受压构件承载力计算

合集下载

受压构件的承载力计算

受压构件的承载力计算

受压构件的承载力计算一、梁柱的承载力计算方法对于受压构件,在弹性范围内,可以采用弹性承载力计算方法。

弹性承载力计算方法是根据梁柱的理论,主要应用弹性力学原理和应变能平衡条件进行计算。

在弹性承载力计算之外,受压梁柱的承载力还受到稳定性要求的限制。

稳定性要求主要包括屈曲的要求和稳定的要求。

稳定性承载力计算方法就是根据稳定性要求来计算的。

二、承载力计算的基本原理和方法1.构件的截面形态与材料的力学性能有关。

几何形态方面,可以通过截面形心深度、截面形态系数和截面面积等参数来描述。

力学性能方面,主要包括材料的抗压强度、屈服强度和弹性模量等参数。

2.构件的边界条件与受力特性有关。

边界条件主要包括自由端的约束、内力的约束和约束条件等。

边界条件对构件的承载力有着直接的影响,需要进行准确的分析和计算。

3.构件的荷载和荷载组合也是影响承载力计算的重要因素。

荷载包括静力荷载和动力荷载,荷载组合则是不同荷载的叠加组合。

需要根据具体情况来确定荷载和荷载组合,并进行相应的计算。

假设一个矩形柱的尺寸为300mm×400mm,材料抗压强度为250MPa,弹性模量为200 GPa。

根据以上参数,可以进行如下步骤的承载力计算。

1.计算截面形态参数:矩形柱的形心深度h=400/2=200mm形态系数α=(h/t)f/π^2=2.692.弹性承载力计算:根据梁柱的理论,弹性承载力可通过以下公式计算:Pcr=(π^2*E*I)/(kl)^2其中,E为弹性模量,I为惯性矩,kl为有效长度系数。

惯性矩I=1/12*b*h^3=1/12*300*400^3=32,000,000mm^4有效长度系数kl可根据梁柱的边界条件和约束情况进行计算。

假设矩形柱两端均固定,则kl=0.5代入以上参数,可以得到弹性承载力Pcr=200,000N=200kN。

3.稳定性承载力计算:稳定性承载力计算主要包括屈曲的要求和稳定的要求。

对于矩形柱,屈曲要求可通过欧拉公式计算,稳定的要求可通过查表确定。

混凝土受压构件的承载力计算

混凝土受压构件的承载力计算

0 受剪承载力计算
1
1 砌体沿体水平缝的抗剪能力为沿通缝的抗剪承载能力及作用在截面上的压力所产生的摩擦力总和。
VVAf 1.4N o d u
vd
fk
0 式中: Vd—剪力设计值
2
A—受剪截面面积 ○ fvd—抗剪强度设计值 ○ μf—摩擦系数,对实心砖砌体,μf=0.7
Nk—与受剪截面垂直的压力标准值
§17.2受压构件的承载力计算 砌体受压短构件受力状态(图17-2)
特点: (1)构件承受轴心压力时,截面上产生均匀的压应力;
(17-2a) (2)构件承受偏心压力时,压应力分布随偏心距的变化
而变化,砌体表现出弹塑性性能。 (17-2b)
(3)随着偏心距的增大,在远离偏心压力作用的截面边 缘,由受压过渡到受拉,直至破坏,仍会全截面受力。 (17-2c)
φ—轴向受压弯曲系数
拱的承载力计算
1)拱的截面承载力验算
(1)砌体拱圈截面 (2)混凝土拱圈截面 各符号意义同前。
oNdNuAfcd oNdNuAcfcd
2)拱的整体承载力(强度—稳定)验算
近似模拟直杆方法,全拱取一个轴向力和一个偏心距。
(1)砌体拱圈
oN dN u Afcd
(2)混凝土拱圈 oN dN uA cfcd
单击添加副标题
§17 圬 土结构构 件的承载
力计算
2 0 2 3
17.1 计算原则
○ 极限状态设计法设计原则是使荷载效应不利组合的设计值要小于或等于结构抗力
效应的设计值 oSRfd,ad
○ 即: ○ 式中:γo —桥梁结构重要系数
S—作用效应组合值
R(·)—构件承载力设计值函数
○ fd—材料强度设计值 ○ ad—几何参数设计值,可采用几何参数标准值 ak

