2020年九年级数学中考二轮专项——新定义类问题(含答案)

合集下载

2020中考复习——新定义问题专题训练(四)(有答案)

2020中考复习——新定义问题专题训练(四)(有答案)
4 / 13
知识像烛光,能照亮一个人,也能照亮无数的人。--培根
22. 阅读理解:若 A、B、C 为数轴上三点,若点 C 到 A 的距离是点 C 到 B 的距离 2 倍,
我们就称点 C 是【A,B】的 好点. 例如,如图 1,点 A 表示的数为−1,点 B 表示的数为 2.表示 1 的点 C 到点 A 的距 离是 2,到点 B 的距离是 1,那么点 C 是【A,B】的好点;又如,表示 0 的点 D 到点 A 的距离是 1,到点 B 的距离是 2,那么点 D 就 不是【A,B】的好点,但点 D 是【B、A】的好点. 知识运用: (1)如图 1,点 B 是【D,C】的好点吗?_________(填是或不是);
B. 6
C. 8
2. 若定义新运算 ∗ = 2 − 3 ,则 4 ∗ 1 的值是:
D. −6
A. 5
B. 7
C. 13
D. 15
3. 已知 a,b 为有理数,定义一种运算: ★ = 2 − 3 ,若(5 − 3)★(1 − 3 ) = 29, 则 x 的值为 ( )
A. 2
B. 3
C. 4
D. 5
4. 我们约定 ⊕ = 10 × 10 ,如 2 ⊕ 3 = 102 × 103 = 105,那么 3 ⊕ 8 为( )
=± 2, 1 = 2, 2 =− 2,
7. D
解:根据题中的新定义化简得:2 × 8 + 2 =− (3 + 2) − 6 × 7, 整理得:2 + 3 =− 60, 合并同类项,得:5 =− 60, 系数化为 1,得: =− 12,
8. B
解:结合图象可得[ ]可能为 0 或 1 或 2,
由1
3
答案和解析

2020年九年级数学中考二轮专项——新定义类问题(含答案)

2020年九年级数学中考二轮专项——新定义类问题(含答案)

2020年中考数学二轮专项——新定义类问题1. (2019湘西州)阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a → ∥b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(4,3),b →=(8,m ),且a →∥b →,则m =________.2. (2019株洲改编)从-1,1,2,4四个数中任取两个不同的数(记作a k ,b k )构成一个数组M k ={a k ,b k }(其中k =1,2,…,S ,且将{a k ,b k }与{b k ,a k }视为同一个数组),若满足:对于任意的M i ={a i ,b i }和M j ={a j ,b j }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有a i +b i ≠a j +b j ,则S 的最大值为________.3. (2019成华区二诊)对于实数a ,b ,定义运算“※”如下:a ※b =a 2-ab .例如:5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为________.4. (2019武侯区二诊)定义[x ]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[-135]=-3,[-7]=-7.若规定:对于实数m ,f (m )=[2-m 3]-[m 5],例如:f (7)=[2-73]-[75]=[-53]-[75]=-2-1=-3.则f (-6)=______.5.(2019锦江区一诊)新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”.若“图象数”是[m -1,m -2,m -3]的二次函数的图象经过原点,则m =________.6. (2018成都黑白卷)对于两个不相等的实数a 、b ,定义一种新的运算:a @b =ab a +b ,如6@15=6×156+15=31021=107.已知m ,n 是一元二次方程x 2-21x +7=0的两个不相等的实数根,则[(m +n )@mn ]@3=________.7. (2019甘肃省卷)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k =________.8. 定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰方程”.已知ax 2+bx +c =0(a ≠0)是“凤凰方程”,且有两个相等的实数根,则a 与c 的关系是____________.9. (2019贵港)我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,且b 2-4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2-2x -3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当-1≤x ≤1或x ≥3时,函数值y 随x 的增大而增大;④当x =-1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4.其中正确结论的个数是____________.第9题图10. (2019都江堰区一诊)定义:平面直角坐标系中,若抛物线y =ax 2上的两点A 、B 满足OA =OB ,且tan ∠OAB =12,那么我们就称线段AB 为该抛物线的“通径”,抛物线y =12x 2的“通径”长为________. 11. (2016成都B 卷24题)实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别是A ,N ,M ,B (如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________.第11题图12. (2017成都黑白卷)定义1:在△ABC 中,若顶点A ,B ,C 按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A ,B ,C 按顺时针方向排列,则规定它的面积的相反数为△ABC 的“有向面积”.“有向面积”用S 表示,例如图①中,S △ABC =S △ABC ,图②中,S △ABC =-S △AB C .定义2:在平面内任取一个△ABC 和点P (点P 不在△ABC 的三边所在直线上),称有序数组(S △PBC ,S △PCA ,S △P AB )为点P 关于△ABC 的“面积坐标”,记作P (S △PBC ,S △PCA ,S △P AB ),例如图③中,菱形ABCD 的边长为2,∠ABC =60°,则S △ABC =3,点D 关于△ABC 的“面积坐标”D (S △DBC ,S △DCA ,S △DAB )为D (3,-3,3).