机械原理第七版西北工业大学课后习题答(8-11章)整本是的重点
机械原理_西北工业大学第七版CH08

对心曲柄滑块机构有曲柄的条件: ① 连架杆长度≤连杆的长度; ② 连架杆为最短杆。
平面四杆机构的基本知识(3/5)
2.急回运动和行程速比系数 (1)急回运动 当主动件曲柄等速转动时,从动件摇杆摆回的平均速度大于 摆出的平均速度,摇杆的这种运动特性称为急回运动。 (2)行程速比系数K v2 180° +θ K= v = 1 180° -θ 结论 当机构存在极位夹角θ 时,机构便具有急回运动特性; 且θ 角越大,K值越大,机构的急回性质也越显著。 例8-5 牛头刨床机构 例8-6 对心曲柄滑块机构 例8-7 偏置曲柄滑块机构
平面四杆机构的设计(6/6)
(3)按给定的行程速比系数设计四杆机构 例8-18 曲柄摇杆机构 例8-19 曲柄滑块机构 例8-20 摆动导杆机构 4. 用实验法设计四杆机构
(1)按两连架杆的多对对应位置设计 (2)按预定的轨迹设计
§8-5 多杆机构
1.多杆机构的功用 (1)取得有利的传动角 (2)获得较大的机械利益
1.四杆机构的类型 (1)基本型式 曲柄摇杆机构 铰链四杆机构 双曲柄机构 双摇杆机构
平行四边形机构 逆平行四边形机构
等腰梯形机构
(2)演化形式 其他型式的四杆机构可以认为是由基本型式的四杆机构演化 而来的,其演化方法有:
1)改变构件的形状及运动尺寸 2)改变运动副的尺寸
平面四杆机构的类型和应用(2/2)
§8-4 平面四杆机构的设计
1. 连杆机构设计的基本问题 连杆机构设计的基本问题是根据给定的要求选定机构的型式, 确定各构件的尺寸,同时还要满足结构条件、动力条件和运动连 续条件等。 (1)满足预定的运动规律的要求
例8-13 流量指示机构 例8-14 牛头刨床机构 (又称实现函数的问题); 即满足两连架杆预定的对应位置要求 满足给定行程速比系数K的要求等。 (2)满足预定的连杆位置要求 即要求连杆能占据一系列预定位置 (又称刚体导引问题)。 例8-15 小型电炉炉门的开闭机构
《机械原理》第七版(郑文纬、吴克坚)课后习题答案-高等教学出版社

2—1试画出唧筒机构的运动简图,并计算其自由度。
解:
n=3,p=l4,ph=0
F=n3−p2l−ph
=3×3−2×4
=1
2—2试画出缝纫机下针机构的运动简图,并计算其自由度。
解:
n=3,p=l4,ph=0
F=n3−p2l−ph
=3×3−2×4
=1
班级
成绩
姓名
任课教师
学号
批改日期
并
2 .548
2 .
