中考数学教学指导:与函数有关的“新定义问题”
赏析与高斯函数有关的中考新定义问题

赏析与高斯函数有关的中考新定义问题1 高斯函数问题的提出早年,数学王子高斯在闲暇时发现并定义了取整函数,即设x ∈R ,用[x ]或int (x )[2]表示不超过x 的最大整数,并用"{}x "表示x 的非负纯小数,则[]y x =称为高斯函数,也叫取整函数。
高斯函数[x ]的定义域是R ,值域为Z ,其图象是不连续的水平线段。
在初中、高中数学竞赛中经常出现含有取整函数的问题。
笔者前些年在高三复习时发现高斯函数问题[1]在高考中频繁出现,同样的,高斯函数也已渗透到中考,多以阅读理解的新定义问题的形式出现在压轴题的位置。
创新意识的培养是现代数学教育的基本任务,应体现在数学教与学的过程之中。
学生自己发现和提出问题是创新的基础;独立思考、学会思考是创新的核心;归纳概括得到猜想和规律,并加以验证,是创新的重要方法。
创新意识的培养应该从义务教育阶段做起,贯穿数学教育的始终[8]。
陶行知指出:“创造力最能发挥的条件是民主。
”民主、平等、宽松、和谐、愉悦的教学气氛,能够使学生产生自觉参与的欲望,无顾忌地充分表达自己的创意和“心理安全”,为其创造性活动的开展提供必要的条件。
高斯函数[x ]有关的求值问题及方程问题,这类问题新颖有趣味性,备受命题者关注。
同时这类问题对初中生有较大难度。
下面本文从一些各地中考考题和一些数学竞赛题为例去体会高斯函数。
2 高斯函数有关的准备我们只提出本文需要的一些性质[]{}x x x =+,[]1x x x -<≤[]1x <+。
3 高斯函数有关问题的解决一.以高斯函数的定义为背景考察例1 (2016乐山16)高斯函数[x ],也称为取整函数,即[x ]表示不超过x 的最大整数. 例如:[2.3]=2,[﹣1.5]=﹣2.则下列结论:①[﹣2.1]+[1]=﹣2;②[x ]+[﹣x ]=0;③若[x +1]=3,则x 的取值范围是2≤x <3; ④当﹣1≤x <1时,[x +1]+[﹣x +1]的值为0、1、2.其中正确的结论有 (写出所有正确结论的序号).分析:①[﹣2.1]+[1]=﹣3+1=﹣2,正确;②错误,例如:[2.5]=2,[﹣2.5]=﹣3,2+(﹣3)≠0;③若[x +1]=3,则x 的取值范围是2≤ x <3,正确;④当﹣1≤ x <1时,0≤ x +1<2,0<﹣x +1≤2,∴[x +1]=0或1,[﹣x +1]=0或1或2,当[x +1]=1时,[﹣x +1]=2;当[﹣x +1]=1时,[﹣x +1]=1或0;所以[x +1]+[﹣x +1]的值为1、2,故错误.故答案为:①③.点评:根据“定义[x ]为不超过x 的最大整数”进行计算.【变式1】(2017崇仁)规定:用符号[x ]表示一个不大于实数x 的最大整数,例如:[3.69]=3,[3+1]=2,[﹣2.56]=﹣3,[﹣3]=﹣2.按这个规定,[﹣13﹣1]= .分析:∵4133<<,∴3-13-4-<<,∴[]5-1-13-=.故答案为:﹣5.【变式2】(2015,永州)定义[x ]为不超过x 的最大整数,如[3.6]=3,[0.6]=0,[﹣3.6]=﹣4.对于任意实数x ,下列式子中错误的是( )A .[x ]=x (x 为整数)B .0≤x ﹣[x ]<1C .[x +y ]≤[x ]+[y ]D .[n +x ]=n +[x ](n 为整数) 分析:A 、∵[x ]为不超过x 的最大整数,∴当x 是整数时,[x ]=x ,成立;B 、∵[x ]为不超过x 的最大整数,∴0≤x ﹣[x ]<1,成立;C 、例如,[﹣5.4﹣3.2]=[﹣8.6]=﹣9,[﹣5.4]+[﹣3.2]=﹣6+(﹣4)=﹣10,∵﹣9>﹣10,∴[﹣5.4﹣3.2]>[﹣5.4]+[﹣3.2],∴[x +y ]≤[x ]+[y ]不成立,D 、[n +x ]=n +[x ](n 为整数),成立;故选:C .美国著名心理学家布龙菲尔德说:“数学教学就是数学语言的教学”,可见数学不仅是一门科学,也是一种文化,更是一种语言---描述科学的语言。
专题71 函数中的新定义问题(解析版)-2023年中考数学重难点解题大招复习讲义-新定义问题

例题精讲考点1一次函数新定义问题【例1】.定义:我们把一次函数y=kx+b(k≠0)与正比例函数y=x的交点称为一次函数y=kx+b(k≠0)的“不动点”.例如求y=2x﹣1的“不动点”:联立方程,解得,则y=2x﹣1的“不动点”为(1,1).(1)由定义可知,一次函数y=3x+2的“不动点”为(﹣1,﹣1);(2)若一次函数y=mx+n的“不动点”为(2,n﹣1),求m、n的值;(3)若直线y=kx﹣3(k≠0)与x轴交于点A,与y轴交于点B,且直线y=kx﹣3上没=3S△ABO,求满足条件的P点坐标.有“不动点”,若P点为x轴上一个动点,使得S△ABP解:(1)联立,解得,∴一次函数y=3x+2的“不动点”为(﹣1,﹣1),故答案为:(﹣1,﹣1);(2)∵一次函数y=mx+n的“不动点”为(2,n﹣1),∴n﹣1=2,∴n=3,∴“不动点”为(2,2),∴2=2m+3,解得m=﹣;(3)∵直线y=kx﹣3上没有“不动点”,∴直线y=kx﹣3与直线y=x平行,∴k=1,∴y=x﹣3,∴A(3,0),B(0,﹣3),设P(t,0),∴AP=|3﹣t|,=×|t﹣3|×3,∴S△ABPS△ABO=×3×3,=3S△ABO,∵S△ABP∴|t﹣3|=9,∴t=12或t=﹣6,∴P(﹣6,0)或P(12,0).变式训练【变1-1】.在初中阶段的函数学习中,我们经历了“确定函数的表达式一一利用函数图象研究其性质一一运用函数解决问题”的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时,我们也学习了绝对值的意义.结合上面经历的学习过程,现在来解决下面的问题:在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1.(1)求这个函数的表达式;(2)在给出的平面直角坐标系中,请用你喜欢的方法画出这个函数的图象,并写出这个函数的一条性质;(3)已知函数的图象如图所示,结合你所画的函数图象,直接写出不等式的解集.(4)若方程|x2﹣6x|﹣a=0有四个不相等的实数根,则实数a的取值范围是0<a<9.解:(1)∵在函数y=|kx﹣3|+b中,当x=2时,y=﹣4;当x=0时,y=﹣1,∴,解得,∴这个函数的表达式是y=|﹣3|﹣4;(2)∵y=|﹣3|﹣4,∴,∴函数y=x﹣7过点(2,﹣4)和点(4,﹣1);函数y=﹣x﹣1过点(0,﹣1)和点(﹣2,2),该函数的图象如图所示,性质:当x>2时,y的值随x的增大而增大;(3)由函数的图象可得,不等式的解集是:1≤x≤4;(4)由|x2﹣6x|﹣a=0得a=|x2﹣6x|,作出y=|x2﹣6x|的图象,由图象可知,要使方程|x2﹣6x|﹣a=0有四个不相等实数根,则0<a<9,故答案为:0<a<9.考点2反比例函数新定义问题【例2】.探究函数性质时,我们经历了列表、描点、连线画函数图象,观察分析图象特征,概括函数性质的过程,以下是我们研究函数y=x+|﹣2x+6|+m性质及其应用的部分过程,请按要求完成下列各小题.x…﹣2﹣1012345…y…654a21b7…(1)写出函数关系式中m及表格中a,b的值;m=﹣2,a=3,b=4;(2)根据表格中的数据在所给的平面直角坐标系中画出该函数的图象;(3)已知函数y=﹣(x﹣2)2+8的图象如图所示,结合你所画的函数图象,不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集为x<0或x>4..解:(1)由表格可知,点(3,1)在该函数图象上,∴将点(3,1)代入函数解析式可得:1=3+|﹣2×3+6|+m,解得:m=﹣2,∴原函数的解析式为:y=x+|﹣2x+6|﹣2;当x=1时,y=3;当x=4时,y=4;∴m=﹣2,a=3,b=4,故答案为:﹣2,3,4;(2)通过列表—描点—连线的方法作图,如图所示;(3)要求不等式x+|﹣2x+6|+m>﹣(x﹣2)2+8的解集,实际上求出函数y=x+|﹣2x+6|+m的图象位于函数y=﹣(x﹣2)2+8图象上方的自变量的范围,∴由图象可知,当x<0或x>4时,满足条件,故答案为:x<0或x>4.变式训练【定义】在平面内,把一个图形上任意一点与另一个图形上任意一点之间的距离的最小值,称为这两个图形之间的距离,即A,B分别是图形M和图形N上任意一点,当AB的长最小时,称这个最小值为图形M与图形N之间的距离.例如,如图1,AB⊥l1,线段AB的长度称为点A与直线l1之间的距离,当l2∥l1时,线段AB的长度也是l1与l2之间的距离.【应用】(1)如图2,在等腰Rt△BAC中,∠A=90°,AB=AC,点D为AB边上一点,过点D作DE∥BC交AC于点E.若AB=6,AD=4,则DE与BC之间的距离是;(2)如图3,已知直线l3:y=﹣x+4与双曲线C1:y=(x>0)交于A(1,m)与B两点,点A与点B之间的距离是2,点O与双曲线C1之间的距离是;【拓展】(3)按规定,住宅小区的外延到高速路的距离不超过80m时,需要在高速路旁修建与高速路相同走向的隔音屏障(如图4).有一条“东南﹣西北”走向的笔直高速路,路旁某住宅小区建筑外延呈双曲线的形状,它们之间的距离小于80m.现以高速路上某一合适位置为坐标原点,建立如图5所示的直角坐标系,此时高速路所在直线l4的函数表达式为y=﹣x,小区外延所在双曲线C2的函数表达式为y=(x>0),那么需要在高速路旁修建隔音屏障的长度是多少?