砌体受压构件的承载力计算公式中

砌体受压构件的承载力计算公式中

砌体受压构件的承载力计算公式中
一、砌体整体受压
砌体整体受压时,计算公式可以用弯曲理论和斯蒂灵公式。

1.弯曲理论:
N=σ×A
其中,N表示砌体承载力,σ表示砌体材料的抗压强度,A表示砌体
的截面面积。

2.斯蒂灵公式:
斯蒂灵公式主要针对砌体矩形截面的情况,计算公式如下:
N = 0.0784×√fc×A
其中,N表示砌体承载力,fc表示砌体材料的抗压强度,A表示砌体
的截面面积。

二、局部受压
砌体的应力分布不均匀,容易出现局部受压的情况。

在局部受压的情
况下,计算公式需要考虑砌体的受压区面积和受压边长。

N = k×A×fc
其中,N表示砌体承载力,k表示受压边长调整系数,A表示受压区
面积,fc表示砌体材料的抗压强度。

A=a×l
其中,A表示受压区面积,a表示受压区面积系数,l表示受压边长。

l=2×(b+d)
其中,l表示受压边长,b表示砌体的厚度,d表示受压区到边缘的
距离。

需要注意的是,这里的公式仅仅是一种理论计算方法,实际工程中还
需要考虑其他因素,如砌体的结构、材料的质量等。

因此,在实际应用中,还应该参考相关规范和设计手册来进行承载力的计算。

第六章受压构件截面承载力计算

第六章受压构件截面承载力计算

第六章受压构件截面承载力计算受压构件包括柱、短杆、墙等结构中的竖向构件。

在受到外部压力的作用下,受压构件会产生内部应力,当该应力超过材料的承载能力时,结构就会发生破坏。

因此,了解受压构件截面的承载能力非常重要,可以保证结构的安全性。

截面承载力计算按照材料的不同分类,一般分为钢材和混凝土结构的计算方法。

以下将分别介绍这两种材料的截面承载力计算方法。

钢材截面承载力计算方法:1.确定边缘受压构件的型式,常见的有矩形、L形、T形和带肋板等,根据构件的几何形状,选择相应的计算方法。

2.通过截面分析,确定构件的有效高度和宽度。

3.确定截面的截面系数,根据构件的几何形状和受力状态,计算出截面系数。

4.根据材料的特性,计算出计算强度和材料的安全系数。

5.通过计算公式,结合以上参数,得出受压构件的截面承载力。

混凝土结构截面承载力计算方法:1.确定混凝土的试验结果,包括抗压强度、抗弯强度等。

2.根据受压构件的几何形状和受力状态,计算出截面的面积和惯性矩。

3.确定混凝土的计算强度和材料的安全系数。

4.根据截面形状和受力状态,选取相应的公式,计算出截面承载力。

5.根据所得结果,进行合理的构造设计。

在受压构件截面承载力计算中,不同材料的计算方法有所不同,但都需要考虑材料的特性和截面的几何形状。

此外,还需要参考相关的标准和规范,以确保计算结果的准确性和可靠性。

总而言之,受压构件截面承载力计算是一个复杂而重要的工作,需要考虑多个因素,包括材料的特性、截面的几何形状和受力状态等。

通过合理的计算方法和准确的数据,可以确定受压构件的最大承载能力,保证结构的安全性和稳定性。

受压构件截面承载力计算

受压构件截面承载力计算

受压构件截面承载力计算
受压构件截面承载力计算是结构工程中的重要计算内容之一、在设计
受压构件时,需要保证构件的承载力不低于设计要求,以确保结构的安全
性和稳定性。

