣∠BCD=180°﹣30°=150°,∠CDF1=360°﹣150°﹣60°=150°,∴∠CDF=∠CDF1,∵在△CDF和△CDF1中,,∴△CDF≌△CDF1(SAS),∴点F1也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD=×60°=30°,又∵BD=4,∴BE=×4÷cos30°=2÷=,∴BF=,BF1=BF+FF1==,故BF的长为或.16.解:(1)∵点P是点Q(3,2)关于原点的关联点,∴P,Q关于原点对称,∴P(﹣3,2),故答案为(﹣3,2).(2)①如图1中,当d=4时,线段BC′平移到HG位置,此时线段EF上存在1个△ABC关于点(1,0)的“关联点”,当d=6时,线段BC′平移到NM位置,此时线段EF上存在2个△ABC关于点(1,0)的“关联点”,观察图象可知,满足条件的d的范围为:4<d≤6故4<d≤6.②如图2中,当m=3时,线段MN上存在△ABC关于点(m,0)的“关联点”,如图3中,当m=5时,线段MN上存在△ABC关于点(m,0)的“关联点”,如图4中,当m=7时,线段MN上存在△ABC关于点(m,0)的“关联点”,如图5中,当m=9时,线段MN上存在△ABC关于点(m,0)的“关联点”,观察图象可知满足条件的m的为:3≤m≤5或7≤m≤9.17.(1)解:根据SAS可以证明△ADB≌△AEC.故答案为B.(2)证明:∵△ABC、△ADE均为等边三角形,∴AD=AE,AB=AC.由旋转得:∠DAB=∠EAC,在△ADB和△AEC中,,∴△ADB≌△AEC(SAS).(3)解:如图③,∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∴∠AEC=120°,∵△ADB≌△AEC,∴∠ADB=∠AEC=120°,∴∠EDB=60°;如图④,∵△ADE是等边三角形,∴∠ADE=∠AED=60°,∵△ADB≌△AEC,∴∠ADB=∠AEC=60°,∴∠EDB=60°+60°=120°,∴∠EDB的大小为60°或120°,故60或120.18.解:(1)∵点A是x轴负半轴上一点且OA=3,∴A(﹣3,0),∵点B在第二条象限内,到x轴的距离是3,到y轴的距离是2.∴B(﹣2,3).故﹣3,0;﹣2,3;(2)如图①﹣1中,取点A关于y轴对称的对称点A',连接BA'交y轴于点,则点P即为所求,过点B作BC⊥x轴于点C.∴AP=A'P,∴三角形ABP的周长的最小值为AB+AA'+BA'.∵A(﹣3,0),B(﹣2,3),A'(3,0),∴AB===,A'B==,∴三角形ABP的周长的最小值为AB+A'B=+;(2)如图①﹣2中,。

北京中考数学--几何、二次函数综合题压轴题解析汇总

北京中考数学--几何、二次函数综合题压轴题解析汇总

北京中考数学---几何、二次函数综合题压轴题解析汇总25、(2007•北京)我们知道:有两条边相等的三角形叫做等腰三角形.类似地,我们定义:至少有一组对边相等的四边形叫做等对边四边形.(1)请写出一个你学过的特殊四边形中是等对边四边形的图形的名称;(2)如图,在△ABC中,点D,E分别在AB,AC上,设CD,BE相交于点O,若∠A=60°,∠DCB=∠EBC=错误!未找到引用源。

∠A.请你写出图中一个与∠A相等的角,并猜想图中哪个四边形是等对边四边形;(3)在△ABC中,如果∠A是不等于60°的锐角,点D,E分别在AB,AC上,且∠DCB=∠EBC=错误!未找到引用源。

∠A.探究:满足上述条件的图形中是否存在等对边四边形,并证明你的结论.考点:等腰梯形的性质。

专题:压轴题。

分析:(1)本题理解等对边四边形的图形的定义,平行四边形,等腰梯形就是.(2)与∠A相等的角是∠BOD(或∠COE),四边形DBCE是等对边四边形;(3)作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.易证△BCF≌△CBG,进而证明△BDF≌△CEG,所以BD=CE.所以四边形DBCE是等边四边形.解答:解:(1)回答正确的给(1分)(如:平行四边形、等腰梯形等).(2)答:与∠A相等的角是∠BOD(或∠COE),∵∠BOD=∠OBC+∠OCB=30°+30°=60°,∴∠A=∠BOD,四边形DBCE是等对边四边形;(3)答:此时存在等对边四边形,是四边形DBCE.证法一:如图,作CG⊥BE于G点,作BF⊥CD交CD延长线于F点.因为∠DCB=∠EBC=错误!未找到引用源。