解:(1)如图,过点D作DH⊥BC于点H,∵∠A=90°,AB=AC,∴∠B=45°,∵DH⊥BC,∴△BDH是等腰直角三角形,∴DH=BD,∵AB=6,AD=4,∴BD=AB﹣AD=6﹣4=2,∴DH=×2=;故答案为:;(2)把A(1,m)代入y=﹣x+4中,得:m=﹣1+4=3,∴A(1,3),把A(1,3)代入y=,得:3=,∴k=3,∴双曲线C1的解析式为y=,联立,得:﹣x+4=,即x2﹣4x+3=0,解得:x1=1,x2=3,∴B(3,1),∴AB==2;如图,作FG∥AB,且FG与双曲线y=只有一个交点,设直线FG的解析式为y=﹣x+b,则﹣x+b=,整理得:x2﹣bx+3=0,∴Δ=(﹣b)2﹣4×1×3=b2﹣12=0,∴b=2或b=﹣2(不符合题意,舍去),∴直线FG的解析式为y=﹣x+2,由﹣x+2=,解得:x1=x2=,∴K(,),∴OK==;故答案为:2,;(3)如图,设点S(a,b)是双曲线y=(x>0)上任意一点,且a<b,以点S为圆心,80为半径作⊙S交l4于E,过点S作SF⊥直线l4于F,交y轴于W,SH⊥x轴于H,SG⊥y轴于G,则SG=a,SH=b,ab=2400,∵直线y=﹣x平分第二、四象限角,∴∠FOW=45°,∵∠OFW=∠SGW=90°,∴∠OWF=90°﹣45°=45°,∴∠SWG=∠OWF=45°,∴△WOF和△SWG是等腰直角三角形,∴SW=SG,WF=OW,∴SF=SW+WF=SG+OW=a+(b﹣a)=(a+b),∵EF====,∵OF=OW=(b﹣a),∴OE=(b﹣a)+,设b﹣a=m(m>0),则OE=m+≤=40,∴需要在高速路旁修建隔音屏障的长度=2OE=2×40=80,答:需要在高速路旁修建隔音屏障的长度是80米.考点3二次函数新定义问题【例3】.小爱同学学习二次函数后,对函数y=﹣(|x|﹣1)2进行了探究.在经历列表、描点、连线步骤后,得到如图的函数图象.请根据函数图象,回答下列问题:(1)观察探究:①写出该函数的一条性质:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则m的取值范围是﹣1<m<0.(2)延伸思考:将函数y=﹣(|x|﹣1)2的图象经过怎样的平移可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象?写出平移过程,并直接写出当1<y1≤2时,自变量x的取值范围.解:(1)观察探究:①该函数的一条性质为:函数图象关于y轴对称;②方程﹣(|x|﹣1)2=﹣1的解为:x=﹣2或x=0或x=2;③若方程﹣(|x|﹣1)2=m有四个实数根,则a的取值范围是﹣1<m<0.故答案为:函数图象关于y轴对称;x=﹣2或x=0或x=2;﹣1<m<0.(2)将函数y=﹣(|x|﹣1)2的图象向右平移1个单位,向上平移2个单位可得到函数y1=﹣(|x﹣1|﹣1)2+2的图象,当1<y1≤2时,自变量x的取值范围是﹣1<x<3且x≠1,变式训练【变3-1】.我们定义一种新函数:形如y=|ax2+bx+c|(a≠0,b2﹣4ac>0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y=|ax2+bx+c|的图象(如图所示),下列结论正确的是()A.图象具有对称性,对称轴是直线x=1.5B.有且只有﹣1≤x≤1时,函数值y随x值的增大而增大C.若a<0,则8a+c>0D.若a<0,则a+b≥m(am+b)(m为任意实数)解:由图象可得,图象具有对称性,对称轴是直线x==1,故选项A错误,不符合题意;当﹣1≤x≤1或x>3时,函数值y随x值的增大而增大,故选项B错误,不符合题意;∵﹣=1,∴b=﹣2a,当x=﹣2时,y=4a﹣2b+c<0,∴4a﹣2b+c=4a﹣2×(﹣2a)+c=4a+4a+c=8a+c<0,故选项C错误,不符合题意;∵y=ax2+bx+c开口向下,对称轴为直线x=1,∴a+b+c≥am2+bm+c(m为任意实数),∴a+b≥m(am+b)+c,故选项D正确,符合题意;故选:D.【变3-2】.已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是y=x;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.解:(1)∵抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,∴,解得,∴抛物线解析式为y=﹣x2+4;(2)过点B作BE⊥x轴交DP延长线于点E,过D作DF⊥x于点F,由y=﹣x2+4,令y=0,则﹣x2+4=0,解得:x1=﹣2,x2=2,则B(2,0),∵DF=3,BF=2﹣(﹣1)=3,∴DF=BF,∴∠DBF=45°,∴∠DBE=45°,又∵DB=DB,BD平分∠ADP,∴△DAB≌△DEB(ASA),∴BA=BE,∵B(2,0),∴E(2,4),设直线DE的解析式为y=kx+b,则,解得,∴直线DE的解析式为y=x+,联立,解得或,则P(,);(3)①∵抛物线关于y轴对称,所以旋转后图形关于x轴对称,∴对于抛物线上任意一点P(a,b)关于原点旋转90°后对应点为P1(b,﹣a)在旋转后图形上,P1(b,﹣a)关于x轴对称的点P2(b,a)在旋转后图形上,∵P(a,b)与P2(b,a)关于y=x对称,∴图形2关于y=x对称,∴直线EF的解析式为y=x,故答案为:y=x;②如图,连接GH,交EF与点K,则GH=2GK,过点G作x轴的垂线,交EF于点I,∴当GK最大时,△GFE面积最大,=GI•(x E﹣x F),又∵S△GFE设G(m,﹣m2+4),则I(m,m),∴GI=y G﹣y I=﹣m2+4﹣m=﹣(m+)2+,∴当m=﹣时,△GFE面积最大,∴G(﹣,),由①可知G(﹣,)关于y=x的对称点H(,﹣),∴K(,),∴GK==,∴GH=2GK=,∴GH的最大值为,故答案为:.1.对于实数a,b,定义符号max|a,b|,其意义为:当a≥b时,max|a,b|=a,当a<b时,max|a,b|=b.例如max|2,﹣1|=2,若关于x的函数y=max|2x﹣1,﹣x+5|,则该函数的最小值为()A.B.1C.D.3解:当2x﹣1≥﹣x+5时,即x≥2,y=max|2x﹣1,﹣x+5|=2x﹣1,此时x=2时,y有最小值,最小值为2×2﹣1=3;当2x﹣1≤﹣x+5时,即x≤2,y=max|2x﹣1,﹣x+5|=﹣x+5,此时x=2时,y有最小值,最小值为﹣2+5=3;综上所述,该函数的最小值为3.故选:D.2.在平面直角坐标系xOy中,对于点P(a,b),若点P′的坐标为(ka+b,a+)(其中k为常数且k≠0),则称点P′为点P的“k关联点”.已知点A在反比例函数y=的图象上运动,且点A是点B的“关联点”,当线段OB最短时,点B的坐标为(,)或(﹣,﹣).解:设B(x,y),∵点A是点B的“关联点”,∴A(x+y,x+)∵点A在函数y=(x>0)的图象上,∴(x+y)(x+)=,即:x+y=或x+y=﹣,当点B在直线y=﹣x+上时,设直线y=﹣x+与x轴、y轴相交于点M、N,则M(1,0)、N(0,),当OB⊥MN时,线段OB最短,此时OB==,由∠NMO=60°,可得点B(,);设直线y=﹣x﹣时,同理可得点B(﹣,﹣);故答案为:(,)或(﹣,﹣).3.定义:由a,b构造的二次函数y=ax2+(a+b)x+b叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数y=ax2+(a+b)x+b的“本源函数”(a,b为常数,且a ≠0).若一次函数y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,那么二次函数y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1.解:∵y=ax+b的“滋生函数”是y=ax2﹣3x+a+1,∴ax2﹣3x+a+1=ax2+(a+b)x+b,即,解得,∴y=ax2﹣3x+a+1的“本源函数”是y=﹣2x﹣1,故答案为:y=﹣2x﹣1.4.在平面直角坐标系中,如果一个点的横坐标与纵坐标相等,则称该点为“不动点”.例如(﹣3,﹣3)、(1,1)、(2023,2023)都是“不动点”.已知双曲线.(1)下列说法不正确的是C.A.直线y=x的图象上有无数个“不动点”B.函数的图象上没有“不动点”C.直线y=x+1的图象上有无数个“不动点”D.函数y=x2的图象上有两个“不动点”(2)求双曲线上的“不动点”;(3)若抛物线y=ax2﹣3x+c(a、c为常数)上有且只有一个“不动点”,①当a>1时,求c的取值范围.②如果a=1,过双曲线图象上第一象限的“不动点”做平行于x轴的直线l,若抛物线上有四个点到l的距离为m,直接写出m的取值范围.解:(1)设坐标平面内任意一个“不动点”的坐标为(n,n),直线y=x,当x=n时,则y=n,∴点(n,n)在直线y=x上,∴直线y=x上有无数个“不动点”,故A正确;将(n,n)代入y=,得n=,此方程无解,∴函数y=的图象上没有“不动点”,故B正确;将(n,n)代入y=x+1,得n=n+1,此方程无解,∴直线y=x+1上没有“不动点”,故C错误;将(n,n)代入y=x2,得n=n2,解得n1=0,n2=1,∴函数y=x2的图象上有两个“不动点”(0,0)和(1,1),故D正确,故选:C.(2)设双曲线上的“不动点”为(x,x),则x=,解得x1=﹣3,x2=3,∴双曲线上的“不动点”为(﹣3,﹣3)和(3,3).(3)①设抛物线y=ax2﹣3x+c上的“不动点”为(x,x),则x=ax2﹣3x+c,即ax2﹣4x+c=0,∵该抛物线上有且只有一个“不动点”,∴关于x的一元二次方程ax2﹣4x+c=0有两个相等的实数根,∴(﹣4)2﹣4ac=0,∴a=,∵a>1,∴>1,∴0<c<4.②∵当a=1时,则=1,∴c=4,∴抛物线为y=x2﹣3x+4,由(2)得,双曲线在第一象限的不动点为(3,3),∴直线l即直线y=3,如图,∵y=x2﹣3x+4=(x﹣)2+,∴该抛物线的顶点B(,),对称轴为直线x=,设直线r在直线l下方且到直线l的距离为m,直线x=交直线l于点A,交直线r于点C,∴AC=m,A(,3),∴AB=3﹣=,设直线t与直线r关于直线l对称,∵当点C在点B的上方时,抛物线上有四个点到l的距离为m,∴0<m<.5.