在图③中,我们知道S △ABC =S △DBC +S △DAB -S △DCA ,利用“有向面积”,我们也可以把上式表示为:S △ABC =S △DBC +S △DAB +S △DC A .应用新知:如图④,正方形ABCD 的边长为1,点D 关于△ABC 的“面积坐标”是________________.第12题图13. (2017成都B 卷24题)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =k x 的图象上,若AB =22,则k =________.14. (2019双流区一诊)若实数m ,n 满足m +n =3mn ,且n ≠0时,就称点P (m ,m n)为“完美点”,若反比例函数y =k x 的图象上存在两个“完美点”A ,B ,且AB =83,则k 的值为________. 15. (2019成都B 卷25题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为________.第15题图16. (2015成都B 卷25题) 如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 以下关于倍根方程的说法,正确的是________(写出所有正确说法的序号).① 方程x 2-x -2=0是倍根方程;② 若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0;③ 若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④ 若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54. 17. (2018成都黑白卷)在边长为1的小正方形组成的方格纸中,每个小正方形的顶点称为“格点”.从一个格点移动到与之相距5的另一个格点的运动称为一次“跳马变换”.例如,在3×3的正方形网格图形中(如图①),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有25×25的正方形网格图形(如图②),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要“跳马变换”________次.第17题图18. (2014成都B 卷23题)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S ,其内部的格点数记数为N ,边界上的格点数记为L .例如,图中三角形ABC 是格点三角形,其中S =2,N =0,L =6;图中格点多边形DEFGHI 所对应的S ,N ,L 分别是________.经探究发现,任意格点多边形的面积S 可表示为S =aN +bL +c ,其中a ,b ,c 为常数,则当N =5,L =14时,S =________(用数值作答).第18题图19. (2019高新区二诊)规定:经过三角形的一个顶点且将三角形的周长分为相等的两部分的直线叫做该三角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”.Rt△ABC中,∠C=90°,AC=4,BC=3,若直线l为△ABC的“等周线”,则△ABC 的所有“等周径”长为________.参考答案1. 6 【解析】a →=(4,3),b →=(8,m ),且a →∥b →,∴4m =24,∴m =6.2. 5 【解析】假设M 1={-1,1},M 2={-1,2},M 3={-1,4},M 4={1,2},M 5={1,4},M 6={2,4},∵-1+1=0,-1+2=1,-1+4=3,1+2=3,1+4=5,2+4=6,∴a i +b i 共有5个不同的值.∵M 3=M 4,∴舍去M 3或M 4.可得S 的最大值为5.3. 1 【解析】由题意得,(x +1)2-(x +1)(x -2)=6,整理得,3x +3=6,解得x =1.4. 4 【解析】根据题意可得,f (-6)=[2+63]-[-65]=[83]-[-65]=2-(-2)=4. 5. 3 【解析】根据题意得y =(m -1)x 2+(m -2)x +m -3,把(0,0)代入得m -3=0,解得m =3. 6. 25【解析】∵m ,n 是一元二次方程x 2-21x +7=0的两个不相等的实数根,∴m +n =21,mn =7.∵a @b =ab a +b ,∴[(m +n )@mn ]@3=(21@7)@3=21×721+7@3=34@3=34×334+3=25. 7. 85或14 【解析】当∠A 为顶角时,则底角∠B =∠C =12(180°-∠A )=50°,此时的特征值k =80°50°=85;当∠A 为底角时,则顶角(∠B 或∠C )=180°-2∠A =20°,此时的特征值k =20°80°=14.综上所述,k 为85或14. 8. a =c 【解析】∵一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴b 2-4ac =0,又∵a +b +c =0,∴将b =-a -c 代入b 2-4ac =0得,(-a -c )2-4ac =0,即(a +c )2-4ac =a 2+2ac +c 2-4ac =a 2-2ac +c 2=(a -c )2=0,∴a =c .9. 4 【解析】当x 2-2x -3=0时,解得x 1=-1,x 2=3,∴图象与x 轴的交点坐标为(-1,0),(3,0),当x =0时y =|-3|=3,∴与y 轴的交点坐标为(0,3),故①正确;∵当x =1-t 时,y =|(1-t )2-2(1-t )-3|=|1-2t +t 2-2+2t -3|=|t 2-4|,当x =1+t 时,y =|(1+t )2-2(1+t )-3|=|1+2t +t 2-2-2t -3|=|t 2-4|,∴当x =1-t 和x =1+t 时,对应的函数值相同,即函数图象关于直线x =1对称,故②正确;由图象可知,当-1≤x ≤1或当x ≥3时,y 随x 的增大而增大,故③正确;∵由图象可知,当x =-1或x =3时,y =0,且是函数的最小值,故④正确;由图象可知,函数无最大值,故⑤错误.综上可知,正确结论的个数是4.10. 2 【解析】由题意得,A 、B 两点关于y 轴对称,设点A 位于第二象限,点A 的坐标为(-2a ,a ),则a =12×(-2a )2,解得a =0(舍去)或a =12,∴点A 的横坐标是-1,则点B 的横坐标是1,∴AB =1-(-1)=2.11. 25-4 【解析】设AN =y ,MN =x ,由题意可知AM 2=BM ·AB ,∴(x +y )2=2(2-x -y ),解得x +y =5-1(负值已舍去);又∵BN 2=AN ·AB ,∴(2-y )2=2y ,解得y =3+5(舍去)或y =3- 5.∴x =x +y -y =25-4.