圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数
《公预规》提供的附录C表C.0.2“圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数”表

C.O.2沿用边均匀配筋的圆形截面钢筋混凝土偏心受压构件,其正截面抗压承载力可用查表法(表C.0.2)并按下列规定计算求得:1当对构件承载力进行复核验算时1)由本规范公式(5.3.9-1)和(5.3.9-2)解得轴向力的偏心距:'0'g cd sd cd sd Bf D f e r Af C f ρρ+=+(C.0.2-1)2)已知cd f 、'sd f 、ρ、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式(C.0.2-1)计算0e 值。
若此0e 值与实际计算偏心距/d d M N η相符(允许偏差在2%以内),则设定的ξ值为所求者;若不相符,重新设定ξ值,重复上述计算,直到相符为止;3)将最后确定的ξ相应的A、B、C、D值代入规范公式(5.3.9-1)或(5.3.9-2)进行构件正截面承载力的复核验算。
2当对构件进行配筋设计时1)由公式(C.0.2-1)变换得截面配筋率:0'cd sd o f Br Ae f Ce Dgr ρ−=•−(C.0.2-2)2)已知cd f 、'sd f 、0e 、r ,设定ξ值,查表C.0.2,将查得的系数A、B、C、D值代入公式( C.0.2-2)计算ρ值,计算时式中的0e 应乘以偏心距增大系数η;再再把ρ和A、C值直代入规范公式(5.3.9-1)算得轴向力值。
若此轴向力值与实际作用的轴向力设计值相符(允许偏差在2%以内),则该ξ值及依此计算的ρ值为所求者;若不相符,重新设定ξ值,重复上述计算,直至相符为止。
3)以最后确定的ρ值代入下列公式计算纵向钢筋截面面积:2s A r ρπ=(C.0.2-3)所得钢筋配筋率应符合最小配筋率的要求。
表C.O.2圆形截面钢筋混凝土偏压构件正截面抗压承载力计算系数ξA B C D ξA B C DξA B C D0.200.32440.2628-1.52961.4216 0.210.34810.2787-1.46761.4623 0.220.37230.2945-1.40741.5004 0.230.39690.3103-1.34861.5361 0.240.42190.3259-1.29111.5697 0.250.44730.3413-1.23481.6012 0.260.47310.3566-1.17961.6307 0.270.49920.3717-1.12541.6584 0.280.52580.3865-1.07201.6843 0.290.55260.4011-1.01941.7086 0.300.57980.4155-0.96751.7313 0.310.60730.4295-0.91631.7524 0.320.63510.4433-0.86561.7721 0.330.66310.4568-0.81541.7903 0.340.69150.4699-0.76571.8071 0.350.72010.4828-0.71651.8225 0.360.74890.4952-0.66761.8366 0.370.77800.5073-0.61901.8494 0.380.80740.5191-0.57071.8609 0.390.83690.5304-0.52271.8711 0.400.86670.5414-0.47491.8801 0.410.89660.5519-0.42731.8878 0.420.92680.5620-0.379818943 0.430.95710.5717-0.33231.8996 0.440.98760.5810-0.28501.9036 0.451.01820.5898-0.23771.9065 0.461.04900.5982-0.19031.9081 0.471.07990.6061-0.14291.9084 0.481.11100.6136-0.09541.9075 0.491.14220.6206-0.04781.9053 0.501.17350.6271-0.00001.9018 0.51 1.20490.63310.0480 1.8971 0.52 1.23640.63860.0963 1.8909 0.53 1.26800.64370.1450 1.8834 0.54 1.29960.64830.1941 1.8744 0.55 1.33140.65230.2436 1.8639 0.56 1.36320.65590.2937 