在并联电路中,电源电压为U总=6V,小亮根据“并联电路分流不分压”的原理知道:I总=I1+I2(I1=,I2=),已知R1为定值电阻,当R变化时,干路电流I总也会发生变化,且干路电流I总与R之间满足如下关系:I总=1+.(1)定值电阻R1的阻值为6Ω;(2)小亮根据学习函数的经验,参照研究函数的过程与方法,对比反比例函数I2=来探究函数I=1+的图象与性质.总①列表:如表列出I总与R的几组对应值,请写出m,n的值:m= 2.5,n=2;R…3456…I2=…2 1.5 1.21…I总=1+…3m 2.2n…②描点、连线:在平面直角坐标系中,以①给出的R的取值为横坐标,以I总相对应的值为纵坐标,描出相应的点,并将各点用光滑曲线顺次连接起来;(3)观察图象并分析表格,回答下列问题:①I总随R的增大而减小;(填“增大”或“减小”)②函数I总=1+的图象是由I2=的图象向上平移1个单位而得到.解:(1)∵I1==1,∴R1=6,故答案为:6;(2)①当R=4时,m=1+1.5=2.5,当R=6时,n=1+1=2,故答案为:2.5,2;②图象如下:(3)①根据图象可知,I随R的增大而减小,总故答案为:减小;②函数I总=1+的图象是由I2=的图象向上平移1个单位得到,故答案为:上,1.6.小欣研究了函数的图象与性质.其研究过程如下:(1)绘制函数图象①列表:下表是x与y的几组对应值,其中m=1;x…﹣4﹣3﹣2012…y…﹣1﹣2﹣332m…﹣﹣②描点:根据表中的数值描点(x,y);③连线:用平滑的曲线顺次连接各点,请把图象补充完整.(2)探究函数性质:下列说法不正确的是AA.函数值y随x的增大而减小B.函数图象不经过第四象限C.函数图象与直线x=﹣1没有交点D.函数图象对称中心(﹣1,0)(3)如果点A(x1,y1)、B(x2,y2)在函数图象上,如果x1+x2=﹣2,则y1+y2=0.解:(1)把x=0代入到中可得:y=1,即m=1,图象如下所示:故答案为:1,图象如上所示;(2)A.当x<﹣1或x>﹣1时,函数值y随x的增大而减小,故选项A不正确;B.根据图象可得,函数图象不经过第四象限,故选项B正确;C.根据函数表示可得:x≠﹣1,所以函数图象与直线x=﹣1没有交点,故选项C正确;D.根据图象可知,函数图象对称中心(﹣1,0),故选项D正确;故选:A;(3)∵x1+x2=﹣2,∴y1+y2====0;故答案为:0.7.九年级某数学兴趣小组在学习了反比例函数的图象与性质后,进一步研究了函数的图象与性质,其探究过程如下:(1)绘制函数图象,列表:下表是x与y的几组对应值,其中m=.x…﹣3﹣2﹣1123…y…124421m…描点:根据表中各组对应值(x,y),在平面直角坐标系中描出各点,请你描出剩下的点;连线:用平滑的曲线顺次连接各点,已经画出了部分图象,请你把图象补充完整;(2)通过观察图象,下列关于该函数的性质表述正确的是:②;(填写代号)①函数值y随x的增大而增大;②关于y轴对称;③关于原点对称;(3)在上图中,若直线y=2交函数的图象于A,B两点(A在B左边),连接OA.过点B作BC∥OA交x轴于C.则S四边形OABC=4.解:(1)将x=3代入得y=,故答案为:.(2)由(1)中的图象可知,在第一象限内,y随x的增大而减小;在第二象限内,y随x的增大而增大;函数图象关于y轴对称,故②正确;故答案为:②.(3)将y=2代入得x=1或x=﹣1,∴AB=1﹣(﹣1)=2,∵AB在直线y=2上,OC在x轴上,∴AB∥OC,又∵BC∥OA,∴四边形OABC为平行四边形,=AB•y A=2×2=4.∴S四边形OABC故答案为:4.8.【定义】从一个已知图形的外一点引两条射线分别经过该已知图形的两点,则这两条射线所成的最大角称为该点对已知图形的视角,如图①,∠APB是点P对线段AB的视角.【应用】(1)如图②,在直角坐标系中,已知点A(2,),B(2,2),C(3,),则原点O对三角形ABC的视角为30°;(2)如图③,在直角坐标系中,以原点O,半径为2画圆O1,以原点O,半径为4画圆O2,证明:圆O2上任意一点P对圆O1的视角是定值;【拓展应用】(3)很多摄影爱好者喜欢在天桥上对城市的标志性建筑拍照,如图④.现在有一条笔直的天桥,标志性建筑外延呈正方形,摄影师想在天桥上找到对建筑视角为45°的位置拍摄.现以建筑的中心为原点建立如图⑤的坐标系,此时天桥所在的直线的表达式为x =﹣5,正方形建筑的边长为4,请直接写出直线上满足条件的位置坐标.解:(1)延长BA交x轴于点D,过点C作CE⊥x轴于点E,∵点,,,∴AB∥y轴,,OE=3,∴AB⊥x轴,∴,OD=2,∴,,∴∠BOD=60°,∠COE=30°,∴∠BOC=∠BOD﹣∠COE=30°,即原点O对三角形ABC的视角为30°过答案为:30°(2)证明:如图,过圆O2上任一点P作圆O1的两条切线交圆O1于A,B,连接OA,OB,OP,则有OA⊥PA,OB⊥PB,在中,OA=2,OP=4,∴,∴∠OPA=30°,同理可求得:∠OPB=30°,∴∠APB=60°,即圆O2上任意一点P对圆O1的视角是60°,∴圆O2上任意一点P对圆O1的视角是定值.(3)当在直线AB与直线CD之间时,视角是∠APD,此时以E(﹣4,0)为圆心,EA 半径画圆,交直线于P3,P6,∵∠DP3B>∠DP3A=45°,∠AP6C>∠DP6C=45°,不符合视角的定义,P3,P6舍去.同理,当在直线AB上方时,视角是∠BPD,此时以A(﹣2,2)为圆心,AB半径画圆,交直线于P1,P5,P5不满足;过点P1作P1M⊥AD交DA延长线于点M,则AP1=4,P1M=5﹣2=3,∴,∴当在直线CD下方时,视角是∠APC,此时以D(﹣2,﹣2)为圆心,DC半径画圆,交直线于P2,P4,P4不满足;同理得:;综上所述,直线上满足条件的位置坐标或.9.小明在学习函数的过程中遇到这样一个函数:y=[x],若x≥0时,[x]=x2﹣1;若x<0时,[x]=﹣x﹣1.小明根据学习函数的经验,对该函数进行了探究.(1)①列表:下表列出y与x的几组对应值,请写出m,n的值m=0;n=3;x…﹣2﹣1012…y…1m00n…②描点:在平面直角坐标系中,以①给出的自变量x的取值为横坐标,以相应的函数值为纵坐标,描出相应的点并连线,作出函数图象;(2)下列关于该函数图象的性质正确的是③;(填序号)①y随x的增大而增大;②该函数图象关于y轴对称;③当x=0时,函数有最小值为﹣1;④该函数图象不经过第三象限.(3)若函数值y=8,则x=3或﹣9;(4)若关于x的方程2x+c=[x]有两个不相等的实数根,请结合函数图象,直接写出c 的取值范围是c>﹣2.解:(1)①m=﹣(﹣1)﹣1=0;n=22﹣1=3;故答案为:0,3;②描点,连线,作出函数图象如下:(2)从图象可知:下列关于该函数图象的性质正确的是③;故答案为:③;(3)若x≥0时,x2﹣1=8,解得x=3或x=﹣3,∴x=3;若x<0时,﹣x﹣1=8,解得x=﹣9,故答案为:3或﹣9;(4)由图象可知:关于x的方程2x+c=[x]有两个不相等的实数根,则c>﹣2,故答案为:c>﹣2.10.某公园内人工湖上有一座拱桥(横截面如图所示),跨度AB为4米.在距点A水平距离为d米的地点,拱桥距离水面的高度为h米.小红根据学习函数的经验,对d和h之间的关系进行了探究.下面是小红的探究过程,请补充完整:(1)经过测量,得出了d和h的几组对应值,如表.d/米00.61 1.8 2.43 3.64h/米0.88 1.90 2.38 2.86 2.80 2.38 1.600.88在d和h这两个变量中,d是自变量,h是这个变量的函数;(2)在下面的平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合表格数据和函数图象,解决问题:①桥墩露出水面的高度AE为0.88米;②公园欲开设游船项目,现有长为3.5米,宽为1.5米,露出水面高度为2米的游船.为安全起见,公园要在水面上的C,D两处设置警戒线,并且CE=DF,要求游船能从C,D两点之间安全通过,则C处距桥墩的距离CE至少为0.7米.(精确到0.1米)解:(1)d是自变量,h是这个变量的函数,故答案为:d,h;(2)如图,(3)①当x=0时,y=0.88,∴桥墩露出水面的高度AE为0.88米,故答案为:0.88;②设y=ax2+bx+c,把(0,0.88)、(1,2.38)、(3,2.38)代入得,,解得,∴y=﹣0.5x2+2x+0.88,对称轴为直线x=2,令y=2,则2=﹣0.5x2+2x+0.88,解得x≈3.3(舍去)或0.7.故答案为:0.7.11.小明为了探究函数M:y=﹣x2+4|x|﹣3的性质,他想先画出它的图象,然后再观察、归纳得到,并运用性质解决问题.(1)完成函数图象的作图,并完成填空.①列出y与x的几组对应值如表:x…﹣5﹣4﹣3﹣2﹣1012345…y…﹣8﹣3010﹣3010a﹣8…表格中,a=﹣3;②结合上表,在下图所示的平面直角坐标系xOy中,画出当x>0时函数M的图象;③观察图象,当x=﹣2或2时,y有最大值为1;(2)求函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标;(3)已知P(m,y1),Q(m+1,y2)两点在函数M的图象上,当y1<y2时,请直接写出m的取值范围.解:(1)①把x=4代入y=﹣x2+4|x|﹣3得:y=﹣16+16﹣3=﹣3,∴a=﹣3,故答案为:﹣3;②画出当x>0时函数M的图象如下:③观察图象,当x=﹣2或2时,y有最大值为1;故答案为:﹣2或2,1;(2)由解得或,由解得或,∴函数M:y=﹣x2+4|x|﹣3与直线l:y=2x﹣3的交点坐标为(﹣6,﹣15)、(0,﹣3)、(2,1);(3)∵P(m,y1),Q(m+1,y2)两点在函数M的图象上,且y1<y2,∴m的取值范围m<﹣2.5或﹣0.5<m<1.5.12.定义:平面直角坐标系xOy中,若点M绕原点顺时针旋转90°,恰好落在函数图象W 上,则称点M为函数图象W的“直旋点”.例如,点是函数y=x图象的“直旋点”.