,试用相
班级
成绩
姓名
任课教师
学号
批改日期
A
2—13计算图示机构的自由度,将其中的高副用构的级别。
D解:D
EE
C
FF
BGB
H
II
AA
低代前n:8=,p=l11
,ph=1
低代后:n9=,p=l13
,ph=0
F=n3−
p2l−ph
F=n3−
p2l−ph
=38×2−
=1
×11−1
=39×2−
=1
×13
机构由划分杆组如下:
B2=37×2−×10
14H7=1
AE5FPRRII级杆组36
8
G2
7
1
分解为:46
RRRII级杆组PRRII级杆组
5
机构由3个ΙΙ级杆组组成,为II级机构。
D3
解:
C
B2
4
1H7
EIII级 杆组3
A5F6
82
G4
17
6
分解为:5
PRRII级杆组
机构由1个ΙΙ级杆组、1个ΙΙ级杆组组成,为III级机构。
《机械设计》(第七版)课后习题答案

《机械设计》(第七版)课后习题答案第一章机械设计基础1. 机械设计的基本原理是什么?机械设计的基本原理是在满足机械装置的功能和性能要求的前提下,根据材料、工艺和使用条件等因素进行产品的结构设计和尺寸选取,以实现载荷和运动的传递、能量的转换和控制等目的。
2. 机械设计的过程包括哪些环节?机械设计的过程包括需求分析、方案设计、结构设计、选择和设计标准零件、制图和文档编制等环节。
3. 机械设计中常用的材料有哪些?机械设计中常用的材料包括金属材料、非金属材料和复合材料等。
金属材料包括钢材、铝合金、铜合金等;非金属材料包括塑料、橡胶、陶瓷等;复合材料包括复合纤维材料、复合材料等。
4. 机械设计中常用的工艺有哪些?机械设计中常用的工艺包括锻造、铸造、焊接、冲压、机械加工、表面处理等。
不同工艺适用于不同的材料和产品形状。
5. 机械设计中常见的载荷有哪些?机械设计中常见的载荷包括静载荷、动载荷和冲击载荷等。
静载荷指恒定的力或力矩,动载荷指变化的力或力矩,冲击载荷指瞬间出现并突然消失的载荷。
第二章机械零件设计1. 机械零件设计的基本步骤是什么?机械零件设计的基本步骤包括确定零件的功能要求和工作条件、选择合理的零件类型、进行零件的结构设计和尺寸选取、进行零件的强度计算和刚度计算、进行零件的装配设计和工艺设计等。
2. 机械设计中常用的连接形式有哪些?机械设计中常用的连接形式包括焊接、螺纹连接、键连接、轴承连接等。
不同的连接形式适用于不同的应用场景和工作条件。
3. 机械设计中常见的零件加工工艺有哪些?机械设计中常见的零件加工工艺包括机械加工、热处理、表面处理等。
机械加工包括车削、铣削、钻削、磨削等;热处理包括淬火、回火等;表面处理包括镀层、喷涂等。
4. 如何选择合适的材料和热处理工艺?在机械设计中,选择合适的材料和热处理工艺需要考虑材料的强度、硬度、韧性、耐磨性等性能指标,以及工件的使用条件和装配要求等因素。
通常需要进行材料的强度计算和热处理的工艺试验来确定最佳的选择。
机械原理(西工大第七版)习题册答案1——7章

题2-1 图a 所示为一简易冲床的初拟设计方案。
设计者的思路是:动力由齿轮1输入,使轴A 连续回转;而固装在轴A 上的凸轮2与杠杆3组成的凸轮机构使冲头4上下运动,以达到冲压的目的。
试绘出其机构运动简图(各尺寸由图上量取),分析是否能实现设计意图,并提出修改方案。
解:1)取比例尺,绘制机构运动简图。
(图2-1a) 2)要分析是否能实现设计意图,首先要计算机构的自由度。
尽管此机构有4个活动件,但齿轮1和凸轮2是固装在轴A 上,只能作为一个活动件,故3=n 3=l p 1=h p01423323=-⨯-⨯=--=h l p p n F原动件数不等于自由度数,此简易冲床不能运动,即不能实现设计意图。
分析:因构件3、4与机架5和运动副B 、C 、D 组成不能运动的刚性桁架。
故需增加构件的自由度。