1.8519 0.57 1.39500.65890.3444 1.8381 0.58 1.42690.66150.3960 1.8226 0.59 1.45890.66350.44851,8052 0.60 1.49080.66510.5021 1.78560.64 1.61880.66610.7373 1.67630.65 1.65080.66510.8080 1.63430.66 1.68270.66350.8766 1.59330.67 1.71470.66150.9430 1.55340.68 1.74660.6589 1.0071 1.51460.691.77840.6559 1.06921.47690.70 1.81020.6523 1.1294 1.44020.71 1.84200.6483 1.1876 1.40450.72 1.87360.6437 1.2440 1.36970.73 1.90520.6386 1.2987 1.33580.74 1.93670.6331 1.3517 1.30280.75 1.96810.6271 1.4030 1.27060.76 1.99940.6206 1.4529 1.23920.77 2.03060.6136 1.5013 1.20860.78 2.06170.6061 1.5482 1.17870.79 2.09260.5982 1.5938 1.14960.80 2.12340.5898 1.6381 1.12120.81 2.15400.5810 1.6811 1.09340.82 2.18450.5717 1.7228 1.06630.83 2.21480.5620 1.7635 1.03980.84 2.24500.5519 1.8029 1.01390.85 2.27490.5414 1.84130.98860.86 2.30470.5304 1.87860.96390.87 2.33420.5191 1.91490.93970.88 2.36360.5073 1.95030.91610.89 2.39270.4952 1.98460.89300.90 2.42150.4828 2.01810.87040.91 2.45010.4699 2.05070.84830.92 2.47850.4568 2.08240.82660.93 2.50650.4433 2.11320.80550.94 2.53430.4295 2.14330.78470.95 2.56180.4155 2.17260.76450.96 2.58900.4011 2.20120.74460.97 2.61580.3865 2.22900.72510.98 2.64240.3717 2.25610.70610.99 2.66850.3566 2.28250.68741.002.69430.3413 2.30820.66921.012.71120.3311 2.33330.65131.022.72770.3209 2.35780.63371.032.74400.3108 2.38170.61651.042.75980.3006 2.40490.59971.082.82000.26092.49240.53561.092.83410.25112.51290.52041.102.84800.24152.53300.50551.112.86150.23192.55250.49081.122.87470.22252.57160.47651.132.88760.21322.59020.46241.142.90010.20402.60840.44861.152.91230.19492.62610.43511.162.92420.18602.64340.42191.172.93570.17722.66030.40891.182.94690.16852.67670.39611.192.95780.16002.69280.38361.202.96840.15172.70850.37141.212.97870.14352.72380.35941.222.9886O.13552.73870.34761.232.99820.12772.75320.33611.243.00750.12012.76750.32481.253.01650.11262.78130.31371.263.02520.10532.79480.30281.273.03360.09822.80800.29221.283.04170.09142.82090.28181.293.04950.08472.83350.27151.303.05690.07822.84570.26