(1)在①(3,0),②(﹣1,0),③(0,3)三点中,是一次函数图象的“直旋点”的有②③(填序号);(2)若点N(3,1)为反比例函数图象的“直旋点”,求k的值;(3)二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),与y轴交于点C,点D是二次函数y=﹣x2+2x+3图象的“直旋点”且在直线AC上,求D点坐标.解:(1)①点(3,0)绕原点顺时针旋转90°得点(0,﹣3),当x=0时,y=1,∴点(3,0)不是一次函数图象的“直旋点”;②点(﹣1,0)绕原点顺时针旋转90°得点(0,1),当x=0时,y=1,∴点(﹣1,0)是一次函数图象的“直旋点”;③点(0,3)绕原点顺时针旋转90°得(3,0),当x=3时,y==0,∴点(0,3)是一次函数图象的“直旋点”;∴是一次函数图象的“直旋点”的有②③;故答案为:②③;(2)点N(3,1)绕原点顺时针旋转90°得点(1,﹣3),∵点N(3,1)为反比例函数图象的“直旋点”,∴,∴k=﹣3;(3)∵二次函数y=﹣x2+2x+3与x轴交于A,B两点(A在B的左侧),令y=0,则﹣x2+2x+3=0,解得:x1=3,x2=﹣1,∴A(﹣1,0),B(3,0),∵二次函数y=﹣x2+2x+3与y轴交于点C,令x=0,则y=3,∴C(0,3),设直线AC的解析式为y=kx+b,,解得:,∴直线AC的解析式为y=3x+3,设点D(a,3a+3),则D(a,3a+3)绕原点顺时针旋转90°得点(3a+3,﹣a),∵点D是二次函数y=﹣x2+2x+3图象的“直旋点”,∴﹣(3a+3)2+2(3a+3)+3=﹣a,解得:a=0或a,∴点D的坐标为(0,3)或.13.对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y ≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,图中的函数是有界函数,其边界是1.(1)直接判断函数y=(x>0)和y=﹣2x+1(﹣4<x≤2)是不是有界函数?若是有界函数,直接写出其边界值;(2)若一次函数y=kx+b(﹣2≤x≤1)的边界值是3,且这个函数的最大值是2,求这个一次函数的解析式;(3)将二次函数y=﹣x2(﹣1≤x≤m,m≥0)的图象向上平移m个单位,得到的函数的边界值是n,当m在什么范围时,满足≤n≤1.解:(1)y=(x>0)不是有界函数;y=﹣2x+1(﹣4<x≤2)是有界函数,当x=﹣4时,y=9,当x=2时,y=﹣3,∴对于﹣4<x≤2时,任意函数值都满足﹣9<y≤9,∴边界值为9.(2)当k>0时,由有界函数的定义得函数过(1,2),(﹣2,﹣3)两点,设y=kx+b,将(1,2)(﹣2,﹣3)代入上式得,解得:,所以:y=x+,当k<0时,由有界函数的定义得函数过(﹣2,2),(1,﹣3)两点,设y=kx+b,将(﹣2,2),(1,﹣3)代入上式得,即得,函数解析式为y=﹣x﹣.(3)若m>1,函数向上平移m个单位后,x=0时,y=m,此时边界值t≥1,与题意不符,故m≤1,函数y=﹣x2过点(﹣1,﹣1),(0,0);向上平移m个单位后,平移图象经过(﹣1,﹣1+m);(0,m).∴﹣1≤﹣1+m≤﹣或≤m≤1,即0≤m≤或≤m≤1.14.在平面直角坐标系中,由两条与x轴有着相同的交点,并且开口方向相同的抛物线所围成的封闭曲线称为“月牙线”.如图所示,抛物线C1与抛物线C2:y=mx2+4mx﹣12m(m >0)的部分图象组成一个“月牙线”,相同的交点分别为M,N(点M在点N的左侧),与y轴的交点分别为A,B,且点A的坐标为(0,﹣1).(1)求M,N两点的坐标及抛物线C1的解析式;(2)若抛物线C2的顶点为D,当m=时,试判断三角形MND的形状,并说明理由;(3)在(2)的条件下,点P(t,﹣)是抛物线C1上一点,抛物线C2第三象限上是=S△ONQ,若存在,请直接写出点Q的坐标;若不存在,说否存在一点Q,使得S△APM明理由.解:(1)令y=0,则mx2+4mx﹣12m=0,解得x=2或x=﹣6,∴M(﹣6,0),N(2,0),设抛物线C1的解析式为y=a(x+6)(x﹣2),将点A(0,﹣1)代入,得﹣12a=﹣1,解得a=,∴y=(x2+4x﹣12);(2)∵m=,∴y=x2+3x﹣9=(x+2)2﹣12,∴D(﹣2,﹣12),∴MD=4,ND=4,MN=8,∴MD=ND,∴△MND是等腰三角形;=S△ONQ,理由如下:(3)∵存在一点Q,使得S△APM∵点P(t,﹣)是抛物线C1上一点,∴﹣=(t2+4t﹣12),解得t=﹣1或t=﹣3,∴P(﹣1,﹣)或P(﹣3,﹣),设直线AM的解析式为y=kx+b,∴,解得,∴y=﹣x﹣1,过点P作PG∥y轴交AM于点G,当P(﹣1,﹣)时,G(﹣1,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);当P(﹣3,﹣)时,G(﹣3,﹣),∴PG=,=6×=,∴S△APM=S△ONQ,∵S△APM∴××2×|y Q|=,解得y Q=﹣,∴Q(﹣﹣2,﹣);综上所述:Q点坐标为(﹣﹣2,﹣)或(﹣﹣2,﹣).15.阅读材料:一般地,对于某个函数,如果自变量x在取值范围内任取x=a与x=﹣a时,函数值相等,那么这个函数是“对称函数”.例如:y=x2,在实数范围内任取x=a时,y =a2;当x=﹣a时,y=(﹣a)2=a2,所以y=x2是“对称函数”.(1)函数y=2|x|+1是对称函数(填“是”或“不是”).当x≥0时,y=2|x|+1的图象如图1所示,请在图1中画出x<0时,y=2|x|+1的图象.(2)函数y=x2﹣2|x|+1的图象如图2所示,当它与直线y=﹣x+n恰有3个交点时,求n的值.(3)如图3,在平面直角坐标系中,矩形ABCD的顶点坐标分别是A(﹣3,0),B(2,0),C(2,﹣3),D(﹣3,﹣3),当二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点时,求b的取值范围.解:(1)∵在实数范围内任取x=a时,y=2|a|+1,当x=﹣a时,y=2|﹣a|+1=2|a|+1,∴y=2|x|+1是“对称函数”.故答案为:是;y=2|x|+1的图象如图1所示,(2)①当直线y=﹣x+n经过点(0,1)时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,∴n=1;②当直线y=﹣x+n与函数y=x2﹣2|x|+1的图象的右半侧相切时,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,即方程组有一个解,∴方程x2﹣x+1﹣n=0有两个相等的实数根.∴Δ=(﹣1)2﹣4×1×(1﹣n)=0,解得:n=.综上,函数y=x2﹣2|x|+1的图象与直线y=﹣x+n恰有3个交点,则n的值为1或;(3)当x>0时,函数y=x2﹣bx+1的图象与x轴相切时,方程x2﹣bx+1=0有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×1=0,∵b>0,∴b=2;当x>0时,函数y=x2﹣bx+1的图象与直线DC相切时,方程x2﹣bx+1=﹣3有两个相等的实数根,∴Δ=(﹣b)2﹣4×1×4,∵b>0,∴b=4;当x<0时,函数y=x2+bx+1的图象经过点(﹣3,﹣3)时,﹣3=(﹣3)2﹣3b+1,解得:b=.综上,当2<b<4或b>时,二次函数y=x2﹣b|x|+1(b>0)的图象与矩形的边恰有4个交点.16.定义:把一个半圆与抛物线的一部分合成封闭图形,我们把这个封闭图形称为“蛋圆”.如果一条直线与“蛋圆”只有一个交点,那么这条直线叫做“蛋圆”的切线.如图,A,B,C,D分别是“蛋圆”与坐标轴的交点,已知点D的坐标为(0,8),AB为半圆的直径,半圆的圆心M的坐标为(1,0),半圆半径为3.(1)请你直接写出“蛋圆”抛物线部分的解析式y=﹣x2+4x+8,自变量的取值范围是﹣2≤x≤4;(2)请你求出过点C的“蛋圆”切线与x轴的交点坐标;(3)求经过点D的“蛋圆”切线的解析式.解:(1)∵半圆的圆心M的坐标为(1,0),半圆半径为3,∴A(﹣2,0),B(4,0),设抛物线解析式为y=ax2+bx+c,则,解得,∴“蛋圆”抛物线部分的解析式y=﹣x2+2x+8(﹣2≤x≤4);故答案为:=﹣x2+2x+8;﹣2≤x≤4.(2)如图,设过点C的切线与x轴相交于E,连接CM,∵CE与半圆相切,∴CE⊥CM,∴∠OCE+∠MCO=90°,∵∠CEO+∠ECO=90°,∴∠CEO=∠MCO,又∵∠COE=∠MOC=90°,∴△COE∽△MOC,∴=,由勾股定理得,OC==2,∴OE===8,∴过点C的“蛋圆”切线与x轴的交点坐标为(﹣8,0);(3)设过点D的“蛋圆”切线解析式为y=kx+8,联立,消掉y得,x2+(k﹣2)x=0,∵直线与“蛋圆”抛物线相切,∴△=(k﹣2)2=0,解得k=2,∴过点D的“蛋圆”切线的解析式为y=2x+8.17.规定:如果两个函数图象上至少存在一组点是关于原点对称的,我们则称这两个函数互为“O—函数”.这组点称为“XC点”.例如:点P(1,1)在函数y=x2上,点Q(﹣1,﹣1)在函数y=﹣x﹣2上,点P与点Q关于原点对称,此时函数y=x2和y=﹣x﹣2互为“O—函数”,点P与点Q则为一组“XC点”.(1)已知函数y=﹣2x﹣1和y=﹣互为“O—函数”,请求出它们的“XC点”;(2)已知函数y=x2+2x+4和y=4x+n﹣2022互为“O—函数”,求n的最大值并写出“XC 点”;(3)已知二次函数y=ax2+bx+c(a>0)与y=2bx+1互为“O—函数”有且仅存在一组“XC点”,如图,若二次函数的顶点为M,与x轴交于A(x1,0),B(x2,0)其中0<x1<x2,AB=,过顶点M作x轴的平行线l,点P在直线l上,记P的横坐标为﹣,连接OP,AP,BP.若∠OPA=∠OBP,求t的最小值.