受压构件截面承载力的计算涉及到材料力学、截面形状和尺寸,以及截面临界状态等多个因素。

以下是受压构件截面承载力计算的基
本步骤和方法。

1.分析受压构件的材料力学性能:首先需要确定受压构件的材料类型
和性能参数,包括弹性模量、屈服强度、抗压强度等。

这些参数可以在材
料手册中查找或者进行材料试验获得。

2.确定构件的截面几何特征:受压构件的截面形状决定了其承载能力。

常见的受压构件截面形状包括矩形、圆形、T形、工字形等。

需要根据实
际情况确定构件的截面几何参数,如截面面积、惯性矩、受压边缘等。

3.计算截面承载能力:使用截面承载能力公式或者截面性能表格,根
据受压构件的材料性能和截面几何特征计算截面的承载能力。

常用的计算
方法有强度设计法、极限状态设计法和变形极限设计法等。

4.考虑临界状态和稳定性:受压构件在承载过程中可能会出现临界状
态和稳定性问题,如屈曲、侧扭、局部稳定等。

需根据受压构件的长度、
约束条件、支承条件等因素,对构件进行临界状态和稳定性分析,以确保
构件在正常使用条件下不会失稳。

总结起来,受压构件截面承载力计算是一项复杂的工作,需要综合考
虑材料力学、截面形状和尺寸、临界状态和稳定性等多个因素。

设计工程
师需要有扎实的结构力学和材料力学基础,以及丰富的实际工程经验,才
能进行准确可靠的受压构件截面承载力计算。

第10节钢筋混凝土受压构件承载力计算

第10节钢筋混凝土受压构件承载力计算

第10节钢筋混凝土受压构件承载力计算钢筋混凝土结构中,钢筋混凝土受压构件(如柱和墙)的承载力计算是结构设计中的重要内容之一、本文将从受压构件承载力计算的基本原理、假设条件和计算方法等方面进行详细介绍。

1.基本原理:钢筋混凝土受压构件的承载力计算是基于构件在受压状态下的稳定性和极限强度理论进行的。

根据弹性力学理论,构件在受外载荷作用下会发生弹性变形,当荷载增大到一定程度时,构件进入非弹性变形阶段,到达极限承载力。

因此,承载力计算涉及到弹性极限状态和极限承载力的确定。

2.假设条件:在承载力计算中,一般采用以下假设条件:(1)材料的弹性线性:混凝土和钢筋的应力-应变关系符合弹性线性假设,线性弹性模量E为常数;(2)平面截面假定:构件截面平面仍是平面在载荷作用下仍处于平面;(3)材料的强度:混凝土和钢筋的强度符合破坏准则,常用的有混凝土的抗压强度、钢筋的屈服强度和附加应力等。

3.计算方法:(1)弹性计算:首先进行弹性计算,即通过材料特性和几何性质,计算出构件在设计荷载下的应力和应变,进行稳定性分析,检查是否满足弹性稳定性和承载力要求;(2)极限强度计算:当弹性计算不满足要求时,需要进行极限强度计算。

根据材料的破坏准则,分别计算混凝土的抗压强度和钢筋的屈服强度,并根据材料的强度进行构件抗弯承载力和轴向承载力的计算;(3)受限状态计算:在受压构件中,由于受到压力作用,有可能出现多种破坏状态,如混凝土挤压破坏、钢筋屈服、钢筋断裂等,需要确定受限构件状态下的承载力。

4.常用计算方法:(1)弹性计算:可使用弹性理论方法,如戴森公式、沃弗公式等进行计算;(2)极限强度计算:可使用极限强度理论方法,如塑性区方法、破坏准则方法进行计算;(3)受限状态计算:通常使用零应变截面方法、等效矩形应力块法、等效矩形应力块-受压钢筋法等进行计算。