151.313.06410.07192.85760.25171.323.07090.06592.86930.24211.333.07750.06002.88060.23271.343.08370.05442.89170.22351.353.08970.04902.90240.21451.363.09540.04392.91290.20571.373.10070.03892.92320.19701.383.10580.03432.93310.18861.393.11060.02982.94280.18031.403.11500.02562.95230.17221.413.11920.02172.96150.16431.423.12310.01802.97040.15661.433.12660.01462.97910.14911.443.12990.01152.98760.14171.453.13280.00862.99580.13451.463.13540.00613.00380.12751.473.13760.00393.01150.12061.483.13950.00213.01910.11400.61 1.52280.66610.5571 1.76360.62 1.55480.66660.6139 1.73870.63 1.58680.66660.6734 1.7103 1.05 2.77540.2906 2.42760.58321.06 2.79060.2806 2.44970.56701.07 2.80540.2707 2.47130.5512 1.49 3.14080.007 3.02640.10751.503.14160.00003.03340.10111.513.14160.00003.04030.09505.3.9沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件(图5.3.9),其正截面抗压承载力计算应符合下列规定:图5.3.9沿周边均匀配筋的圆形截面偏心受压构件计算22'0d cd sdN Ar f C r f γρ≤+(5.3.9-1)33'00d cd sd N e Br f D gr f γρ≤+(5.3.9-2)式中0e ——轴向力的偏心距,0/d d e M N =,应乘以偏心距增大系数η,η可按第5.3.10条的规定计算;A、B——有关混凝土承载力的计算系数,按附录C 的迭代法由表C.O.2查得;C、D——有关纵向钢筋承载力的计算系数,按附录C 的迭代法由表C.O.2查得;r ——圆形截面的半径;g ——纵向钢筋所在圆周的半径s r 与圆截面半径之比,/s g r r =;ρ——纵向钢筋配筋率,2/s A r ρπ=。
(偏心)受压构件正截面承载力计算

(2)适用条件
0 Nd es' Nu es' f sd As (h0 as' )
h e e0 a s' 2
' s
2.小偏心受压构件正截面承载力计算公式
' 0 N d Nu f cd bx f sd As' s As
x ' 0 N d es N u es f cd bx (h0 ) f sd As' (h0 as' ) 2 x ' ' ' ' 或 0 N d es N u es f cd bx ( as ) s As (h0 as ) 2 x ' 或 f cd bx ( es' a s' ) f sd As' es' s As es 2
' ' ' 对As作用点取矩: 0 N d es N u es f cd bx (h0 ) f sd As (h0 as ) (7-23)
或
或
x 2
作用点取矩: 0 N d es' N u es' f cd bx ( as' ) f sd As (h0 as' ) (7-24) 对As
几何轴线
偏心受压构件的截面应变分布图
等效矩形应力分布图形的受压区界限高度按下式计算:
b
f sd 1 cu Es
式中、 cu查表4 1可得。
三、偏心受压长柱的正截面破坏形态 “长柱” 纵向弯曲比较大,设计时必须予以考虑。 1.破坏形式
破坏形态:失稳破坏和材料破坏
(1)失稳破坏 长细比很大时,构件的破坏不是由于材料引起的,而是 由于构件纵向弯曲失去平衡引起的,称为“失稳破坏”。 (2)材料破坏 当柱长细比在一定范围内时,在承受偏心受压荷载后, 虽然偏心距由e0增大至e0+y,使柱的承载能力比同样截面的
桩基强度验算

mm mm
mm mm mm 根
0 750
20 12 0 3768 0.002
先假定,求出e0后与实际比较,符合
混凝土轴心抗压强度设计值
钢筋抗拉强度设计值
fcd fsd′ Nd Md e0
Mpa Mpa KN KNm弯矩组合设计值 轴向力偏心距 桩基正截面抗压承载力设计荷载