解:(1)设P(a,b)在y=﹣2x﹣1上,则Q(﹣a,﹣b)在y=﹣上,∴,解得或,∴“XC点”为(﹣2,3)与(2,﹣3)或(,﹣4)与(﹣,4);(2)设P(s,t)在y=x2+2x+4上,则Q(﹣s,﹣t)在y=4x+n﹣2022上,∴,∴n=﹣t+4s+2022=﹣s2+2s+2018=﹣(s﹣1)2+2019,当s=1时,n有最大值2019,此时“XC点”为(1,7)与(﹣1,﹣7);(3)设P(x,y)在y=ax2+bx+c上,则Q(﹣x,﹣y)在y=2bx+1上,∴,整理得ax2﹣bx+c+1=0,∵有且仅存在一组“XC点”,∴Δ=b2﹣4a(c+1)=0,即=﹣1,∴顶点M的纵坐标为﹣1,∵ax2+bx+c=0,∴x1+x2=﹣,x1•x2=,∴AB==,∵AB=,∴=,∴=,∵∠OPA=∠OBP,∠AOP=∠POB,∴△POA∽△BOP,∴OP2=OB•OA=x1•x2,∵P的横坐标为﹣,∴P(﹣,﹣1),∴t+1===(c﹣1)2+,∴当c=1时,t有最小值.18.如果三角形的两个内角α与β满足2α+β=90°,那么我们称这样的三角形为“CJ三角形”.(1)判断下列三角形是否为“CJ三角形”?如果是,请在对应横线上画“√”,如果不是,请在对应横线上画“×”;①其中有两内角分别为30°,60°的三角形×;②其中有两内角分别为50°,60°的三角形×;③其中有两内角分别为70°,100°的三角形√;(2)如图1,点A在双曲线y=(k>0)上且横坐标为1,点B(4,0),C为OB中点,D为y轴负半轴上一点,若∠OAB=90°.①求k的值,并求证:△ABC为“CJ三角形”;②若△OAB与△OBD相似,直接写出D的坐标;(3)如图2,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,E为BC边上一点,BE >CE且△ABE是“CJ三角形”,已知A(﹣6,0),记BE=t,过A,E作抛物线y=ax2+bx+c(a>0),B在A右侧,且在x轴上,点Q在抛物线上,使得tan∠ABQ=,若符合条件的Q点个数为3个,求抛物线y=ax2+bx+c的解析式.。
中考数学中“新定义”问题的类型及教学策略

中考数学中“新定义”问题的类型及教学策略摘要:近几年嘉兴中考对于“新定义”类型的问题要求较高,而学生往往对于这类问题感到畏惧。
本文以“新定义”问题的概念以及特征为出发点,把这类题型分为四种类型。
教学时从概念中提取信息→加工信息→转化迁移→建立模型→解决问题。
这类问题主要考查学生现学现用的能力,以及类比和转化思想。
关键词:“新定义”;策略;迁移;阅读理解“新定义”问题是近几年嘉兴中考试题中的热点题型,它是基于学生必须掌握的知识及应该具备的能力,通过新定义的方式隐藏问题本源,要求学生在理解新定义的基础上进行拓展,从而灵活运用新知解决问题,主要考查学生现学现用的能力。
“新定义”问题的重要意义在于它不仅改变了学生解题的思维方式,而且对教师的课堂教学也起到了良好的导向作用,由于突出了理解定义的内在含义、问题迁移转化等重要环节,所以学生往往遇到“新定义”问题感到畏惧,故教师在教学“新定义”问题的时候要注意教学策略。
一、“新定义”问题阐释1.“新定义”问题的概念“新定义”问题是指命题者按照一定的规则,呈现给学生没有见过的新运算、新符号、新图形、新变换、新函数等,或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,要求学生现学现用,它全面地考查了学生的阅读理解能力、知识迁移能力和创新能力。
2.“新定义”问题的特征“新定义”题型特点突出、取材广泛,材料源于课本又有创新,不仅可以考查学生的阅读理解能力、分析综合能力、辨别判断能力以及生活经验是否丰富等,而且可以综合考查学生的数学思维能力和创新意识,此类问题能够帮助学生实现从模仿到创造的思维过程,达到从预设到生成的跨越,符合学生的认知规律,既实现了对学生知识与能力考查的结合,又体现了素质教育的本质,还为学生进入高一级学校的学习做了良好的铺垫。
与函数有关的新定义问题

与函数有关的新定义问题以学习过的函数相关知识为基础,通过一类问题共同特征的“数学抽象”,引出新的概念,然后在快速理解的基础上,解决新的问题.[例4] 设函数f (x )的定义域为D ,若对任意的x ∈D ,都存在y ∈D ,使得f (y )=-f (x )成立,则称函数f (x )为“美丽函数”,下列所给出的五个函数:①f (x )=x 2;②f (x )=1x -1; ③f (x )=ln(2x +3);④f (x )=2x -2-x ;⑤f (x )=2sin x -1,其中是“美丽函数”的序号有________.解析:由已知,在函数定义域内,对任意的x 都存在着y ,使x 所对应的函数值f (x )与y 所对应的函数值f (y )互为相反数,即f (y )=-f (x ).故只有当函数的值域关于原点对称时才会满足“美丽函数”的条件.①中函数的值域为[0,+∞),值域不关于原点对称,故①不符合题意;②中函数的值域为(-∞,0)∪(0,+∞),值域关于原点对称,故②符合题意; ③中函数的值域为(-∞,+∞),值域关于原点对称,故③符合题意;④中函数的值域为R ,值域关于原点对称,故④符合题意;⑤中函数f (x )=2sin x -1的值域为[-3,1],不关于原点对称,故⑤不符合题意. 答案:②③④1.紧扣定义:对于题目定义的新函数,通过仔细阅读,分析定义以及新函数所满足的条件,围绕定义与条件来确定解题的方向,然后准确作答.2.巧妙赋值:如果题目所定义的新函数满足的条件是函数方程,可采用赋值法,即令x ,y 取特殊值,或为某一范围内的值,求得特殊函数值或函数解析式,再结合掌握的数学知识与方程思想来解决问题.3.构造函数:有些新定义型函数可看成是由两个已知函数构造而成的.[素材库]1.(2018·长沙市高三模拟)定义运算:x Δy =⎩⎪⎨⎪⎧x ,xy ≥0,y ,xy <0,例如:3Δ4=3,(-2)Δ4=4,则函数f (x )=x 2Δ(2x -x 2)的最大值为________.解析:由已知得f (x )=x 2Δ(2x -x 2)=⎩⎪⎨⎪⎧x 2,x 2(2x -x 2)≥0,2x -x 2,x 2(2x -x 2)<0=⎩⎪⎨⎪⎧x 2,0≤x ≤2,2x -x 2,x <0或x >2,易知函数f (x )的最大值为4.答案:42.(2018·济宁高三模拟)如果定义在R 上的函数f (x )对任意两个不相等的实数x 1,x 2,都有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),则称函数f (x )为“H 函数”.给出下列函数:①y =-x 3+x +1;②y =3x -2(sin x -cos x );③y =e x +1;④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0.以上函数是“H 函数”的是________.(填上所有正确的序号)解析:若函数f (x )为“H 函数”,则有x 1f (x 1)+x 2f (x 2)>x 1f (x 2)+x 2f (x 1),x 1[f (x 1)-f (x 2)]>x 2[f (x 1)-f (x 2)],即(x 1-x 2)[f (x 1)-f (x 2)]>0.所以“H 函数”f (x )就是R 上的单调递增函数.①y ′=-3x 2+1,由y ′>0,解得-33<x <33,所以该函数的单调递增区间为⎝⎛⎭⎫-33,33,而在区间(-∞,-33)和⎝⎛⎭⎫33,+∞上单调递减,显然在R 上不是单调递增函数,即不是“H 函数”.②y ′=3-2(cos x +sin x )=3-22sin ⎝⎛⎭⎫x +π4.因为sin ⎝⎛⎭⎫x +π4∈[-1,1],所以y ′=3-22sin ⎝⎛⎭⎫x +π4≥3-22>0,③因为函数y =e x 在R 上是单调递增函数,所以y =e x+1在R 上也是单调递增函数,即“H 函数”.④f (x )=⎩⎪⎨⎪⎧ln|x |,x ≠0,0,x =0=⎩⎪⎨⎪⎧ln x ,x >0,ln (-x ),x <0,0,x =0.故该函数在(0,+∞)上单调递增,在(-∞,0)上单调递减,所以在R 上不是单调递增函数,即不是“H 函数”.综上,②③正确.答案:②③。
中考数学专题训练:关于二次函数的新定义(附参考答案)

1 / 2中考数学专题训练:关于二次函数的新定义(附参考答案)1.若将抛物线平移,有一个点既在平移前的抛物线上,又在平移后的抛物线上,则称这个点为“平衡点”.现将抛物线C1:y =(x -2)2-4向右平移m(m >0)个单位长度后得到新的抛物线C2,若(4,n)为“平衡点”,则m 的值为( )A .2B .1C .4D .32.新定义:[a ,b ,c]为二次函数y =ax2+bx +c(a ≠0,a ,b ,c 为实数)的“图象数”,如:y =x2-2x +3的“图象数”为[1,-2,3].若“图象数”是[m ,2m +4,2m +4]的二次函数的图象与x 轴只有一个交点,则m 的值为( )A .-2B .14C .-2或2D .23.定义:在平面直角坐标系中,过一点P 分别作坐标轴的垂线,这两条垂线与坐标轴围成一个矩形,若矩形的周长值与面积值相等,则点P 叫做“和谐点”,所围成的矩形叫做“和谐矩形”.已知点P 是抛物线y =x2+k 上的“和谐点”,所围成的“和谐矩形”的面积为16,则k 的值可以是( )A .16B .4C .-12D .-184.定义:我们将顶点的横坐标和纵坐标互为相反数的二次函数称为“互异二次函数”.如图,在正方形OABC 中,点A(0,2),点C(2,0),则互异二次函数y =(x -m)2-m 与正方形OABC 有交点时m 的最大值和最小值分别是( )A .4,-1B .5−√172,-1 C .4,0 D .5+√172,-15.定义:[a ,b ,c]为二次函数y =ax2+bx +c(a ≠0)的特征数,下面给出特征数为[m ,1-m ,2-m]的二次函数的一些结论:①当m =1时,函数图象的对称轴是y 轴;②当m =2时,函数图象过原点;③当m >0时,函数有最小值;④如果m <0,当x >12时,y 随x 的增大而减小.其中所有正确结论的序号是__________.6.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y),当x <0时,点P 的变换点P ′的坐标为(-x ,y);当x ≥0时,点P 的变换点P ′的坐标为(-y ,x).抛物线y =(x -2)2+n 与x 轴交于点C ,D(点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P ′在抛物线的对称轴上,且四边形ECP ′D 是菱形,则满足该条件的所有n 值的和为________.7.对某一个函数给出如下定义:若存在实数m >0,对于任意的函数值y ,都满足-m ≤y ≤m ,则称这个函数是有界函数,在所有满足条件的m 中,其最小值称为这个函数的边界值.例如,2 / 2 如图中的函数是有界函数,其边界值是1.将函数y =-x2+1(-2≤x ≤t ,t ≥0)的图象向上平移t 个单位长度,得到的函数的边界值n 满足94≤n ≤52时,则t 的取值范围是________________________.参考答案1.C 2.C3.C 4.D 5.①②③ 6.-13 7.≤t ≤34或54≤t ≤32。