∠A,BC为公共边,所以△BCF≌△CBG,所以BF=CG,因为∠BDF=∠ABE+∠EBC+∠DCB,∠BEC=∠ABE+∠A,所以∠BDF=∠BEC,可证△BDF≌△CEG,所以BD=CE所以四边形DBCE是等对边四边形.证法二:如图,以C为顶点作∠FCB=∠DBC,CF交BE于F点.因为∠DCB=∠EBC=错误!未找到引用源。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年 几何 综合提升(一)
1. 已知△ABC 中,AD 是的平分线,且AD =AB , 过点C 作AD 的垂线,交 AD 的延长线于点H .
(1)如图1,若
①直接写出B ∠和ACB ∠的度数;
②若AB =2,求AC 和AH 的长;
(2)如图2,用等式表示线段AH 与AB +AC 之间的数量关系,并证明.
2.正方形ABCD 的边长为2,将射线AB 绕点A 顺时针旋转α,所得射线与线段BD 交于点M ,作CE AM ⊥于点E ,点N 与点M 关于直线CE 对称,连接CN .
(1)如图1,当045α︒<<︒时,
①依题意补全图1.
②用等式表示NCE ∠与BAM ∠之间的数量关系:__________.
(2)当4590α︒<<︒时,探究NCE ∠与BAM ∠之间的数量关系并加以证明.
(3)当090α︒<<︒时,若边AD 的中点为F ,直接写出线段EF 长的最大值.
3.如图,已知60AOB ∠=︒,点P 为射线OA 上的一个动点,过点P 作PE OB ⊥,交OB 于点E ,点D 在AOB ∠内,且满足DPA OPE ∠=∠,6DP PE +=.
(1)当DP PE =时,求DE 的长;
(2)在点P 的运动过程中,请判断是否存在一个定点M ,使得
DM ME
的值不变并证明你的判断.
4. 如图,在菱形ABCD中,∠DAB=60°,点E为AB边上一动点(与点A,B不重合),
连接CE,将∠ACE的两边所在射线CE,CA以点C为中心,顺时针旋转120°,分别交射线AD于点F,G.
(1)依题意补全图形;
(2)若∠ACE=α,求∠AFC的大小(用含α的式子表示);
(3)用等式表示线段AE、AF与CG之间的数量关系,并证明.
5.如图,Rt△ABC中,∠ACB = 90°,CA = CB,过点C在△ABC外作射线CE,且∠BCE = α,点B关于CE的对称点为点D,连接AD,BD,CD,其中AD,BD分别交射线CE于点M,N.
(1)依题意补全图形;
(2)当α= 30°时,直接写出∠CMA的度数;
(3)当0°<α< 45°时,用等式表示线段AM,CN之间的数量关系,并证明.
6.在正方形ABCD 中,M 是BC 边上一点,点P 在射线AM 上,将线段AP 绕点A 顺时针
旋转90°得到线段AQ ,连接BP ,DQ .
(1)依题意补全图1;
(2)①连接DP ,若点P ,Q ,D 恰好在同一条直线上,求证:2222DP DQ AB +=; ②若点P ,Q ,C 恰好在同一条直线上,则BP 与AB 的数量关系为: .
7. 如图,在正方形ABCD 中,E 是BC 边上一点,连接AE ,延长CB 至点F ,使BF=BE ,过点F 作FH ⊥AE 于点H ,射线FH 分别交AB 、CD 于点M 、N ,交对角线AC 于点P ,连接AF .
(1)依题意补全图形;
(2)求证:∠FAC =∠APF ;
(3)判断线段FM 与PN 的数量关系,并加以证明.
图1 备用图
8.如图1,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE 于点F,连接FC.
(1)求证:∠FBC=∠CDF.
(2)作点C关于直线DE的对称点G,连接CG,FG.
①依据题意补全图形;
②用等式表示线段DF,BF,CG之间的数量关系并加以证明.
图1备用图
9.如图,在等腰直角△ABC中,∠CAB=90°,F是AB边上一点,作射线CF,过点B作BG⊥C F于点G,连接AG.
(1)求证:∠ABG=∠ACF;
(2)用等式表示线段C G,AG,BG之间的等量关系,并证明.
10. 如图,已知Rt△ABC中,∠C=90°,∠BAC=30°,点D为边BC上的点,连接AD,∠BAD=α,
点D关于AB的对称点为E,点E关于AC的对称点为G,线段EG交AB于点F,连接AE,DE,DG,AG.
(1)依题意补全图形;
(2)求∠AGE的度数(用含α的式子表示);
(3)用等式表示线段EG与EF,AF之间的数量关系,并说明理由.
11.如图,在△ABC中,∠A=90°,AB=AC,点D是BC上任意一点,将线段AD绕点A逆时针方向旋转90°,得到线段AE,连结EC.
(1)依题意补全图形;
(2)求∠ECD的度数;
(3)若∠CAE=°,AD=1,将射线DA绕点D顺时针旋转60°交EC的延长线于点F,请写出求AF长的思路.
12. 如图,在△ABC中,AB=AC,2
∠=,点D是BC的中点,DE AB E

⊥于点,⊥于点.
DF AC F
(1)EDB
∠=_________°;(用含α的式子表示)
(2)作射线DM与边AB交于点M,射线DM绕点D顺时针旋转1802α
︒-,与AC边交于点N.
①根据条件补全图形;
②写出DM与DN的数量关系并证明;
③用等式表示线段BM CN
、与BC之间的数量关系,
(用含α的锐角三角函数表示)并写出解题思路.
13.在△ABC中,AB=AC,CD⊥BC于点C,交∠ABC的平分线于点D,AE平分∠BAC交BD于点E,过点E作EF∥BC交AC于点F,连接DF.
(1)补全图1;
(2)如图1,当∠BAC=90°时,
①求证:BE=DE;
②写出判断DF与AB的位置关系的思路(不用写出证明过程);
(3)如图2,当∠BAC=α时,直接写出α,DF,AE的关系.
图1图2。

相关文档
最新文档