0.00 0.00 合格
KNm 桩基强度验算结果
合格
先假定,求出e0后与实际比较,符合2%允许偏差则采用假定,不符则继续假定
e0
#DIV/0!
查表C.0.2
圆形截面钢筋混凝土偏心受压构件正截面抗压承载力验算
结构重要性系数 桩长 桩基计算长度 桩径 纵向钢筋所在圆周的半径 纵向钢筋直径 纵向钢筋根数 纵向钢筋所在圆周半径与圆截面半径的比值 受拉区纵向钢筋的截面面积 纵向钢筋配筋率 截面实际受压区高度与圆形截面直径的比值 有关混凝土承载力的计算系数 B C 有关纵向钢筋承载力的计算系数 D γ0 l l0 r rs d n g As ρ ξ A mm2
2023电大国开一体化专科《建筑结构》形考任务1-4试题及答案

形考任务一1.( )主要优点是强度高、整体性好、耐久性与耐火性好,便于就地取材,具有良好的可模板性。
主要缺点包括:自重大、抗裂性差、施工步骤繁琐、工期较长。
正确答案:混凝土结构2.()主要优点是易于就地取材、耐久性与耐火性好、施工简单、造价较低。
主要缺点是抗拉强度低、整体性差、结构自重大、工人劳动强度高等。
正确答案:砌体结构3.()具有强度高、结构自重轻、材质均匀、可靠性好、施工便捷、抗震性能良好的优点。
主要缺点是易腐蚀、耐火性差、工程造价和维护费用较高。
正确答案:钢结构4.()一般具有钢结构、混凝土结构的双重优点,相比混凝土结构延性更好,抗震性能更优,可以减小构件截面面积,经济效益较高。
正确答案:组合结构5.()的主要优点是建筑平面布置灵活,可形成较大的建筑空间,建筑立面处理也比较方便;主要缺点是侧向刚度较小,当层数较多时,会产生过大的侧移,易引起非结构性构件破坏而影响使用。
正确答案:框架结构6.( )一般是指楼盖和屋盖采用钢筋混凝土或钢木结构,而墙和柱采用砌体组成的结构,大多用于住宅、办公楼和教学楼。
正确答案:砖混结构7.()的主要优点是侧向刚度大,水平荷载作用下侧移小;主要缺点是结构建筑平面布置不灵活,不适用于大空间的公共建筑,结构自重较大。
正确答案:剪力墙结构8.()是由两种不同结构组合而成,具有结构平面布置灵活、空间较大、侧向刚度也较大的优点。
正确答案:框架-剪力墙结构9.()是抵抗水平荷载较有效的结构体系,它的受力特点是整个建筑犹如一个固定于基础上的封闭空心筒悬臂梁来抵抗水平力。
正确答案:筒体结构10.建筑结构在正常设计、正常施工、正常使用和正常维修条件下,并在规定的设计使用年限内满足的功能要求不包括()。
正确答案:经济性11.安全等级为一级的重要工业与民用建筑物,其结构重要性系数不应小于()。
正确答案:1.112.()是指结构在使用期间,在正常情况下可能出现的最大荷载值。
正确答案:荷载标准值13.下列建筑中,属于甲类建筑的是()。
窄—圆形偏压(JTG 3362-2018)

参数名称 γ 0
Md
Nd
eo
fcd
单位
KN-m
KN
mm
Mpa
参数值
1.1 2.597E+03 7.815E+03 332.3
13.8
fsd
ρ
Es
Mpa
Mpa
330 0.98% 200000
1
0.2
0.27
e0
0.823
h0
1
1
( l0
)2
12
2.043
1300e0 / h0 h
2
1.15 0.01l0
0.95
h
按照JTG 3363-2018第5.3.8条,当混凝土强度等级在C30~C50、纵向钢筋配筋率在0.5%~4% 之间时,沿周边均匀配置纵向钢筋的圆形截面钢筋混凝土偏心受压构件,其正截面抗压承载力 计算应符合下列要求:
0Nd nu Afcd
其中:
e0 0.905 r
圆型截面钢筋砼构件裂缝计算
参数名称
r
rs
单位
mm
mm
参数值
750
690
C1
C2
C3 保护层c 钢筋d 根数
mm
mm
1
1.05
0.75
60
28
28
参数名称
Ms
Ns
砼标号
l0
eo
单位
KN-m
KN
Mpa
mm
mm
参数值 1.86E+03 5.58E+03
30
Hale Waihona Puke 30000332最大裂缝为:
钢筋混凝土受弯构件正截面承载力的计算

第3章钢筋混凝土受弯构件正截面承载力的计算§1概述1、受弯构件(梁、板)的设计内容:图3-1①正截面受弯承载力计算:破坏截面垂直于梁的轴线,承受弯矩作用而破坏,叫做正截面受弯破坏。
②斜截面受剪承载力计算:破坏截面与梁截面斜交,承受弯剪作用而破坏,叫做斜截面受剪破坏。
③满足规范规定的构造要求:对受弯构件进行设计与校核时,应满足规范规定的要求。
比如最小配筋率、纵向2①板⑴板的形状与厚度:a.形状:有空心板、凹形板、扁矩形板等形式;它与梁的直观区别是高宽比不同,有时也将板叫成扁梁。
其计算与梁计算原理一样。