3)提出修改方案:可以在机构的适当位置增加一个活动构件和一个低副,或用一个高副来代替一个低副。
(1) 在构件3、4之间加一连杆及一个转动副(图2-1b)。
(2) 在构件3、4之间加一滑块及一个移动副(图2-1c)。
(3) 在构件3、4之间加一滚子(局部自由度)及一个平面高副(图2-1d)。
11(c)题2-1(d)54364(a)5325215436426(b)321讨论:增加机构自由度的方法一般是在适当位置上添加一个构件(相当于增加3个自由度)和1个低副(相当于引入2个约束),如图2-1(b )(c )所示,这样就相当于给机构增加了一个自由度。
用一个高副代替一个低副也可以增加机构自由度,如图2-1(d )所示。
题2-2 图a 所示为一小型压力机。
图上,齿轮1与偏心轮1’为同一构件,绕固定轴心O 连续转动。
在齿轮5上开有凸轮轮凹槽,摆杆4上的滚子6嵌在凹槽中,从而使摆杆4绕C 轴上下摆动。
同时,又通过偏心轮1’、连杆2、滑杆3使C 轴上下移动。
最后通过在摆杆4的叉槽中的滑块7和铰链G 使冲头8实现冲压运动。
《机械原理》第七版 (郑文纬 吴克坚 著)课后习题答案-高等教学出版社

构的级别。
解:
D3
4E
5
C
n F =
3==×43,4n2−−p2l2=×p55l ,−−1pp1Ahh
=
1
3 5
4
n = 5,pl = 7,ph =6 0
2F =
3=×35n−−122×p7l
− −
ph 0
A
=1 B
=1
低代前:
n = 4,pl = 5,ph = 1 F = 3n − 2 pl − ph = 3× 4 − 2×5 −1
= 3×12 − 2 ×17 − 1− 1 +1
=1
解 2:C 为复合铰链,I 为局部自由度(焊死),
K
EFGC 为虚约束(去掉)。
N
n = 8,pl = 11,ph = 1
F = 3n − 2 pl − ph
= 3× 8 − 2 ×11− 1
=1
2—7 计算图示机构的自由度,并指出其中是否有复合铰链、局部自由度或虚约束。说明该机构具 有确定运动的条件。
2 4C
3
5D
B
解:
1 A
8
n = 7,pl = 10,ph = 0 F = 3n − 2 pl − PpRhP II 级杆组 = 3 × 7 − 2 ×10 =1
6E
RRP II 级杆组
7
RPR II 级杆组
机构由 3 个 ΙΙ 级杆组组成,为 II 级机构。
班级
姓 名2 学号
-5-
3 4
℡
成绩 任课教师 批改日期 1
H
E
I
n = 8,pl = 10,ph = 3
F = 3n − 2 pl − ph
机械原理第七版答案

机械原理第七版答案1. 引言《机械原理》是一门重要的工程学科,旨在研究机械系统中力学原理的应用。
本文将提供《机械原理第七版》的答案,帮助读者更好地理解和应用这一学科知识。
2. 答案以下是《机械原理第七版》部分章节的答案。
第一章简介与力学基础1.机械原理的定义:机械原理是研究力学系统中的力学原理及其应用的学科。
2.机械原理的基本思想:机械原理的基本思想是利用物理和数学原理来解释和预测物体的运动及其受力情况。
3.机械原理的应用领域:机械原理的应用范围广泛,包括机械工程、车辆工程、航空航天工程等领域。
4.计算力学和应用力学之间的关系:计算力学是机械原理的一部分,并且被广泛应用于机械系统的设计和分析中。
第二章静力学1.静力学的定义:静力学是研究静止系统中力学平衡的学科。
2.外力和内力的区别:外力是作用于系统外部的力,如重力、压力等;内力是作用于系统内部的力,如物体间的接触力。
3.刚体的定义:刚体是指其内部各点的相对位置不发生变化的物体。
4.力矩的计算公式:力矩等于力的大小与力臂的乘积。
5.平衡条件的描述:一个系统处于力学平衡的必要条件是合外力和合外力矩等于零。