中考专题复习——“新定义”问题(教案)

专题复习——“新定义”问题(教案)授课日期:2016.5.18教学目标:1、通过具体实例了解"新定义"型试题的概念及常见模式;2、通过生生交流、师生互动了解解决"新定义"型试题的思路,掌握分析"新定义"型试题的方法,并学会解决"新定义"型试题。
教学重点:"新定义"型试题三种常见模式及其分析、解决该类问题思路和方法。
教学难点:"新定义"型试题需要学生有一定的阅读理解能力,在解决过程中又往往涉及较多的知识点,综合性较强。
因此如何引导学生读题和分析问题,并且综合运用所学知识解决问题是本节课的教学难点。
教学过程:一、专题诠释所谓"新定义"型试题,是指试题在某种运算、某个基本概念或几何图形基础上或增加条件,或改编条件,或削弱条件,构造一些创意新奇、情境熟悉但又从未接触过的新概念的试题。
其特点是源于初中数学内容,但又是学生没有遇到的新信息,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型。
“新定义”型试题常常以运算模式、函数模式、几何模式等形式出现。
二、解题策略解决此类问题的常见思路:给什么,用什么。
即:正确理解新定义,并将此定义作为解题的重要依据,分析并掌握其本质,用类比的方法迅速地同化到自身的认知结构中,然后解决新的问题。
三、典例精析(一)运算模式例1 (2013•河北)定义新运算:对于任意实数a,b ,都有a⊕b=a(a-b)+1,等式右边是通常的加法、减法及乘法运算,比如:2⊕5=2×(2-5)+1=2×(-3)+1=-6+1==-5。
(1)求(-2)⊕3的值;(2)若3⊕x的值小于13,求x的取值范围,并在图所示的数轴上表示出来.分析:(1)按照定义新运算a⊕b=a(a-b)+1,即可求解;(2)先按照定义新运算a⊕b=a(a-b)+1,得出3⊕x,再令其小于13,得到一元一次不等式,解不等式求出x的取值范围,最后在数轴上表示即可。
【中考数学压轴题专题突破11】二次函数中的新定义问题

【中考压轴题专题突破】二次函数中的新定义问题1.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y﹣x 称为点P的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.(1)求点A(2,1)的“坐标差”和抛物线y=﹣x2+3x+4的“特征值”.(2)某二次函数=﹣x2+bx+c(c≠0)的“特征值”为﹣1,点B与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等,求此二次函数的解析式.(3)如图所示,二次函数y=﹣x2+px+q的图象顶点在“坐标差”为2的一次函数的图象上,四边形DEFO是矩形,点E的坐标为(7,3),点O为坐标原点,点D在x轴上,当二次函数y=﹣x2+px+q的图象与矩形的边有四个交点时,求p的取值范围.2.定义:我们把点(m,m)称为直线y=﹣x+m(其中m为常数)的“对应点”比如,直线y=﹣x+5的“对应点”为(5,5).在平面直角坐标系xOy中,(1)若抛物线y=ax2经过直线y=﹣x+3的“对应点”A,请指出该抛物线的开口方向,并说明理由;(2)设点P在曲线y=(x>0)上,直线l:y=﹣x+m的“对应点”为点B,连接PB,记点P到直线l的距离为d(d为正实数)①当m=2,k=2,且d=时,求点P的坐标;②当m=1,k=时,求BP的长(用含d的式子表示).3.我们定义:两个二次项系数之和为1,对称轴相同,且图象与y轴交点也相同的二次函数互为友好同轴二次函数.例如:y=2x2+4x﹣5的友好同轴二次函数为y=﹣x2﹣2x﹣5.(1)请你分别写出y=﹣,y=+x﹣5的友好同轴二次函数;(2)满足什么条件的二次函数没有友好同轴二次函数?满足什么条件的二次函数的友好同轴二次函数是它本身?(3)如图,二次函数L1:y=ax2﹣4ax+1与其友好同轴二次函数L2都与y轴交于点A,点B、C分别在L1、L2上,点B,C的横坐标均为m(0<m<2),它们关于L1的对称轴的对称点分别为B′,C′,连结BB′,B′C′,C′C,CB.①若a=3,且四边形BB′C′C为正方形,求m的值;②若m=1,且四边形BB′C′C的邻边之比为1:2,直接写出a的值.4.定义:给定两个函数,我们约定:任取自变量x的一个值,当x<0时,另一个函数对应的函数值比原函数的函数值大1;当x≥0时,另一个函数对应的函数值比原函数的函数值小1,我们称这样的两个函数互为伴随函数.例如:一次函数y=2x+3.它的伴随为y =(1)已知点M(3,6)在一次函数y=ax﹣2的伴随函数的图象上时,求a的值;(2)已知二次函数y=﹣x2+4x﹣3①当点N(m,﹣3)在这个函数的伴随函数的图象上时,求m的值;②当﹣2≤x≤3时,求函数y=﹣x2+4x﹣3的伴随函数的最大值和最小值;(3)在平面直角坐标系中,点A、D的坐标分别为(﹣1,﹣1)、(﹣1,2),连接AD,以AD为边向右作正方形ABCD.直接写出正方形ABCD与二次函数y=﹣x2+4x+n的伴随函数的图象有两个公共点时n的取值范围.5.定义:若函数y=x2+bx+c(c≠0)与x轴的交点A,B的横坐标为x A,x B,与y轴交点的纵坐标为y C,若x A,x B中至少存在一个值,满足x A=y C(或x B=y C),则称该函数为友好函数.如图,函数y=x2+2x﹣3与x轴的一个交点A的横坐标为3,与y轴交点C的纵坐标为﹣3,满足x A=y C,称y=x2+2x﹣3为友好函数.(1)判断y=x2﹣4x+3是否为友好函数,并说明理由;(2)请探究友好函数y=x2+bx+c表达式中的b与c之间的关系;(3)若y=x2+bx+c是友好函数,且∠ACB为锐角,求c的取值范围.6.在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:若b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).(1)①点(﹣,1)的限变点的坐标是;②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是;(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.【中考压轴题专题突破】二次函数中的新定义问题参考答案与试题解析1.解:(1)1﹣2=﹣1,故“坐标差”为﹣1,y﹣x=﹣x2+3x+4﹣x=﹣(x﹣1)2+5,故“特征值”为5;(2)由题意得:点C(0,c),故点B、C的“坐标差”相等,故点B(﹣c,0),把点B的坐标代入y=﹣x2+bx+c得:0=﹣(﹣c)2+b(﹣c)+c,解得:b=1﹣c,故:y=﹣x2+(1﹣c)x+c,故抛物线的“特征值”为﹣1,∴y﹣x=﹣x2+(1﹣c)x+c﹣x=﹣x2﹣cx+c,故=﹣1.∴c=﹣2,b=3,故抛物线的表达式为:y=﹣x2+3x﹣2;(3)“坐标差”为2的一次函数为:y=x+2,∵抛物线y=﹣x2+px+q的图象的顶点在y=x+2上,∴设抛物线的表达式为:y=﹣(x﹣m)2+m+2,当抛物线与矩形有3个交点时,如图1、2,对于图1,直线与矩形边的交点为:(1,3),则对称轴为:﹣=1,解得:p=2,对于图2,把点E(7,3)代入y=﹣(x﹣m)2+m+2并解得:m=5或10(舍去10),故﹣=5,解得:p=10,故二次函与矩形的边有四个交点时,求p的取值范围:2<p<10.2.解:(1)点A(3,3),将点A的坐标代入抛物线表达式并解:a=0,故抛物线的开口向上;(2)过点P作PH∥y轴交直线l于点H,则∠DPH=45°,则PH=d,设点P(s,t),则点H(s,﹣s+m),则st=k,PH=t﹣(﹣s+m),①当m=2,k=2,且d=时,反比例函数表达式为:y=,设点P(x,),d=,PH=2,即|+x﹣2|=2,解得:x=2,故点P(2,2);②PH=t+s﹣1=d,且st=,则1=2st,PB2=(s﹣1)2+(t﹣1)2=s2+t2﹣2(s+t)+2=(s+t)2﹣2(s+t)+1=(s+t﹣1)2,故PB=d.3.解:(1)∵1﹣(﹣)=,∴函数y=﹣的友好同轴二次函数为y=x2;∵1﹣=,1×(÷)=2,∴函数y=+x﹣5的友好同轴二次函数为y=x2+2x﹣5.(2)∵1﹣1=0,∴二次项系数为1的二次函数没有友好同轴二次函数;∵1÷2=,∴二次项系数为的二次函数的友好同轴二次函数是它本身.(3)二次函数L1:y=ax2﹣4ax+1的对称轴为直线x=﹣=2,其友好同轴二次函数L2:y=(1﹣a)x2﹣4(1﹣a)x+1.