∴m -n =MN =x =25-4.12 . (12,-12,12) 【解析】依题意得S △ABC =S △ABC =12×1×1=12,则点D 关于△ABC 的“面积坐标”D (S △DBC ,S △DCA ,S △DAB )为(12,-12,12). 13. -43【解析】设A 、B 的坐标分别为A (a ,-a +1),B (b ,-b +1),∵AB =22,∴(a -b )2+(-a +1+b -1)2=(22)2,∴a -b =±2,由倒影点的定义得A ′(1a ,11-a ),B ′(1b ,11-b),又∵A ′、B ′都在反比例函数y =k x 的图象上,∴k =1a (1-a )=1b (1-b ),则a (1-a )=b (1-b ),整理得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0,即a +b =1,解方程组⎩⎪⎨⎪⎧a +b =1a -b =2或⎩⎪⎨⎪⎧a +b =1a -b =-2,得⎩⎨⎧a =32b =-12或⎩⎨⎧a =-12b =32,∴k =1a (1-a )=-43. 14. 13336 【解析】∵m +n =3mn 且n ≠0,∴m n +1=3m ,即m n=3m -1,∴P (m ,3m -1),即“完美点”在直线y =3x -1上,设点A 、B 坐标分别为(x 1,y 1),(x 2,y 2),令k x=3x -1,化简得3x 2-x -k =0,∵AB =83,∴|x 1-x 2|=43,由韦达定理x 1+x 2=33,x 1x 2=-33k ,∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=169,∴13+433k =169,解得k =13336. 15. 4或5或6 【解析】如解图,∵S △AOB =12OA ·y B =12×5·y B =152,∴y B =3.∴点B 在直线y =3上,设AB 与直线y =2交于点D ,与直线y =1交于点F ,OB 与直线y =2交于点C ,与直线y =1交于点E ,则△BCD ∽△BOA ,∴CD OA =13,解得CD =53,∵每两个格点之间的距离为1,∴CD 之间最少有1个格点,最多有2个格点;同理△BEF ∽△BOA ,∴EF OA =23,解得EF =103>3,∴EF 之间最少有3个格点,最多有4个格点,则△OAB 内的格点数可能有1+3=4或1+4=5或2+3=5或2+4=6,即△AOB 内的格点数可能是4或5或6个.第15题解图16. ②③ 【解析】逐个结论分析如下:序号 逐个分析 正误① 方程x 2-x -2=0的两个根是x 1=2,x 2=-1,x 1≠2x 2,不符合题意② 倍根方程的两个根是x 1=2,x 2=-n m ,则2=-2n m ,得n =-m ;或者-n m=4,得n =-4m ,将以上两式分别代入4m 2+5mn +n 2,结果均为0,符合题意√③ ∵点(p ,q )在反比例函数y =2x 的图象上,∴q =2p ,将其代入px 2+3x +q =0中,整理得2x 2+3qx +q 2=0,解得x 1=-q ,x 2=-q 2,∴x 1=2x 2,符合题意√④ 根据抛物线经过点M ,N ,且点M ,N 纵坐标相同,则该抛物线的对称轴为直线x =1+t +4-t 2=2.5,设方程ax 2+bx +c =0的两个根为x 1,x 2,根据题意,得x 1=2x 2或2x 1=x 2,则x 1+x 22=2.5,解得x 1=103,x 2=53或x 1=53,x 2=103,不符合题意17. 18 【解析】如解图①,连接AC ,CF ,则AF =32,∴两次变换相当于向右移动3格,向上移动3格,又∵MN =252,252÷32=253(不是整数),∴按A -C -F 的方向连续变换14次后,相当于向右移动了14÷2×3=21格,向上移动了14÷2×3=21格,此时M 位于如图所示的4×4的正方形网格的点G 处,再按解图②所示的方式变换4次即可到达点N 处,∴从该正方形的顶点M 经过“跳马变换”到达与其相对的顶点N ,最少需要“跳马变换”的次数是14+4=18次.第17题解图18. 7,3,10;11 【解析】由定义结合题图,易得格点多边形DEFGHI 内部格点数N 有3个,边界格点数L 有10个,把多边形DEFGHI 分割为△DEF 、△DFI 、正方形FGHI ,易计算其面积分别为1,2,4,∴格点多边形DEFGHI 的面积为1+2+4=7;由题中所给格点多边形的表达式S =aN +bL +c 中a ,b ,c 为常数,想到如果得到a ,b ,c 的值即可解决题中问题,构造一个特殊的多边形,即面积为1的格点正方形,其S ,N ,L 分别为1,0,4,结合S =2,N =0,L =6;S =7,N =3,L =10两个图形可列方程组为⎩⎪⎨⎪⎧1=4b +c 2=6b +c 7=3a +10b +c ,解得⎩⎪⎨⎪⎧a =1b =12c =-1,∴S =N +12L -1,∴当N =5,L =14时,S =5+12×14-1=11. 19.25或32或655 【解析】当AD 为△ABC 的等周线时,如解图①,设CD =x ,则BD =3-x ,根据题意可得4+x =5+3-x ,解得x =2,在Rt △ACD 中,AD =42+22=25;当BD 为△ABC 的等周线时,如解图②,设CD =x ,则AD =4-x ,根据题意可得3+x =5+4-x ,解得x =3,在Rt △BCD 中,BD =32+32=32;当CD 为△ABC 的等周线时,如解图③,设AD =x ,则BD =5-x ,根据题意可得4+x=3+5-x ,解得x =2,则AD =2,BD =3,过点C 作CN ⊥AB 于点N ,则12AC ·BC =12AB ·CN ,可得CN =125,在Rt △BCN 中,BN =32-(125)2=95,∴ND =BD -BN =3-95=65,在Rt △CND 中,CD =(125)2+(65)2=655.综上所述,△ABC 的所有“等周径”长为25或32或655.第19题解图。

2020北京市中考数学新定义问题专题练习(含答案)

2020北京市中考数学新定义问题专题练习(含答案)