第三章力的分析与计算1.力的三要素:大小、方向和作用点。
2.力的合成:将多个力的效果合成为一个力。
3.力的分解:将一个力分解为多个力的合力。
4.零力的定义:零力是指大小为零的力,不对物体产生任何作用。
5.夹角的计算方法:使用三角函数来计算夹角。
第四章平面结构分析1.结构的定义:结构是由构件组成的有机整体,在受到外力作用时始终保持平衡的系统。
2.静定结构与非静定结构的区别:静定结构是指其内部构件数目等于其内力数目的结构;非静定结构是指其内部构件数目大于其内力数目的结构。
3.阻力的作用:阻力是指对物体运动的阻碍力,常见的阻力有摩擦力和空气阻力。
4.结构分析方法的选择:选择合适的分析方法是分析结构的关键,常见的方法有力学平衡法、力法和位移法。
3. 总结本文提供了《机械原理第七版》部分章节的答案,包括机械原理的定义和基本思想、静力学、力的分析与计算以及平面结构分析等内容。
西北工业大学-机械设计作业习题集答案8章往后

8-33 在普通V带传动中,为什么一般推荐使用的带速为5≤v≤25m/s ? 答:一般v≤25 m/s。若带速过大(v>25m/s),则会因离心力过 大而降低带和带轮间的正压力,从而降低摩擦力和传动的工作能 力,同时离心力过大又降低了带的疲劳强度。
方案三:m
m
m2mm齿根弯曲d疲1劳m强度z1满 2足
d1 d1齿面接触疲劳强度不满足
30
60mm
不可用
(2) 方案一与方案二相比较,应采用方案二更合理,因为在强度均 满足的条件下,齿数多、模数小有如下优点: 1、重合度ε↑,传动平稳; 2、齿高h↓,滑动系数↓,磨损↓、切削量↓ ; 3、da↓,齿坯小,齿轮重量↓ 。
10—26 在闭式软齿面齿轮传动中,齿面疲劳点蚀经常首先出现在 节线附近靠近齿根 处,其原因是该处 为单齿啮合区接触应力大 、 润滑不良 摩擦力大。
10—27 在推导轮齿齿根弯曲疲劳应力计算公式时,其计算模型是 悬臂梁 ,设计的主要参数是 模数m和齿宽b 。一对齿轮传动中, 大、小齿轮的弯曲应力 一般不相等 。
10—46一标准直齿圆柱齿轮传动,若传递载荷不变,齿轮齿数、中
心距和许用应力不变,小齿轮转速 n1从960 r/min降为720 r/min。试 问要改变何参数,并使该值与原用值之比大致等于多少才能保证该
提高,设电动机的功率和减速器的强度足够,且更换大小带轮后引
起中心距的变化对传递功率的影响可忽略不计,为了实现这一增速
要求,试分析采用下列哪种方案更为合理,为什么?
1、将dd2减小到280mm; 2、将dd1增大到200mm; 3、将鼓轮直径D增大到355mm。
西工大机械原理电子教案(第七版)

第一章绪论教学内容*本课程研究的对象和内容*本课程的性质、任务及作用*机械原理学科的发展现状学习要求*明确本课程研究的对象和内容,及其在培养机械类高级工程技术人才全局中的地位、任务和作用。
*对机械原理学科的发展现状有所了解。
重点难点本章的学习重点是:本课程研究的对象及内容。
本章介绍了机器、机构、机械等名词,并通过实例说明各种机器的主要组成部分是各种机构,从而明确了机构是本课程研究的主要对象。
当然,由于此时尚未具体学习这些内容,故只能是一个概括的了解。
学习安排学习方法如何学好本课程。
要学好本课程,首先必须对机械在一个国家中的重要作用有明确的认识,机械现在是、将来仍是人类利用和改造自然界的直接执行工具,没有机械的支持, 一切现代工程(宇航工程、深海工程、生物工程、通信工程、跨江大桥、过海隧道、摩天大楼、……)都将无法实现。
了解机械原理学科发展现状和趋势,既有助于对机械原理课程的深入学习,也有助于让我们深信机械工业将永不停歇地日新月异地迅猛发展。