①∵a=3,∴二次函数L1:y=ax2﹣4ax+1=3x2﹣12x+1,二次函数L2:y=(1﹣a)x2﹣4(1﹣a)x+1=﹣2x2+8x+1,∴点B的坐标为(m,3m2﹣12m+1),点C的坐标为(m,﹣2m2+8m+1),∴点B′的坐标为(4﹣m,3m2﹣12m+1),点C′的坐标为(4﹣m,﹣2m2+8m+1),∴BC=﹣2m2+8m+1﹣(3m2﹣12m+1)=﹣5m2+20m,BB′=4﹣m﹣m=4﹣2m.∵四边形BB′C′C为正方形,∴BC=BB′,即﹣5m2+20m=4﹣2m,解得:m1=,m2=(不合题意,舍去),∴m的值为.②当m=1时,点B的坐标为(1,﹣3a+1),点C的坐标为(1,3a﹣2),∴点B′的坐标为(3,﹣3a+1),点C′的坐标为(3,3a﹣2),∴BC=|3a﹣2﹣(﹣3a+1)|=|6a﹣3|,BB′=3﹣1=2.∵四边形BB′C′C的邻边之比为1:2,∴BC=2BB′或BB′=2BC,即|6a﹣3|=2×2或2=2|6a﹣3|,解得:a1=﹣,a2=,a3=,a4=,∴a的值为﹣、、或.4.解:(1)由已知一次函数y=ax﹣2的伴随函数为y=∵M(3,6)∴代入y=ax﹣3,得6=3a﹣3∴a=3(2)由已知二次函数y=﹣x2+4x﹣3的伴随函数为y=①当m<0时,代入y=﹣x2+4x﹣2,得﹣3=﹣m2+4m﹣2解得m1=2+(舍去),m2=2﹣当m≥0时,代入y=﹣x2+4x﹣2,得﹣3=﹣m2+4m﹣4解得m3=2+m3=2﹣故m的值为2﹣、2+或2﹣②当3≥x≥0时,抛物线y=﹣x2+4x﹣4的顶点为最高点∴函数最大值为0当∵a=﹣1∴抛物线开口向下∴当﹣2≤x<0时,x=﹣2函数有最小值为﹣(﹣2)2+4×(﹣2)﹣2=﹣14(3)3<n<6或0<n<1或﹣4<n<﹣2理由:由已知二次函数y=﹣x2+4x+n的伴随函数为y=设AB边、DC边与y轴交点为分别为F、E则E点坐标为(0,2),F点坐标为(0,﹣1)①若y=﹣x2+4x+n+1过点D,则代入D(﹣1,2)求得n=6,则x≥0时,y=﹣x2+4x+n﹣1=﹣x2+4x+5与y轴交点为(0,5)此时二次函数y=﹣x2+4x+n的伴随函数与正方形ABCD有一个交点②若y=﹣x2+4x+n+1过点A,则代入A(﹣1,﹣1)可求得n=3,则x≥0时,y=﹣x2+4x+n﹣1=﹣x2+4x+2与y轴交点为(0,2)则此时二次函数y=﹣x2+4x+n的伴随函数与正方形ABCD有3个交点③若y=﹣x2+4x+n+1过点E(0,2),则代入E(0,2)则n=1,则x≥0时,y=﹣x2+4x+n﹣1=﹣x2+4x与y轴交点为(0,0)则此时,此时二次函数y=﹣x2+4x+n的伴随函数与正方形ABCD有3个交点④若y=﹣x2+4x+n﹣1过点F(0,﹣1),则代入F(0,﹣1)则n=0,则x<0时,y=﹣x2+4x+n+1=﹣x2+4x+1与y轴交点为(0,1)则此时二次函数y=﹣x2+4x+n的伴随函数与正方形ABCD有3个交点⑤若y=﹣x2+4x+n+1过点F(0,﹣1),则代入F(0,﹣1)则n=﹣2,则y=﹣x2+4x+n﹣1=﹣x2+4x﹣3与y轴交点为(0,﹣3)则此时二次函数y=﹣x2+4x+n的伴随函数与正方形ABCD有3个交点⑥若y=﹣x2+4x+n﹣1过点B(2,﹣1),则代入B(2,﹣1)则n=﹣4则x<0时,y=﹣x2+4x+n+1=﹣x2+4x﹣3y轴交点为(0,﹣3)则此时二次函数y=﹣x2+4x+n的伴随函数与正方形ABCD有1交点综上所述,正方形ABCD与二次函数y=﹣x2+4x+n的伴随函数的图象有两个公共点时的n取值范围为3<n<6或0<n≤1或﹣4<n≤﹣25.解:(1)y=x2﹣4x+3是友好函数,理由如下:当x=0时,y=3;当y=0时,x=1或3,∴y=x2﹣4x+3与x轴一个交点的横坐标和与y轴交点的纵坐标都是3,∴y=x2﹣4x+3是友好函数;(2)当x=0时,y=c,即与y轴交点的纵坐标为c,∵y=x2+bx+c是友好函数,∴x=c时,y=0,即(c,0)在y=x2+bx+c上,代入得:0=c2+bc+c,∴0=c(c+b+1),而c≠0,∴b+c=﹣1;(3)①如图1,当C在y轴负半轴上时,由(2)可得:c=﹣b﹣1,即y=x2+bx﹣b﹣1,显然当x=1时,y=0,即与x轴的一个交点为(1,0),则∠ACO=45°,∴只需满足∠BCO<45°,即BO<CO∴c<﹣1;②如图2,当C在y轴正半轴上,且A与B不重合时,∴显然都满足∠ACB为锐角,∴c>0,且c≠1;③当C与原点重合时,不符合题意,综上所述,c<﹣1或c>0,且c≠1.6.解:(1)①根据限变点的定义可知点点(﹣,1)的限变点的坐标为(﹣,﹣1);故答案是:(﹣,﹣1);②(﹣1,﹣2)限变点为(﹣1,2),即这个点是点A.故答案是:A;(2)依题意,y=﹣x+3(x≥﹣2)图象上的点P的限变点Q必在函数y =的图象上.当x=﹣2时,y=﹣2﹣3=﹣5,当x=1时,y=﹣1+3=2,当x=6时,y=﹣6+3=﹣3,∴当﹣2≤x≤6时,﹣5≤b′≤2;(3)∵y=x2﹣2tx+t2+t=(x﹣t)2+t,∴顶点坐标为(t,t).若t<1,b′的取值范围是b′≥m或b′<n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于﹣[(1﹣t)2+t],即n=﹣[(1﹣t)2+t].∴s=m﹣n=t+(1﹣t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1),当t=1时,s取最小值2,∴s的取值范围是s≥2.第11页(共11页)。
初中数学精品教案: 新定义函数类问题》微设计

《新定义函数类问题》微设计学习目标:1.体会新定义函数问题研究的基本方法:阅读-理解-辨析-应用;2.巩固二次函数的顶点式,交点式,对称性以及图象的平移等核心知识,尝试与其它几何图形的综合应用;3.体会函数建模、几何直观和数形结合等数学思想方法.学习重点:掌握研究新定义函数问题研究的基本方法,巩固函数的相关知识.学习难点:对新定义的阅读-理解-辨析-应用的过程.教学过程:一、认识问题例1.如果二次函数的二次项系数为1,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[-2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,-1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?分析:阅读题意可知,特征数[p,q] 中的p,q分别是二次函数的一次项系数和常数项,且二次项系数为1,所以已知“特征数”就确定二次函数的解析式,已知解析式同样也就有了相应的“特征数”,要研究二次函数的平移问题,只需化为顶点式即可.xyA BD CO xyA BD CO 练1.定义{a ,b ,c }为函数y =ax 2+bx +c 的“特征数”.如:函数y =x 2-2x +3的“特征数”是{1,-2,3},函数y =2x +3的“特征数”是{0,2,3},函数y =-x 的“特征数”是{0,-1,0}(1)将“特征数”是30,,13⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的函数图象向下平移2个单位,得到一个新函数,这个新函数的解析式是 ;(2)在(1)中,平移前后的两个函数分别与y 轴交于A 、B 两点,与直线3x =分别交于D 、C 两点,判断以A 、B 、C 、D 四点为顶点的四边形形状,请说明理由并计算其周长;(3)若(2)中的四边形与“特征数”是211,2,2b b ⎧⎫-+⎨⎬⎩⎭的函数图象的有交点,求满足条件的实数b 的取值范围.分析:(1)根据函数“特征数”写出函数的解析式,再根据平移后一次函数的变化情况写出函数图象向下平移2个单位的新函数的解析式.(2)判断以A 、B 、C 、D 四点为顶点的四边形形状,可根据一次函数图象向下平移2个单位与原函数图象的关系,得出AB =2,并确定为平行四边形,由直线相交计算交点坐标后,求出线段BC =2,再根据菱形的判定(邻边相等的平行四边形是菱形)得出,其周长=2×4=8;(3)根据函数“特征数”写出二次函数的解析式,化为顶点式为y =(x -b )2+21,确定二次函数的图象不会经过点B 和点C ,再将菱形顶点A (0,1),D ()2,3代入二次函数解析式得出实数b 的取值范围.解析:(1)y =313x -,“特征数”是3013,,⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的函数,即y =313x +, 该函数图象向下平移2个单位,得y =313x -.(2)由题意可知y =313x +向下平移两个单位得y =313x - ∴AD ∥BC ,AB =2.∵3x =,∴AB ∥C D .∴四边形ABCD 为平行四边形.3313x y x ⎧=⎪⎨=-⎪⎩,得C 点坐标为(3,0),∴D (3,2) 由勾股定理可得BC =2,∵四边形ABCD 为平行四边形,AB =2,BC =2∴四边形ABCD 为菱形.∴周长为8. 所以二次函数的图象不会经过点B 和点C . 设二次函数的图象与四边形有公共部分,当二次函数的图象经过点A 时,将A (0,1),代入二次函数, 2),代入二次函数, 二、问题拓展分析:本题(1)可以取任意一个确定的m 的值都可以得到一对对应的兄弟抛物线,第(2) ①对照兄弟抛物线的定义即可求b ,第(2) ② 则可以通过图象数学结合的进行分析求解. 解答:(1)当m =0时,得到一对兄弟抛物线, y =x (x +1)与y =x (x -1); (2)①y =x 2-x =x (x -1).情况一:若y =x (x -1)是形如y =(x -m )(x -m +1),则m =1,则另一个函数为y =(x -1)(x -2),即y =x 2-3x +2,b =3.情况二:若y =x (x -1)是形如y =(x -m )(x -m -1),则m =0,则另一个函数为y =x (x +1),即y =x 2+x ,与已知矛盾. 综上,所以b =3.