专题突破(十) 新定义问题新定义题型的构造注重学生数学思考的过程及不同认知阶段特征的表现.其内部逻辑构造呈现出比较严谨、整体性强的特点.其问题模型可以表示为阅读材料、研究对象、给出条件、需要完成认识.而规律探究、方法运用、学习策略等则是“条件”隐形存在的“魂”.这种新定义问题虽然在构造方式上“五花八门”,但是经过整理也能发现它们存在着一定的规律.新定义题型是北京中考最后一题的热点题型.“该类题从题型上看,有展示全貌,留空补缺的;有说明解题理由的;有要求归纳规律再解决问题的;有理解新概念再解决新问题的,等等.这类试题不来源于课本且高于课本,结构独特.1.[2015·北京] 在平面直角坐标系xOy 中,⊙C 的半径为r ,P 是与圆心C 不重合的点,点P 关于⊙O 的反称点的定义如下:若在射线..CP 上存在一点P ′,满足CP +CP ′=2r ,则称P ′为点P 关于⊙C 的反称点,如图Z10-1为点P 及其关于⊙C 的反称点P ′的示意图.(1)当⊙O 的半径为1时.①分别判断点M (2,1),N (32,0),T (1,3)关于⊙O 的反称点是否存在,若存在,求其坐标;②点P 在直线y =-x +2上,若点P 关于⊙O 的反称点P ′存在,且点P ′不在x 轴上,求点P 的横坐标的取值范围.(2)当⊙C 的圆心在x 轴上,且半径为1,直线y =-33x +2 3与x 轴、y 轴分别交于点A ,B.若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,求圆心C 的横坐标的取值范围.图Z10-12.[2014·北京] 对某一个函数给出如下定义:若存在实数M >0,对于任意的函数值y ,都满足-M ≤y ≤M ,则称这个函数是有界函数.在所有满足条件的M 中,其最小值称为这个函数的边界值.例如,图Z10-2中的函数是有界函数,其边界值是1.(1)分别判断函数y =1x (x >0)和y =x +1(-4<x ≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y =-x +1(a ≤x ≤b ,b >a )的边界值是2,且这个函数的最大值也是2,求b 的取值范围;(3)将函数y =x 2(-1≤x ≤m ,m ≥0)的图象向下平移m 个单位长度,得到的函数的边界值是t ,当m 在什么范围时,满足34≤t ≤1?图Z10-23.[2013·北京] 对于平面直角坐标系xOy 中的点P 和⊙C ,给出如下定义:若⊙C 上存在两个点A ,B ,使得∠APB =60°,则称P 为⊙C 的关联点.已知点D (12,12),E (0,-2),F (2 3,0).(1)当⊙O 的半径为1时,①在点D ,E ,F 中,⊙O 的关联点是________; ②过点F 作直线l 交y 轴正半轴于点G ,使∠GFO =30°,若直线l 上的点P (m ,n )是⊙O 的关联点,求m 的取值范围;(2)若线段EF 上的所有点都是某个圆的关联点,求这个圆的半径r 的取值范围.图Z10-34.[2012·北京] 在平面直角坐标系xOy 中,对于任意两点P 1(x 1,y 1)与P 2(x 2,y 2)的“非常距离”,给出如下定义:若|x 1-x 2|≥|y 1-y 2|,则点P 1与点P 2的“非常距离”为|x 1-x 2|; 若|x 1-x 2|<|y 1-y 2|,则点P 1与点P 2的“非常距离”为|y 1-y 2|.例如:点P 1(1,2),点P 2(3,5),因为|1-3|<|2-5|,所以点P 1与点P 2的“非常距离”为|2-5|=3,也就是图Z10-4(a)中线段P 1Q 与线段P 2Q 长度的较大值(点Q 为垂直于y 轴的直线P 1Q 与垂直于x 轴的直线P 2Q 的交点).(1)已知点A (-12,0),B 为y 轴上的一个动点.①若点A 与点B 的“非常距离”为2,写出一个满足条件的点B 的坐标; ②直接写出点A 与点B 的“非常距离”的最小值. (2)已知C 是直线y =34x +3上的一个动点,①如图(b),点D 的坐标是(0,1),求点C 与点D 的“非常距离”的最小值及相应的点C 的坐标.②如图(c),E 是以原点O 为圆心,1为半径的圆上的一个动点,求点C 与点E 的“非常距离”的最小值及相应的点E 和点C 的坐标.图Z10-41.[2015·平谷一模] b 是任意两个不等实数,我们规定:满足不等式a ≤x ≤b 的实数x 的所有取值的全体叫做闭区间,表示为[a ,b ].对于一个函数,如果它的自变量x 与函数值y 满足:当m ≤x ≤n 时,有m ≤y ≤n ,我们就称此函数是闭区间[m ,n ]上的“闭函数”.如函数y =-x +4,当x =1时,y =3;当x =3时,y =1,即当1≤x ≤3时,有1≤y ≤3,所以说函数y =-x +4是闭区间[1,3]上的“闭函数”.(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”吗?请判断并说明理由;(2)若二次函数y =x 2-2x -k 是闭区间[1,2]上的“闭函数”,求k 的值;(3)若一次函数y =kx +b (k ≠0)是闭区间[m ,n ]上的“闭函数”,求此函数的解析式(用含m ,n 的代数式表示).2.[2015·东城一模] 定义符号min {}a ,b 的含义为:当a ≥b 时,min {}a ,b =b ;当a <b 时,min {}a ,b =a .如:min {}1,-2=-2,min {}-1,2=-1.(1)求min {}x 2-1,-2;(2)已知min{x 2-2x +k ,-3}=-3,求实数k 的取值范围;(3)已知当-2≤x ≤3时,min{x 2-2x -15,m (x +1)}=x 2-2x -15.直接写出实数m 的取值范围.3.[2015·海淀二模] 如图Z10-5(a ),在平面直角坐标系xOy 中,已知点A (-1,0),B (-1,1),C (1,0),D (1,1),记线段AB 为T 1,线段CD 为T 2,点P 是坐标系内一点.给出如下定义:若存在过点P 的直线l 与T 1,T 2都有公共点,则称点P 是T 1-T 2联络点.例如,点P (0,12)是T 1-T 2联络点.(1)以下各点中,________是T 1-T 2联络点(填出所有正确的序号); ①(0,2);②(-4,2);③(3,2).(2)直接在图(a )中画出所有T 1-T 2联络点所组成的区域,用阴影部分表示.(3)已知点M 在y 轴上,以M 为圆心,r 为半径画圆,⊙M 上只有一个点为T 1-T 2联络点,①若r =1,求点M 的纵坐标; ②求r 的取值范围.图Z10-54.[2015·门头沟一模] 如图Z10-6,在平面直角坐标系xOy 中,抛物线y =ax 2+bx +c (a >0)的顶点为M ,直线y =m 与x 轴平行,且与抛物线交于点A 和点B ,如果△AMB 为等腰直角三角形,我们把抛物线上A 、B 两点之间的部分与线段AB 围成的图形称为该抛物线的准蝶形,顶点M 称为碟顶,线段AB 的长称为碟宽.图Z10-6(1)抛物线y =12x 2的碟宽为________,抛物线y =ax 2(a >0)的碟宽为________.(2)如果抛物线y =a (x -1)2-6a (a >0)的碟宽为6,那么a =________.(3)将抛物线y n =a n x 2+b n x +c n (a n >0)的准蝶形记为F n (n =1,2,3,…),我们定义F 1,F 2,…,F n 为相似准蝶形,相应的碟宽之比即为相似比.如果F n 与F n -1的相似比为12,且F n的碟顶是F n -1的碟宽的中点,现在将(2)中求得的抛物线记为y 1,其对应的准蝶形记为F 1.①求抛物线y 2的函数解析式.②请判断F 1,F 2,…,F n 的碟宽的右端点是否在一条直线上?