总之,钢筋混凝土受压构件承载力计算是结构设计中的重要环节,需要根据构件的几何形状、受力情况和所用材料的特性等进行合理的计算。

混凝土受压构件的承载力计算方法

混凝土受压构件的承载力计算方法

混凝土受压构件的承载力计算方法混凝土受压构件的承载力计算方法一、引言混凝土是一种常用的建筑材料,广泛应用于建筑结构中。

混凝土受压构件是建筑结构中常见的构件,其承载力的计算是建筑设计中至关重要的一部分。

本文将介绍混凝土受压构件的承载力计算方法。

二、混凝土受压构件的定义混凝土受压构件是指在压力作用下,由混凝土制成的构件,一般是由柱、墙、梁等构成的。

混凝土受压构件的承载力计算与构件的尺寸、强度、受力方式等有关。

三、混凝土受压构件的承载力计算方法1. 构件受压区的计算混凝土受压构件的承载力计算首先要确定构件受压区的位置和大小。

受压区是指混凝土受到压力作用的区域,一般为柱、墙、梁等的截面。

构件受压区的位置和大小决定了混凝土的应力状态,是承载力计算的基础。

2. 混凝土的强度计算混凝土的强度是指混凝土在受力状态下的抵抗力。

混凝土的强度取决于混凝土的配合比、水胶比、龄期、温度等因素。

混凝土的强度计算是混凝土受压构件承载力计算的重要组成部分。

3. 构件的稳定性计算构件的稳定性是指构件在受力状态下的稳定性能。

稳定性计算主要包括构件的扭曲、屈曲、侧向位移等考虑。

构件的稳定性计算是混凝土受压构件承载力计算的重要组成部分。

4. 构件的受力分析构件的受力分析是指对构件受力状态的分析和计算。

受力分析应根据构件的实际受力情况,确定构件所受的弯矩、剪力、轴力等。

构件的受力分析是混凝土受压构件承载力计算的重要组成部分。

5. 构件的承载力计算混凝土受压构件的承载力计算是根据构件所受的弯矩、剪力、轴力等计算出构件的承载力。

承载力计算应根据构件的实际受力情况,考虑构件受力状态的复杂性和不确定性,确定构件的承载力。

四、混凝土受压构件的设计原则混凝土受压构件的设计应遵循以下原则:1. 根据构件所处的实际情况,选择合适的混凝土强度等级和配合比。

2. 根据构件的实际受力情况,确定构件所需的受力状态和受力水平。

3. 采用合适的构件形式和尺寸,使构件的稳定性和承载力得到保证。

6受压构件承载力计算

6受压构件承载力计算

6受压构件承载力计算受压构件是指在受外部加载作用下,构件内部会发生挤压应力的构件。

在建筑设计中,受压构件的承载力计算是十分重要的,因为它直接关系到构件的安全性和可靠性。

本文将介绍受压构件的承载力计算方法,并通过一个具体的例子进行详细说明。

受压构件的承载力计算一般包括两种情况:稳定受压构件和不稳定受压构件。

稳定受压构件是指构件在受到外部加载后,构件内部只产生一种挤压应力,不会引起构件的屈曲和不稳定破坏。

而不稳定受压构件是指在外部加载作用下,构件可能会发生屈曲和不稳定破坏。

因此,在受压构件的设计中,需要考虑构件的稳定性和承载力。

首先,我们来看稳定受压构件的承载力计算方法。

稳定受压构件的承载力可以通过公式计算:\[P_{cr} = \dfrac{\pi^2 E I}{(KL)^2}\]其中,\(P_{cr}\)为稳定受压构件的临界荷载,\(E\)为构件的杨氏模量,\(I\)为构件的惯性矩,\(K\)为构件的端部系数,\(L\)为构件的长度。

具体来说,如果我们要计算一个钢筋混凝土柱的承载力,可以根据柱的截面形状和材料性质计算出惯性矩\(I\)和杨氏模量\(E\),然后确定柱的端部系数\(K\)和长度\(L\),最后可以根据上述公式计算出柱的稳定受压承载力。