第二章机构的结构分析学习内容*机构的组成(构件、运动副、运动链及机构)*机构运动简图及其绘制*机构具有确定运动的条件*机构自由度的计算*计算平面机构的自由度时应注意的事项*虚约束对机构工作性能的影响及机构结构的合理设计*平面机构的组成原理、结构分类及结构分析*平面机构中的高副低副学习要求*搞清构件、运动副、约束、自由度、运动链及机构等重要概念。
*能绘制比较简单的机械机构运动简图。
*能正确计算平面机构的自由度并能判断其是否具有确定的运动;对空间机构自由度的计算有所了解。
*对虚约束对机构工作性能的影响及机构结构合理设计问题的重要性有所认识。
*对平面机构的组成原理有所了解。
重点难点本章的学习重点是:构件、运动副、运动链及机构等概念,机构运动简图的绘制,机构具有确定运动的条件及机构自由度的计算。
至于平面机构中的高副低代则属于拓宽知识面性质的内容。
学习难点是:机构中虚约束的判定问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第8章课后习题参考答案 8-l 铰链四杆机构中,转动副成为周转副的条件是什么?在下图所示四杆机构ABCD中哪些运动副为周转副?当其杆AB与AD重合时,该机构在运动上有何特点?并用作图法求出杆3上E点的连杆曲线。
答:转动副成为周转副的条件是: (1)最短杆与最长杆的长度之和小于或等于其他两杆长度之和; (2)机构中最短杆上的两个转动副均为周转副。图示ABCD四杆机构中C、D为周转副。 当其杆AB与AD重合时,杆BE与CD也重合因此机构处于死点位置。 8-2曲柄摇杆机构中,当以曲柄为原动件时,机构是否一定存在急回运动,且一定无死点?为什么? 答:机构不一定存在急回运动,但一定无死点,因为: (1)当极位夹角等于零时,就不存在急回运动如图所示, (2)原动件能做连续回转运动,所以一定无死点。 8-3 四杆机构中的极位和死点有何异同? 8-4图a为偏心轮式容积泵;图b为由四个四杆机构组成的转动翼板式容积泵。试绘出两种泵的机构运动简图,并说明它们为何种四杆机构,为什么? 解 机构运动简图如右图所示,ABCD是双曲柄机构。 因为主动圆盘AB绕固定轴A作整周转动,而各翼板CD绕固定轴D转动,所以A、D为周转副,杆AB、CD都是曲柄。
8-5试画出图示两种机构的机构运动简图,并说明它们各为何种机构。 图a曲柄摇杆机构 图b为导杆机构。
8-6如图所示,设己知四杆机构各构件的长度为240amm,600bmm,400,500cmmdmm。试问: 1)当取杆4为机架时,是否有曲柄存在? 2)若各杆长度不变,能否以选不同杆为机架的办法获得双曲柄机构和双摇杆机构?如何获得? 3)若a、b﹑c三杆的长度不变,取杆4为机架,要获得曲柄摇杆机构,d的取值范围为何值? : 解 (1)因a+b=240+600=840≤900=400+500=c+d且最短杆 1为连架轩.故当取杆4为机架时,有曲柄存在。 (2)、能。要使此此机构成为双曲柄机构,则应取1杆为机架;两使此机构成为双摇杆机构,则应取杆3为机架。 (3)要获得曲柄摇杆机构, d的取值范围应为440~760mm。 8-7图示为一偏置曲柄滑块机构,试求杆AB为曲柄的条件。若偏距e=0,则杆AB为曲柄的条件是什么? 解 (1)如果杆AB能通过其垂直于滑块导路的两位置时,则转动副A为周转副,故杆AB为曲柄的条件是AB+e≤BC。 (2)若偏距e=0, 则杆AB为曲柄的条件是AB≤BC
8-8 在图所示的铰链四杆机构中,各杆的长度为1l28mm,2l52mm, 3l50mm,4l72mm,试求:
1)当取杆4为机架时,该机构的极位夹角、杆3的最大摆角、最小传动角min和行程速比系数K; 2)当取杆1为机架时,将演化成何种类型的机构?为什么?并说明这时C、D两个转动副是周转副还是摆转副; 3)当取杆3为机架时,又将演化成何种机构?这时A、B两个转动副是否仍为周转副?