如果是,直接写出该直线的函数解析式;如果不是,说明理由.图Z10-75.[2015·朝阳一模] 定义:对于平面直角坐标系xOy 中的线段PQ 和点M ,在△MPQ 中,当PQ 边上的高为2时,称M 为PQ 的“等高点”,称此时MP +MQ 为PQ 的“等高距离”.(1)若P (1,2),Q (4,2).①在点A (1,0),B (52,4),C (0,3)中,PQ 的“等高点”是________;②若M (t ,0)为PQ 的“等高点”,求PQ 的“等高距离”的最小值及此时t 的值. (2)若P (0,0),PQ =2,当PQ 的“等高点”在y 轴正半轴上且“等高距离”最小时,直接写出点Q 的坐标.图Z10-86.[2015·通州一模] 如图Z10-9,在平面直角坐标系中,已知点A (2,3),B (6,3),连接A B.若对于平面内一点P ,线段AB 上都存在点Q ,使得PQ ≤1,则称点P 是线段AB 的“邻近点”.(1)判断点D (75,195)是否是线段AB 的“邻近点”.________(填“是”或“否”);(2)若点H (m ,n )在一次函数y =x -1的图象上,且是线段AB 的“邻近点”,求m 的取值范围;(3)若一次函数y =x +b 的图象上至少存在一个邻近点,直接写出b 的取值范围.图Z10-97.[2015·海淀一模] 在平面直角坐标系xOy 中,对于点P (a ,b )和点Q (a ,b ′),给出如下定义:若b ′=⎩⎪⎨⎪⎧b ,a ≥1,-b ,a<1,则称点Q 为点P 的限变点.例如:点()2,3的限变点的坐标是()2,3,点()-2,5的限变点的坐标是()-2,-5.(1)①点()3,1的限变点的坐标是________;②在点A ()-2,-1,B ()-1,2中有一个点是函数y =2x 的图象上某一个点的限变点,这个点是________.(2)若点P 在函数y =-x +3(-2≤x ≤k ,k >-2)的图象上,其限变点Q 的纵坐标b ′的取值范围是-5≤b ′≤2,求k 的取值范围.(3)若点P 在关于x 的二次函数y =x 2-2tx +t 2+t 的图象上,其限变点Q 的纵坐标b ′的取值范围是b ′≥m 或b ′<n ,其中m >n .令s =m -n ,求s 关于t 的函数解析式及s 的取值范围.图Z10-108.[2015·西城一模] 给出如下规定:两个图形G 1和G 2,点P 为G 1上任一点,点Q 为G 2上任一点,如果线段PQ 的长度存在最小值,就称该最小值为两个图形G 1和G 2之间的距离.在平面直角坐标系xOy 中,O 为坐标原点.(1)点A 的坐标为A (1,0),则点B (2,3)和射线OA 之间的距离为________,点C (-2,3)和射线OA 之间的距离为________.(2)如果直线y =x 和双曲线y =kx 之间的距离为2,那么k =________.(可在图Z10-11(a )中进行研究)(3)点E 的坐标为(1,3),将射线OE 绕原点O 逆时针旋转60°,得到射线OF ,在坐标平面内所有和射线OE ,OF 之间的距离相等的点所组成的图形记为图形M .①请在图(b )中画出图形M ,并描述图形M 的组成部分;(若涉及平面中某个区域时可以用阴影表示)②将射线OE ,OF 组成的图形记为图形W ,抛物线y =x 2-2与图形M 的公共部分记为图形N ,请直接写出图形W 和图形N 之间的距离.图Z10-11参考答案1.解:(1)①点M (2,1)关于⊙O 的反称点不存在. 点N (32,0)关于⊙O 的反称点存在,反称点N ′(12,0).点T (1,3)关于⊙O 的反称点存在,反称点T ′(0,0).②如图①,直线y =-x +2与x 轴、y 轴分别交于点E (2,0),点F (0,2).设点P 的横坐标为x .(i )当点P 在线段EF 上,即0≤x ≤2时,0<OP ≤2, ∴在射线OP 上一定存在一点P ′,使得OP +OP ′=2,∴点P 关于⊙O 的反称点存在,其中点P 与点E 或点F 重合时,OP =2,点P 关于⊙O 的反称点为O ,不符合题意,∴0<x <2.(ii )当点P 不在线段EF 上,即x <0或x >2时,OP >2, ∴对于射线OP 上任意一点P ′,总有OP +OP ′>2, ∴点P 关于⊙O 的反称点不存在.综上所述,点P 的横坐标x 的取值范围是0<x <2.(2)若线段AB 上存在点P ,使得点P 关于⊙C 的反称点P ′在⊙C 的内部,则1<CP ≤2.依题意可知点A 的坐标为(6,0),点B 的坐标为(0,2 3),∠BAO =30°. 设圆心C 的坐标为(x ,0).①当x <6时,过点C 作CH ⊥AB 于点H ,如图②,∴0<CH ≤CP ≤2,∴0<CA ≤4, ∴0<6-x ≤4,∴2≤x <6,并且,当2≤x <6时,CB >2,CH ≤2, ∴在线段AB 上一定存在点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴2≤x <6. ②当x ≥6时,如图③.∴0≤CA ≤CP ≤2,∴0≤x -6≤2,∴6≤x ≤8.并且,当6≤x ≤8时,CB >2,CA ≤2,∴在线段AB 上一定存在一点P ,使得CP =2,∴此时点P 关于⊙C 的反称点为C ,且点C 在⊙C 的内部,∴6≤x ≤8. 综上所述,圆心C 的横坐标x 的取值范围是2≤x ≤8. 2.解:(1)y =1x (x >0)不是有界函数.y =x +1(-4<x ≤2)是有界函数,边界值为3. (2)对于y =-x +1,y 随x 的增大而减小, 当x =a 时,y =-a +1=2,a =-1, 当x =b 时,y =-b +1.⎩⎪⎨⎪⎧-2≤-b +1<2,b >a , ∴-1<b ≤3.(3)由题意,函数平移后的表达式为 y =x 2-m (-1≤x ≤m ,m ≥0).当x =-1时,y =1-m ;当x =0时,y =-m ; 当x =m 时,y =m 2-m . 根据二次函数的对称性,当0≤m ≤1时,1-m ≥m 2-m . 当m >1时,1-m <m 2-m . ①当0≤m ≤12时,1-m ≥m .由题意,边界值t =1-m . 当34≤t ≤1时,0≤m ≤14, ∴0≤m ≤14.②当12<m ≤1时,1-m <m .由题意,边界值t =m . 当34≤t ≤1时,34≤m ≤1, ∴34≤m ≤1. ③当m >1时,由题意,边界值t ≥m , ∴不存在满足34≤t ≤1的m 值.综上所述,当0≤m ≤14或34≤m ≤1时,满足34≤t ≤1.3.解:(1)①如图(a)所示,过点E 作⊙O 的切线,设切点为R .∵⊙O 的半径为1,∴RO =1.∵EO =2,∴∠OER =30°,根据切线长定理得出⊙O 的左侧还有一个切点,使得组成的角等于30°, ∴E 点是⊙O 的关联点.