b.厚度:板的混凝土用量大,因此应注意其经济性;板的厚度通常不小于板跨度的1/35(简支)~1/40(弹性约束)或1/12(悬臂)左右;一般民用现浇板最小厚度60mm,并以10mm为模数(讲一下模数制);工业建筑现浇板最小厚度70mm。
⑵板的受力钢筋:单向板中一般仅有受力钢筋和分布钢筋,双向板中两个方向均为受力钢筋。
一般情况下互相垂直的两个方向钢筋应绑扎或焊接形成钢筋网。
当采用绑扎钢筋配筋时,其受力钢筋的间距:当板厚度h≤150mm时,不应大于200mm,当板厚度h﹥150mm时,不应大于1.5h,且不应大于250mm。
板中受力筋间距一般不小于70mm,由板中伸入支座的下部钢筋,其间距不应大于400mm,其截面面积不应小于跨中受力钢筋截面面积的1/3,其锚固长度l as不应小于5d。
板中弯起钢筋的弯起角不宜小于30°。
板的受力钢筋直径一般用6、8、10mm。
对于嵌固在砖墙内的现浇板,在板的上部应配置构造钢筋,并应符合下列规定:a. 钢筋间距不应大于200mm,直径不宜小于8mm(包括弯起钢筋在内),其伸出墙边的长度不应小于l1/7(l1为单向板的跨度或双向板的短边跨度)。
b. 对两边均嵌固在墙内的板角部分,应双向配置上部构造钢筋,其伸出墙边的长度不应小于l1/4。
c. 沿受力方向配置的上部构造钢筋,直径不宜小于6mm,且单位长度内的总截面面积不应小于跨中受力钢筋截面面积的1/3。
钢筋混凝土构件受压构件承载力计算

轴心受压、偏心受压和受弯构件截面极限应力状态
’
构件截面应力随偏心距变化
矩形截面偏心受压
偏
心 受
计算基本假定
重心轴
压 平截面假定
构
计算中和轴
件 不考虑混凝土的抗拉作用
正
实际中和轴
截 混凝土和钢筋的应力应变关系
面
承 受压区混凝土采用等效矩形应力图形。 载
力 x 2 a 时,受压钢筋达到抗压设计强度。
偏
心
受
N与M线性关系
压
N与M曲线关系
构
dN/dM=0
件
纵
向
弯
曲
的
影
响
短柱、长柱和细长柱 e0相同、长细比不同时Nu的变化
长细比增加,附加弯矩增大, 长柱承载力Nu降低。(同轴压)
偏
偏心距增大系数法是一个传统的方法,使
心
用方便,在大多数情况下具有足够的精度,至
受 压
今被各国规范所采用。
构
式(5-11)是由两端铰支、计算长度为l0 、
x) 2
f cbx f y As
KV
Vu
0.7 ftbh0
1.25 f yv
Asv s
h0
fy Asb sins
1.正截面承载力(N、M)
单
KN
Nu
fcbx
f
' y
As
s
As
向 偏
KNe
Nue
fcbx h0
x 2
f
' y
As'
算
推导
适筋、超筋、界限破坏时的截面平均应变图
钢筋混凝土偏心受力构件承载力计算

f y (h0 as' )
' 大
h 其中:e ei as' 2
③小偏心受压构件的配筋计算 I.受弯平面内的计算: 将б s的公式(6-14)代人式(6-12)及式(6-13),并将x代换为 x=ξ h0,则小偏心受压的基本公式为
(6-22)
(6-23) (6-24) 式(6-22)及式(6-23)中有三个未知 数ξ ,As及As’故不能得出唯一的 解、一般情况下As’无论拉压其应力 都达不到强度设计值,故配置数量 很多的钢筋是无意义的。故可取As =0.002bh,但考虑到在N较大而e0 较小的全截面受压情况下如附加偏 心
如图6-7所示,ab段表示大偏心受压时的M-N相 关曲线,为二次抛物线、随着轴向压力N的增大 截面能承担的弯矩也相应提高。 b点为受拉钢筋与受压混凝土同时达到其强 度值的界限状态。此时偏心受压构件承受的弯矩 M最大。 bc段表示小偏心受压时的M-N曲线,是一条 接近于直线的二次函数曲线。由曲线趋向可以看 出,在小偏心受压情况下,随着轴向压力的增大 截面所能承担的弯矩反而降低。
第六章 计算
本章的重点是:
钢筋混凝土偏心受力构件承载力
了解偏心受压构件的受力工作特性,熟悉两 种不同的受压破坏特性及由此划分成的两类受压 构件 掌握两类偏心受压构件的判别方法; 掌握两类偏心受压构件正截面承载力的计算 方法;
掌握偏心受压构件斜截面受剪承载力计算方
法。
§6.1
概述
结构构件的截面上受到轴力和弯矩的共同作用或受 到偏心力的作用时该结构构件称为偏心受压构件。 分为偏心受压构件和偏心受拉构件。 偏心受压构件又分为:单向偏心受压构件(图6-1a) 及双向偏心受压构件(图6-1b)。 偏心受拉构件在偏心拉力的作用下 是一种介于轴 心受拉构件与受弯构件之间的受力构件。承受节间荷载 的悬臂式桁架上弦(图6-2a)一般建筑工程及桥梁工程中 的双肢柱的受拉肢属于偏心受拉构件(图6-2b)。此外, 如图6-2c所示的矩形水池的池壁 其竖向截面同时承受轴 心拉力及平面外弯矩的作用故也属于偏心受拉构件。