解 (1)怍出机构的两个极位,如图, 并由图中量得: θ=18.6º,φ=70.6º, γmin=22.7 º
18018018.612.318018018.6k
(2)①由l1+l4 ≤l2+l3可知图示铰链四杆机构各杆长度符合杆长条件;小②最短杆l为机架时,该机构将演化成双曲柄机构;③最短杆1参与构成的转动副A、B都是周转副而C、D为摆转副; (3)当取杆3为机架时,最短杆变为连杆,又将演化成双摇杆机构,此时A、B仍为周转副。 8-9 在图示的连杆机构中,已知各构件的尺寸为160,ABlmmBCl260,mm 200,CDlmm80,ADlmm构件AB为原动件,沿顺时针方向匀速回转,试确定:
1)四杆机构ABCD的类型;
2)该四杆机构的最小传动角min; 3)滑块F的行程速比系数K。
解 (1)由lAD+lBC(2)作出四杆机构ABCD传动角最小时的位置。见图并量得γmin=12º (3)作出滑块F的上、下两个极位及原动件AB与之对应的两个极位,并量得θ=47º。求出滑块F的行程速比系数为
180180471.7118018047k
8-10试说明对心曲柄滑块机构当以曲柄为主动件时,其传动角在何处最大?何处最小? 解 在曲柄与导轨共线的两位置之一传动角最大,γmax=90 º; 在曲柄与机架共线的两位置之一传动角最小,γmin=arcos(LAB/lBC)。 8-11正弦机构(图8一15b)和导杆机构(图8—22a)中,当以曲柄为主动件时,最小传动角γmin为多少?传动角按什么规律变化? 解 γmin=90º; 传动角恒定不变。 8-12图示为偏置导杆机构,试作出其在图示位置时的传动角以及机构的最小传动角及其出现的位置,并确定机构为回转导杆机构的条件。
解 传动角以及机构最小传动角及其出现的位置如下图所示。机构为 回转导杆机构的条件: AB≤AC
8-13如图8—57所示,当按给定的行程速度变化系数K设计曲柄摇杆机构时,试证明若将固定铰链A的中心取在FG弧段上将不满足运动连续性要求。 答 因这时机构的两极位DC1, DC2将分别在两个不连通的可行域内。 8-14图示为一实验用小电炉的炉门装置,关闭时为位置E1,开启时为位置E2。试设计一个四杆机构来操作炉门的启闭(各有关尺寸见图)。(开启时,炉门应向外开启,炉门与炉体不得发生干涉。而关闭时,炉门应有一个自动压向炉体的趋势(图中S为炉门质心位置)。B、C为两活动铰链所在位置。
解 (1)作出B2C2的位置;用作图法求出A及D的位置,并作出机构在E2位置的运动简图,见下图,并从图中量得 lAB==μl.AB=95 mm lAD=μl.AD =335mm lCD=μl.CD=290mm (2)用怍图法在炉门上求得B及C点位置,并作出机构在位置的运动图(保留作图线)。作图时将位置E1转至位置E2,见图并量得 lAB=μl.AB=92.5 mm lBC=μlBC=l 27.5 rnm lCD=μl.CD=262.5 mn
8-15 图示为公共汽车车门启闭机构。已知车门上铰链C沿水平直线移动,铰链B绕固定铰链A转动,车门关闭位置与开启位置夹角为a=115 º,AB1//C1C2,lBC=400 mm,1C1C2=550 mm , 试求构件AB的长度,验算最小传动角,并绘出在运动中车门所占据的空间(作为公共汽车的车门,要求其在启闭中所占据的空间越小越好。 8-16 图示为一已知的曲柄摇杆机构,现要求用一连杆将摇杆CD和 滑块F联接起来,使摇杆的三个已知位置1CD、2CD、3CD和滑块的三个位置1F、2F、3F相对应(图示尺寸系按比例绘出)。试确定此连杆的长度及其与摇杆CD铰接点的位置。