∵D (12,12),E (0,-2),F (2 3,0),∴OF >EO ,DO <EO ,∴D 点一定是⊙O 的关联点,而在⊙O 上不可能找到两点与点F 的连线的夹角等于60°, 故在点D ,E ,F 中,⊙O 的关联点是D ,E . ②由题意可知,若P 刚好是⊙C 的关联点,则点P 到⊙C 的两条切线P A 和PB 之间所夹的角为60°, 由图(b)可知∠APB =60°,则∠CPB =30°. 连接BC ,则PC =BCsin ∠CPB=2BC =2r ,∴若点P 为⊙C 的关联点,则需点P 到圆心的距离d 满足0≤d ≤2r .由上述证明可知,考虑临界点位置的P 点,则点P 到原点的距离OP =2×1=2, 如图(c),过点O 作l 轴的垂线OH ,垂足为H ,∵∠GFO =30°, ∴∠OGF =60°,OG =2, 可得点P 1与点G 重合.过点P 2作P 2M ⊥x 轴于点M , 可得∠P 2OM =30°,∴OM =OP 2cos30°=3,从而若点P 为⊙O 的关联点,则P 点必在线段P 1P 2上,∴0≤m ≤ 3.(2)若线段EF 上的所有点都是某个圆的关联点,欲使这个圆的半径最小,则这个圆的圆心应是线段EF 的中点.考虑临界情况,如图(d),即恰好点E ,F 为⊙K 的关联点时,则KF =2KN =12EF =2,此时,r =1,故若线段EF 上的所有点都是某个圆的关联点,则这个圆的半径r 的取值范围为r ≥1.4.解:(1)①点B 的坐标是(0,2)或(0,-2). ②点A 与点B 的“非常距离”的最小值为12.(2)①∵C 是直线y =34x +3上的一个动点,∴设点C 的坐标为(x 0,34x 0+3),∴-x 0=34x 0+2,此时,x 0=-87,∴点C 与点D 的“非常距离”的最小值为87,此时C (-87,157).②E (-35,45).-35-x 0=34x 0+3-45, 解得x 0=-85,则点C 的坐标为(-85,95),点C1.解:(1)反比例函数y =2015x 是闭区间[1,2015]上的“闭函数”.理由如下:反比例函数y =2015x 在第一象限,y 随x 的增大而减小,当x =1时,y =2015; 当x =2015时,y =1,即图象过点(1,2015)和(2015,1),∴当1≤x ≤2015时,有1≤y ≤2015,符合闭函数的定义, ∴反比例函数y =2015x是闭区间[1,2015]上的“闭函数”.(2)由于二次函数y =x 2-2x -k 的图象开口向上,对称轴为直线x =1,∴二次函数y =x 2-2x -k 在闭区间[1,2]内,y 随x 的增大而增大. 当x =1时,y =1,∴k =-2. 当x =2时,y =2,∴k =-2. 即图象过点(1,1)和(2,2),∴当1≤x ≤2时,有1≤y ≤2,符合闭函数的定义, ∴k =-2.(3)因为一次函数y =kx +b ()k ≠0是闭区间[]m ,n 上的“闭函数”, 根据一次函数的图象与性质,有:(Ⅰ)当k >0时,图象过点(m ,m )和(n ,n ),∴⎩⎪⎨⎪⎧mk +b =m ,nk +b =n , 解得⎩⎪⎨⎪⎧k =1,b =0,∴y =x .(Ⅱ)当k <0时,图象过点(m ,n )和(n ,m ),∴⎩⎪⎨⎪⎧mk +b =n ,nk +b =m ,解得⎩⎨⎧k =-1,b =m +n ,∴y =-x +m +n ,∴一次函数的解析式为y =x 或y =-x +m +n . 2.解:(1)∵x 2≥0, ∴x 2-1≥-1. ∴x 2-1>-2.∴min {}x 2-1,-2=-2. (2)∵x 2-2x +k =()x -12+k -1, ∴()x -12+k -1≥k -1.∵min{x 2-2x +k ,-3}=-3, ∴k -1≥-3. ∴k ≥-2. (3)-3≤m ≤7. 3.解:(1)②③(2)所有联络点所组成的区域为图(a)中阴影部分(含边界).(3)①∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于(0,0)或与直线BD 相切于(0,1),如图(b)所示.又∵⊙M 的半径r =1,∴点M 的坐标为(0,-1)或(0,2).经检验:此时⊙M 与直线AD ,BC 无交点,⊙M 上只有一个点为T 1-T 2联络点,符合题意.∴点M 的坐标为(0,-1)或(0,2). ∴点M 的纵坐标为-1或2.②阴影部分关于直线y =12对称,故不妨设点M 位于阴影部分下方.∵点M 在y 轴上,⊙M 上只有一个点为T 1-T 2联络点,阴影部分关于y 轴对称, ∴⊙M 与直线AC 相切于O (0,0),且⊙M 与直线AD 相离. 过点M 作ME ⊥AD 于点E ,设AD 与BC 的交点为F ,如图(c). ∴MO =r ,ME >r ,F (0,12).在Rt △AOF 中,∠AOF =90°,AO =1,OF =12,∴AF =AO 2+OF 2=52,sin ∠AFO =AO AF =2 55. 在Rt △FEM 中,∠FEM =90°,FM =FO +OM =r +12,sin ∠EFM =sin ∠AFO =2 55,∴ME =FM ·sin ∠EFM =5(2r +1)5.∴5(2r +1)5>r .又∵r >0,∴0<r <5+2.4.解:(1)4 2a(2)13(3)①∵F 1的碟宽∶F 2的碟宽=2∶1, ∴2a 1∶2a 2=21. ∵a 1=13,∴a 2=23.又∵由题意得F 2的碟顶坐标为(1,1),∴y 2=23()x -12+1.②F 1,F 2,…,F n 的碟宽的右端点在一条直线上; 其解析式为y =-x +5. 5.解:(1)A 、B (2)如图,作点P 关于x 轴的对称点P ′,连接P ′Q ,P ′Q 与x 轴的交点即为“等高点”M ,此时“等高距离”最小,最小值为线段P ′Q 的长.∵P (1,2),∴P ′(1,-2).设直线P ′Q 的函数解析式为y =kx +b , 根据题意,有⎩⎪⎨⎪⎧k +b =-2,4k +b =2,解得⎩⎨⎧k =43,b =-103.∴直线P ′Q 的函数解析式为y =43x -103.当y =0时,解得x =52,即t =52.根据题意,可知PP ′=4,PQ =3,PQ ⊥PP ′, ∴P ′Q =PP ′2+PQ 2=5. ∴“等高距离”最小值为5.(3)Q (4 55,2 55)或Q (-4 55,2 55).6.解:(1)是(2)∵点H (m ,n )是线段AB 的“邻近点”,点H (m ,n )在直线y =x -1上,∴n =m -1. 直线y =x -1与线段AB 交于(4,3). ①当m ≥4时,有n =m -1≥3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是n -3, ∴0≤n -3≤1,∴4≤m ≤5.②当m ≤4时,有n =m -1,∴n ≤3.又AB ∥x 轴,∴此时点H (m ,n )到线段AB 的距离是3-n , ∴0≤3-n ≤1,∴3≤m ≤4, 综上所述,3≤m ≤5.(3)如图①,②,-37.解:(1)①(3,1) ②点B(2)依题意,y =-x +3(x ≥-2)的图象上的点P 的限变点必在函数y =⎩⎪⎨⎪⎧-x +3,x ≥1,x -3,-2≤x <1的图象上.