接下来,我们来看不稳定受压构件的承载力计算方法。

不稳定受压构件的承载力一般通过欧拉公式计算:\[P_{cr} = \dfrac{\pi^2 E I}{(kL)^2}\]其中,\(P_{cr}\)为不稳定受压构件的临界荷载,\(E\)为构件的杨氏模量,\(I\)为构件的惯性矩,\(k\)为构件的有效长度系数,\(L\)为构件的长度。

不稳定受压构件的承载力计算需要考虑构件的有效长度系数\(k\),有效长度系数与构件的支座约束条件有关。

一般来说,当构件两端都固定支座时,有效长度系数为1;当构件一端固定支座一端可转动支座时,有效长度系数为2;当构件两端都可转动支座时,有效长度系数为4通过以上介绍,我们可以看到受压构件的承载力计算是十分复杂的,需要考虑构件的材料性质、截面形状、长度、支座约束条件等因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
收缩、温度应力变化引起)
◆防止混凝土脆性破坏。◆ 减小混凝土的徐变 全部纵筋配筋率不应小于0.6%;不宜大于5%
一侧钢筋配筋率不应小于0.2% 直径不宜小于12mm,常用16~32mm,宜用粗钢筋
纵筋净距: 不应小于50mm; 预制柱,不应小于30mm和1.5d(d为钢筋的最大
直径) 纵筋中距不应大于350mm。
图5-2普通箍筋柱 和螺旋箍筋柱
6.2 受压构件一般构造要求
6.2.1截面型式及尺寸
轴心受压:一般采用方形、矩形、圆形和 正多边形
偏心受压构件:一般采用矩形、工字形、 T形和环形
b25m0m l0 30
b
l0 h 25
hf 120mm b10m0m
• 采用矩形截面,单层工业厂房的预制柱常 采用工字形截面。
6.1 概 述
主要以承受轴向压力为主,通常还有弯矩 和剪力作用
N y
x
(a)轴心受压
N
y x
(b)单向偏心受压
N
y
x
(c)双向偏心受压
图5-1受压构件的类型
轴心受压构件
钢筋混凝土轴心受压构件,按箍筋的形 式不同分为配置普通箍筋的普通箍筋柱 和配置螺旋式(或焊接圆环式 )箍筋 的柱,如图所示。实际工程中,螺旋箍 筋柱能提高构件的抗压承载能力,但施 工比较复杂,用钢量较多,造价较高, 不宜普遍采用。在受压构件中纵向钢筋 的作用是:协助混凝土受压,减少截面 尺寸;承受可能产生的较小弯矩;防止 脆性破坏,增加构件延性;减小混凝土 徐变变形。箍筋的作用是:与纵筋形成 骨架;防止混凝土受力后外凸,约束核 心混凝土,增加构件的承载能力和延性。
截面形状复杂的构件,不可采用具有内折角的箍筋
6.3轴心受压构件的承载力计算
◆ 在实际结构中,理想的轴
心受压构件几乎是不存在的。
◆ 通常由于施工制造的误差、
荷载作用位置的偏差、混凝
土的不均匀性等原因,往往
存在一定的初始偏心距。 ◆ 但有些构件,如以恒载为 主的等跨多层房屋的内柱、 桁架中的受压腹杆等,主要 承受轴向压力,可近似按轴 心受压构件计算。
箍筋形式:封闭式 箍筋间距:在绑扎骨架中不应大于15d;在焊接骨
架中则不应大于20d (d为纵筋最小直 径),且不应大于400mm,也不大于 构件横截面的短边尺寸 箍筋直径:不应小于 d/4 (d为纵筋最大直径),且 不应小于 6mm。 当纵筋配筋率超过 3%时,箍筋直径不应小于8mm,其间 距不应大于10d,且不应大于200mm。 当截面短边不大于400mm,且纵筋不多于四根时,可不 设置复合箍筋;当截面短边大于400mm且纵筋多于3根时, 应设置复合箍筋。
普通钢箍柱
螺旋钢箍柱
6.3.1 普通箍筋柱
c
1.短柱的受力特点和破坏形态 钢筋混凝土短柱破坏时 压应变在0.0025~0.0035 之间,规范取为0.002 相应地,纵筋的应力为
弹塑性阶段
s ' 0 .00 2 2 150 40 N m 02m