解 由题意知,本题实际是为按两连架汗(摇杆与滑块)的预定对应位置设计四扦机构的同题。具体作图过程如下图所示。连杆的长度为lEF=μlE2F2= l 30 mm。
8-17 图示为某仪表中采用的摇杆滑块机构,若已知滑块和摇杆的对应位置为S1=36mm,S12=8mm,S23=9 mm ; φ12=25 º,φ23=35 º,摇杆的第Ⅱ位置在铅垂方向上。滑块上铰链点取在B点,偏距e=28 mm, 试确定曲柄和连杆长度。
解 本题属于按两连架轩预定的对应位置设计四杆机构问题。此问题可用反转法求解。曲柄长度22.2mm,连杆长度52.2 mm.见图中标注。 8-18试设计图示的六杆机构。该机构当原动件l自y轴顺时针转过φ12=60 º时,构件3顺时针转过ψ=45 º恰与x轴重合。此时,滑块6自E1点移动到E2点,位移s12=20 mm。试确定铰链B及C的位置。
解 由题意知,所要设计的六杆机构ABCDEF是由铰链四杆机构ABCD和摇杆滑块机构CDE串联所组成,故此设计问题,可分解为两个四杆机构的设计问题。 对于摇杆滑块机构CDE的设计,就是确定活动铰链C的位置,可用反转法设汁,具体作法如下图所示。 对于铰链四扦机构ABCD的设计.就是确定活动铰链B的位置,也可用反转法设计,具体作法如下图所示。
8-19现欲设计一四杆机构翻书器。如图所示,当踩动脚踏板时,连杆上的肘点自M,移至M:就可翻过一页书。现已知固定铰链A、D的位置,连架杆AB的长度及三个位置以及描点M的三个位置。试设计该四杆机构(压重用以保证每次翻书时只翻过一页)
解:作图,并量得:AB=36mm, AD=47mm, CD=5mm, BC=10mm, BM=36mm, CM=44mm 8-20现需设计一铰链四杆机构,用以启闭汽车前灯的遮避窗门。图示为该门(即连杆上的标线)在运动过程中的五个位置,其参数如表8—3所示。试用解析法设计该四杆机构(其位置必须限定在图示长方形的有效空间内)。
8-21图示为一用推拉缆操作的长杆夹持器,用一四杆机构ABCD来实现夹持动作。设已知两连架杆上标线的对应角度如图所示,试确定该四杆机构各杆的长度。
解:取AD为机架,并以适当比例尺作机架AD及AB杆与DE杆的三对对应位置。此机构设计简要步骤如图(保留作图线),机构各杆长度为: 8-22图示为一汽车引擎油门控制装置。此装置由四杆机构ABCD、平行四边形机构DEFG及油门装置所组成,由绕O轴转动的油门踏板OI驱动可实现油门踏板与油门的协调配合动作。当油门踏板的转角分别为0º、5º、15º及20º时,杆MAB相对应的转角分别为0º、32º、52º及63º(逆时针方向),与之相应油门开启程度为0º(关闭)、14º、44º及60º(全开)四个状态。现设lAD=120 mm,试以作图法设计此四杆机构ABCD,并确定杆AB及CD的安装角度β1及β2的大小(当踏板转20º时,AM与OA重合,DE与AD重合)。
解:(1)由平行四边形机构特征知杆CD的转角与油门开启角相同,故四杆机构ABCD两连架杆AB及CD的三对对应角α12=32 º, φ12=14 º; α13=52 º, φ13=44 º, α14=63 º, φ14=60 º;且均为逆时针方向; (2)取相应比例尺作出机架AD如图所示; 取BB为归并点,按点归并法设计此四杆机构(保留全部作图线),并量得: lAB=μl.AB=92mm, lAD=μl.AD=120mm, lBC=μl.BC=180mm, lCD=μl.CD=34mm; β1=92º, β2=102º
8-23 如图所示,现欲设计一铰链四杆机构,设已知摇杆CD的长75CDlmm行程速比系数K=1.5,机