∴b ′≤2,即当x =1时,b ′取最大值2. 当b ′=-2时,-2=-x +3.∴x =5.当b ′=-5时,-5=x -3或-5=-x +3. ∴x =-2或x =8. ∵-5≤b ′≤2,由图象可知,k 的取值范围是5≤k ≤8.(3)∵y=x2-2tx+t2+t=(x-t)2+t,∴顶点坐标为(t,t).若t>1,b′的取值范围是b′≥m或b′≤n,与题意不符.若t≥1,当x≥1时,y的最小值为t,即m=t;当x<1时,y的值小于-[(1-t)2+t],即n=-[(1-t)2+t].∴s=m-n=t+(1-t)2+t=t2+1.∴s关于t的函数解析式为s=t2+1(t≥1).当t=1时,s取最小值2.∴s的取值范围是s≥2.8.解:(1)313(2)-1(3)①如图,过点O分别作射线OE,OF的垂线OG,OH,则图形M为:y轴正半轴,∠GOH的边及其内部的所有点(图中的阴影部分).说明:(图形M也可描述为:y轴正半轴,直线y=33x下方与直线y=-33x下方重叠的部分(含边界)②4 3.。

2020年中考数学试题分类汇编:新概念规律类题(含答案解析)

2020年中考数学试题分类汇编:新概念规律类题(含答案解析)

2020年中考数学试题分类汇编:新概念规律类题一、选择题1.(2020河南)定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( ) A. 有两个不相等的实数根 B. 有两个相等的实数根 C. 无实数根 D. 只有一个实数根【答案】A【详解】解:根据定义得:2110,x x x =--=☆1,1,1,a b c ==-=-()()22414115b ac ∴∆=-=--⨯⨯-=>0, ∴ 原方程有两个不相等的实数根,故选.A2.(2020湖北武汉)下列图中所有小正方形都是全等的.图(1)是一张由4个小正方形组成的“L ”形纸片,图(2)是一张由6个小正方形组成的32⨯方格纸片.把“L ”形纸片放置在图(2)中,使它恰好盖住其中的4个小正方形,共有如图(3)中的4种不同放置方法,图(4)是一张由36个小正方形组成的66⨯方格纸片,将“L ”形纸片放置在图(4)中,使它恰好盖住其中的4个小正方形,共有n 种不同放置方法,则n 的值是( )A. 160B. 128C. 80D. 48解:由图可知,在66⨯方格纸片中,32⨯方格纸片的个数为5420⨯=(个) 则20480n =⨯= 故选:C .3.(2020重庆A 卷)把黑色三角形按如图所示的规律拼图案,其中第①个图案中有1个黑色③②①三角形,第①个图案中有3个黑色三角形,第①个图案中有6个黑色三角形,…,按此规律排列下去,则第①个图案中黑色三角形的个数为( )A. 10B. 15C. 18D. 21解:∵第①个图案中黑色三角形的个数为1, 第①个图案中黑色三角形的个数3=1+2, 第①个图案中黑色三角形的个数6=1+2+3, ……∴第①个图案中黑色三角形的个数为1+2+3+4+5=15, 故选:B .4.(2020重庆B 卷)下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,⋯,按此规律排列下去,第⑥个图形中实心圆点的个数为( )A.18B. 19C.20D.21 答案C.5.(2020山东枣庄)(3分)对于实数a 、b ,定义一种新运算“⊗”为:21a b a b =-⊗,这里等式右边是实数运算.例如:21113138==--⊗.则方程2(2)14x x -=--⊗的解是( ) A .4x = B .5x = C .6x = D.7x =【解答】解:根据题意,得12144x x =---, 去分母得:12(4)x =--, 解得:5x =,经检验5x =是分式方程的解. 故选:B .6.(3分)(2020•常德)如图,将一枚跳棋放在七边形ABCDEFG 的顶点A 处,按顺时针方向移动这枚跳棋2020次.移动规则是:第k 次移动k 个顶点(如第一次移动1个顶点,跳棋停留在B 处,第二次移动2个顶点,跳棋停留在D 处),按这样的规则,在这2020次移动中,跳棋不可能停留的顶点是( )A .C 、EB .E 、FC .G 、C 、ED .E 、C 、F【解答】解:经实验或按下方法可求得顶点C ,E 和F 棋子不可能停到. 设顶点A ,B ,C ,D ,E ,F ,G 分别是第0,1,2,3,4,5,6格,因棋子移动了k 次后走过的总格数是1+2+3+…+k =12k (k +1),应停在第12k (k +1)﹣7p格,这时P 是整数,且使0≤12k (k +1)﹣7p ≤6,分别取k =1,2,3,4,5,6,7时,12k (k +1)﹣7p =1,3,6,3,1,0,0,发现第2,4,5格没有停棋,若7<k ≤2020,设k =7+t (t =1,2,3)代入可得,12k (k +1)﹣7p =7m +12t (t +1),由此可知,停棋的情形与k =t 时相同,故第2,4,5格没有停棋,即顶点C ,E 和F 棋子不可能停到. 故选:D .7.(3分)(2020•烟台)如图,△OA 1A 2为等腰直角三角形,OA 1=1,以斜边OA 2为直角边作等腰直角三角形OA 2A 3,再以OA 3为直角边作等腰直角三角形OA 3A 4,…,按此规律作下去,则OA n 的长度为( )A .(√2)nB .(√2)n ﹣1C .(√22)nD .(√22)n ﹣1【解答】解:∵△OA 1A 2为等腰直角三角形,OA 1=1,∴OA2=√2;∵△OA2A3为等腰直角三角形,∴OA3=2=(√2)2;∵△OA3A4为等腰直角三角形,∴OA4=2√2=(√2)3.∵△OA4A5为等腰直角三角形,∴OA5=4=(√2)4,……∴OA n的长度为(√2)n﹣1.故选:B.8.(2020云南)(4分)按一定规律排列的单项式:a,﹣2a,4a,﹣8a,16a,﹣32a,…,第n个单项式是()A.(﹣2)n﹣1a B.(﹣2)n a C.2n﹣1a D.2n a解:∵a=(﹣2)1﹣1a,﹣2a=(﹣2)2﹣1a,4a=(﹣2)3﹣1a,﹣8a=(﹣2)4﹣1a,16a=(﹣2)5﹣1a,﹣32a=(﹣2)6﹣1a,…由上规律可知,第n个单项式为:(﹣2)n﹣1a.选:A.二、填空题9.(2020江西)公元前2000年左右,古巴比伦人使用的楔形文字中有两个符号(如图所示),一个钉头形代表1,一个尖头形代表10,在古巴比伦的记数系统中,人们使用的标记方法和我们当今使用的方法相同,最右边的数字代表个位,然后是十位,百位,根据符号记数的方法,右下面符号表示一个两位数,则这个两位数是.【解析】依题意可得,有两个尖头表示20102=⨯,有5个丁头表示15⨯,故这个两位数为2510.(2020贵州黔西南)(3分)如图,是一个运算程序的示意图,若开始输入x 的值为625,则第2020次输出的结果为 1 .【分析】依次求出每次输出的结果,根据结果得出规律,即可得出答案. 