②y =x 2-3x +2的图象可以看作是由y =x 2-x 的图象向右平移1个单位得到,如图. 如果k >0,则点A 与点B 是平移对应点,AB =1, ∵点B ,点C 为线段AD 三等分点, ∴AB =BC =CD =13AD =1,即BC =1;如果k <0,则点A 与点C 是平移对应点,AC =1,∵点B ,点C 为线段AD 三等分点,∴AB =BC =12AC =12,即BC =12.故线段BC 的长为1或12.练2.在平面直角坐标系xOy 中,给出如下定义:形如y =a (x -m )2+a (x -m )与y =a (x -m )2-a (x -m )的两个二次函数的图象叫做“姐妹抛物线”. (1)试写出一对姐妹抛物线的解析式;(2)判断二次函数y =x 2-x 与y =x 2-3x +2的图象是否为姐妹抛物线,如果是,求出a 与m 的值,如果不是,请说明理由;(3)若一对姐妹抛物线各自与x 轴的两个交点和其顶点构成直角三角形,其中一个抛物线的对称轴为直线2x =且开口向上,请直接写出这对姐妹抛物线的解析式.分析:本题为例2的练习题,提取公因式后即转化为例2形式,所以解答的方法与例2相似,第(3)问则根据抛物线的对称性结合直角三角形,易得为等腰直角三角形,从而得顶点坐标,进而得解.解答:(1)不妨令a =1,m =1,则得此时的兄弟抛物线为: y = (x -1)2+ (x -1)=x 2-x 与y = (x -1)2-(x -1)=x 2-3x +2. (2)由(1)可知a =1,m =1. 当然也可以将两个二次函数分别化为:y =x 2-x = (x -1)2+ (x -1) ,y =x 2-3x +2= (x -1)2-(x -1) ,所以a =1,m =1. (3)y =a (x -m )2+a (x -m )可化为y =a (x -m ) (x -m +1); y =a (x -m )2-a (x -m ) 可化为y =a (x -m ) (x -m -1), 不妨令y =a (x -m ) (x -m +1)的对称轴为直线2x =, 所以m +m -12=2,所以m =52,所以y =a (x -52 ) (x -32 ),又抛物线与x 轴的两个交点和其顶点构成直角三角形,所以顶点为(2,-12),将顶点代人抛物线得a =2,所以y =2(x -52 ) (x -32),当m =52时得姐妹抛物线为y =2(x -52) (x - 72 ),当m =32 时得姐妹抛物线为y =2(x -32) (x - 12 ).三、感悟提升。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与函数有关的“新定义问题”
解决有关函数的“新定义问题”,可以很好的考查李生综合应用知识和对知识的迁移能力,近年来各地的中考试题多有涉及.现以2015年中考题为例加以分析.
一、定义新点
例1 在直角坐标系中,我们不妨将横坐标、纵坐标均为整数的点称之为“中国结”
(1)
求函数2y =+的图象上所有“中国结”的坐标;
(2)若k y x
=(0,k k ≠为常数)的图象上有且只有两个“中国结”,试求出常数k 的值与相应“中国结”的坐标;
(3)若二次函数2222(32)(241)y k k x k k x k k =-++-++-(k 为常数)的图象与x 轴相交得到两个不同的“中国结”,试问该函数的图象与x 轴所围成的平面图形中(含边界),一共包含有多少个“中国结”?
分析与解答 该题涉及到一次、二次函效及反比例函数图象的性质,解决方式是数形结合思想和分类讨论思想.具体解答如下:
(1)由于x 的系数是一个无理数,要满足条件,x 只能是0,2y =,
故函数2y +的图象上所有“中国结”的坐标是(0,2).
(2)分类讨论:
①当1k =时,1xy =,故满足条件的答案是(1,1)、(-1, -1);
②当1k =-时,1xy =-,故满足条件的答案是(-1,1)、(1,-1);
③当1k ≠±时,如2k =,图象上的“中国结”个数明显地超过2个,有(1,2)、(2,1)、(-1,-2)、(-2,-1),以此类推,当1k ≠±时,“中国结”的个数多于2个.
(3)不妨令2222(32)(241)0k k x k k x k k -++-++-=, 解得11k x k =-
-, ① 212k x k -=-- . ② 由①②得,12
122111
x x x x +=++, 整理,得21(2)1x x +=-. 因为11-=⨯(-1)=-1⨯1,故得到关于1x 、2x 的方程组:
21x =, 或
21x =-,
121x +=-; 121x +=.
解之得 13x =-, 或 11x =-,
21x =; 21x =-.
又抛物线与x 轴相交,且有两个交点,可得12x x ≠,故舍去 11x =-,
21x =-.
当13x =-,时,y 的值为0;
当21x =时,y 的值为0,
∴(-3,0)、(1,0).
当11k x k =--,求得 1.5k =,此时二次函数的解析式为1(3)(1)4
y x x =-+-. 当2x =-时,0.75y =不是整数;
当1x =-,1y =,坐标(-1,1)为“中国结”;
当0,0.75x y ==,不是整数.
故当 1.5k =时,抛物线与x 轴所围成的平面图形中(含边界),一共包含三个“中国结”,即(-3,0)、(-1,1)、(1,0).
二、定义新数
例2 如果把一个自然数各数位上的数字从最高位到个位依次排出的一串数字,与从个位到最高位依次排出的一串数字完全相同,那么我们把这样的自然数称为“和谐数”.例如自然数12321,从最高位到个位依次排出的一串数字是:1,2,3,2,1,从个位到最高位依次排出的一串数字仍是:1,2,3,2,1,因此12321是一个“和谐数”. 再如22,545,3883,345543,…都是“和谐数”.
(1)请你直接写出3个四位“和谐数”;请你猜想任意一个四位“和谐数”能否被11整 除?并说明理由;
(2)已知一个能被11整除的三位“和谐数”,设其个位上的数字为(14,x x x ≤≤为自然数),十位上的数字为y .求y 与x 的函数关系式.
分析与解答 该题涉及到因式分解、规律探索等问题.具体解答如下:
(1)答案不唯一:如1441,2442,1881,它们能被11整除,理由如下:
不妨设一个四位“和谐数”为xyyx ,用十进制表示为:
1000100100111011(91x
y y x x y x y +-+=+=+. x 、y 是0一9之间的整数,
11(9
110x y ∴+能被11整除; (2)设一个三位“和谐数”为xyx ,用十进制表示为:1001010110x y x x y ++=+.
因为它是11的倍数,故
1011011
x y +一定是整数,将其变形,得 101109911229111111
x y x y x y x y x y +++--==++, 所以x 、y 是0一9之间的整数,故211x y -必须是整数. 又14,x x ≤≤为自然数,09y ≤≤,
228,2x x y ∴≤≤∴-只能是0,不能是11的其他倍数,2y x ∴=,
故y 与x 的函数关系式:2y x =.
三、定义新方程
例3 如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”.以下关于倍根方程的说法,正确的是 (写出所有正确说法的序号)
(1)方程220x x --=是倍根方程;
(2)若(2)()0x mx n -+=是倍根方程,则22450m mn n ++=;
(3)若点(,p q )在反比例函数2y x
=
的图象上,则关于x 的方程230px x q ++=是倍根方程;
(4)若方程20ax bx c ++=是倍根方程,且相异两点(1,),(4,)M t s N t s +-都在抛物线2y ax bx c =++上,则方程20ax bx c ++=的一个根为54
. 分析与解答 该题涉及到的内容有:根的判别式、根与系数的关系、抛物线和双曲线上点的坐标特点.具体解答如下:
(1)方程220x x --=的两个根是121,2x x =-=.不满足倍根方程的条件,故①不正确.
(2)解得(2)()0x mx n -+=的两个根是122,n x x m ==-
. 根据倍根方程的定义,知21n x m =-=,或24n x m
=-=,得0,m n +=① 40m n +=.② ①×②, 得22()(4)450m n m n m mn n ++=++=正确.
(3)因为点(,)p q 在反比例函数2y x =
的图象上,所以pq =2.方程230px x q ++= 的两个根是1212,x x p p =-
=-,故正确. (4)方程20ax bx c ++=是倍根方程,122x x ∴=.
又相异两点(1,),(4,)M t s N t s +-都在抛物线2y ax bx c =++上,
∴得到抛物线的对称轴是12145222x x t t x +++-=
==. 从而得,153
x =,故不正确. 综上可知,应填的答案是(2) (3).
四、定义新函数
例 4 定义:给定关于x 的函数y ,对于该函数图象上任意两点1122(,)(,)x y x y ,当12x x <时,都有12y y <,称该函数为增函数.根据以上定义,可以判断下面所给的函数. 中,是增函数的有 .(填上所有答案的序号).
(1) 2y x =; (2) 1y x =-+; (3) 2(0)y x x =>; (4) 1y x
=-. 分析与解答 该题虽然内容少,却涉及到初中所学的所有的基本函数,包括一次函数、反比例函数和二次函数的图象和性质.依据增函数的定义,可以利用举例子或结合图象得到符合条件的答案.
(1)在2y x =中,因为20k =>,y 随x 的增大而增大,是增函数;
(2)在1y x =-+中,因为20k =-<,y 随x 的增大而减小,不是增函数;
(3)在2y x =中,当0x >,y 随x 的增大而增大,是增函数;
(4)在1y x =-
中,在每一象限内,y 随x 的增大而增大,不是增函数. 故填(1)(3).。