f
' y
表示钢筋的抗压强度设计值
2.细长轴心受压构件的承载力降低现象
• ◆ 圆形截面主要用于桥墩、桩和公共建筑 中的柱。
• ◆ 柱的截面尺寸不宜过小,一般应控制在 l0/b≤30及l0/h≤25。
• ◆ 当柱截面的边长在800mm以下时,一般 以50mm为模数,边长在800mm以上时, 以100mm为模数。

6.2.2材料强度要求 混凝土:C25 C30 C35 C40 等
稳定系数
4. 设计方法 (1)截面设计 已知:轴心压力设计值N,材料强度等级fc、fy’
构件计算长度l0 ,截面面积bxh 求:纵向受压钢筋面积As’ (2)截面复核
N N u 0 .9(fcA fy A s )
6.3.2 螺旋箍筋柱
间接钢筋的间距不 应大于80mm及 dcor/5(dcor为按间 接钢筋内表面确定 的核心截面直径), 且不小于40mm; 间接钢筋的直径要 求与普通柱箍筋同。
1.受力特点及破坏特征
普通钢箍柱
螺旋钢箍柱
(a)2.
承载力计算
(b)
s
(c)
s
fcc fc 4c
2c
dcor
2c
fyAss1
csdco r 2fyAss1
c
c
2 f y Ass1 s dcor
fyAss1
fcc
fc
8fy Ass1 sdcor
达到极限状态时(保护层已剥落,不考虑)
Nufcc Aco r fyAsfcAco r fyAs8sfydA csos1rAcor
(a)
(b)
c2
dcoArs1 ssAs0 s
s
(c)
dcor
Ass0
dcorAss1
s
fyAss1
s
2c
fyAss1
N ufcA co r fy A s 2 fyA s0 s
N N u 0 .9 ( fc A c ofy r A s 2 fy A s0 ) s
在纵筋搭接长度范围内: 箍筋的直径:不宜小于搭接钢筋直径的0.25倍; 箍筋间距:当搭接钢筋为受拉时,不应大于5d, 且不应大于100mm; 当搭接钢筋为受压时,不应大于10d, 且不应大于 200mm; (d为受力钢筋中的最小直径) 当搭接的受压钢筋直径大于25mm 时,应在搭接接头两个端面外50mm 范围内各设置两根箍筋 。
原因:受压构件承载力主要取决于混凝土强度 减小构件的截面尺寸、节约钢筋
钢筋: 纵筋:HRB400级、HRB335级和 RRB400级
原原因:高强度钢筋应力得不到发挥。
箍筋:HPB235级、HRB335级 也可采用HRB400级
6.2.3 纵筋
作用 ◆协助混凝土承压; ◆ 承受拉应力(M引起、偶然偏心矩、
初始偏心距 附加弯矩和侧向挠度
加大了原来的初始偏心距 构件承载力降低
3.轴心受压构件的承载力计算
轴心受压短柱 NusfcAfyAs
轴心受压长柱 Nul Nus
稳定系数
N ul N us
稳定系数j 主要与柱的长细比 l0/i 有关
N N u 0 .9(fcA fy A s )
系数0.9 是可靠度调整系数
纵筋的连接接头:(宜设置在受力较小处) 可采用机械连接接头、焊接接头和搭接接头
对于直径大于28mm的受拉钢筋和直径大于32mm 的受压钢筋,不宜采用绑扎的搭接接头。
6.2.4箍筋
作用 ◆ 防止纵筋受压时压屈; ◆ 固定纵筋位置,并组成骨架; ◆ 约束核心混凝土变形,提高混凝土的强 度和变形能力; ◆承受剪力。
相关文档
最新文档