【解答】解:当x =625时,15x =125,当x =125时,15x =25,当x =25时,15x =5,当x =5时,15x =1,当x =1时,x +4=5, 当x =5时,15x =1,…依此类推,以5,1循环, (2020﹣2)÷2=1010, 即输出的结果是1, 故答案为:111.(2020贵州黔西南)(3分)如图图形都是由同样大小的菱形按照一定规律所组成的,其中第①个图形中一共有3个菱形,第②个图形中一共有7个菱形,第③个图形中一共有13个菱形,…,按此规律排列下去,第⑦个图形中菱形的个数为 57 .【解答】解:第①个图形中一共有3个菱形,即2+1×1=3;第②个图形中一共有7个菱形,即3+2×2=7;第③个图形中一共有13个菱形,即4+3×3=13;…,按此规律排列下去,所以第⑦个图形中菱形的个数为:8+7×7=57.故答案为:57.12.(2020齐齐哈尔)((3分)如图,在平面直角坐标系中,等腰直角三角形①沿x轴正半轴滚动并且按一定规律变换,每次变换后得到的图形仍是等腰直角三角形.第一次滚动后点A1(0,2)变换到点A2(6,0),得到等腰直角三角形②;第二次滚动后点A2变换到点A3(6,0),得到等腰直角三角形③;第三次滚动后点A3变换到点A4(10,4√2),得到等腰直角三角形④;第四次滚动后点A4变换到点A5(10+12√2,0),得到等腰直角三角形⑤;依此规律…,则第2020个等腰直角三角形的面积是22020.【解答】解:∵点A1(0,2),∴第1个等腰直角三角形的面积=12×2×2=2,∵A2(6,0),∴第2个等腰直角三角形的边长为√2=2√2,∴第2个等腰直角三角形的面积=12×2√2×2√2=4=22,∵A4(10,4√2),∴第3个等腰直角三角形的边长为10﹣6=4, ∴第3个等腰直角三角形的面积=12×4×4=8=23, …则第2020个等腰直角三角形的面积是22020; 故答案为:22020(形式可以不同,正确即得分).13.(2020甘肃定西)已知5y x =+,当x 分别取1,2,3,…,2020时,所对应y 值的总和是_________. 答案:203214.(2020辽宁抚顺)(3分)如图,四边形ABCD 是矩形,延长DA 到点E ,使AE =DA ,连接EB ,点F 1是CD 的中点,连接EF 1,BF 1,得到△EF 1B ;点F 2是CF 1的中点,连接EF 2,BF 2,得到△EF 2B ;点F 3是CF 2的中点,连接EF 3,BF 3,得到△EF 3B ;…;按照此规律继续进行下去,若矩形ABCD 的面积等于2,则△EF n B 的面积为.(用含正整数n 的式子表示)解:∵AE =DA ,点F 1是CD 的中点,矩形ABCD 的面积等于2, ∴△EF 1D 和△EAB 的面积都等于1, ∵点F 2是CF 1的中点, ∴△EF 1F 2的面积等于, 同理可得△EF n ﹣1F n 的面积为,∵△BCF n 的面积为2×÷2=,∴△EF n B 的面积为2+1﹣1﹣﹣…﹣﹣=2﹣(1﹣)=.故答案为:.15.(2020内蒙古呼和浩特)(3分)“书法艺术课”开课后,某同学买了一包纸练习软笔书法,且每逢星期几写几张,即每星期一写1张,每星期二写2张,……,每星期日写7张,若该同学从某年的5月1日开始练习,到5月30日练习完后累积写完的宣纸总数过120张,则可算得5月1日到5月28日他共用宣纸张数为 112 ,并可推断出5月30日应该是星期几 五、六、日 .解:∵5月1日~5月30日共30天,包括四个完整的星期, ∴5月1日~5月28日写的张数为:4×=112,若5月30日为星期一,所写张数为112+7+1=120, 若5月30日为星期二,所写张数为112+1+2<120, 若5月30日为星期三,所写张数为112+2+3<120, 若5月30日为星期四,所写张数为112+3+4<120, 若5月30日为星期五,所写张数为112+4+5>120, 若5月30日为星期六,所写张数为112+5+6>120, 若5月30日为星期日,所写张数为112+6+7>120, 故5月30日可能为星期五、六、日. 故答案为:112;五、六、日.16.(2020黑龙江龙东)(3分)如图,直线AM 的解析式为1y x =+与x 轴交于点M ,与y 轴交于点A ,以OA 为边作正方形ABCO ,点B 坐标为(1,1).过点B 作1EO MA ⊥交MA 于点E ,交x 轴于点1O ,过点1O 作x 轴的垂线交MA 于点1A ,以11O A 为边作正方形1111O A B C ,点1B 的坐标为(5,3).过点1B 作12E O MA ⊥交MA 于1E ,交x 轴于点2O ,过点2O 作x 轴的垂线交MA 于点2A .以22O A 为边作正方形2222O A B C .⋯.则点2020B 的坐标 2020231⨯-,20203 .解:点B 坐标为(1,1), 11OA AB BC CO CO ∴=====,1(2,3)A ,111111123AO A B B C C O ∴====,1(5,3)B ∴,2(8,9)A ∴,222222239A O A B B C C O ∴====,2(17,9)B ∴,同理可得4(53,27)B ,5(161,81)B ,⋯由上可知,(231,3)Bn n n ⨯-,∴当2020n =时,(2320201,32020)Bn ⨯-.故答案为:2020(231⨯-,20203).17.(2020黑龙江牡丹江)(3分)一列数1,5,11,19⋯按此规律排列,第7个数是() A .37 B .41 C .55 D .71解:1121=⨯-, 5231=⨯-, 11341=⨯-, 19451=⨯-,⋯第n 个数为(1)1n n +-, 则第7个数是:55. 故选:C .18.(2020四川遂宁)(4分)如图所示,将形状大小完全相同的“▱”按照一定规律摆成下列图形,第1幅图中“▱”的个数为a1,第2幅图中“▱”的个数为a2,第3幅图中“▱”的个数为a3,…,以此类推,若2a1+2a2+2a3+⋯+2a n=n2020.(n为正整数),则n的值为4039.【解答】解:由图形知a1=1×2,a2=2×3,a3=3×4,∴a n=n(n+1),∵2a1+2a2+2a3+⋯+2a n=n2020,∴21×2+22×3+23×4+⋯+2n(n+1)=n2020,∴2×(1−12+12−13+13−14+⋯⋯+1n−1n+1)=n2020,∴2×(1−1n+1)=n2020,1−1n+1=n4040,解得n=4039,经检验:n=4039是分式方程的解,故答案为:4039.19.(2020广西南宁)(3分)如图,某校礼堂的座位分为四个区域,前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,前区最后一排与后区各排的座位数相同,后区一共有10排,则该礼堂的座位总数是556个.解:因为前区一共有8排,其中第1排共有20个座位(含左、右区域),往后每排增加两个座位,所以前区最后一排座位数为:20+2(8﹣1)=34,所以前区座位数为:(20+34)×8÷2=216,以为前区最后一排与后区各排的座位数相同,后区一共有10排,所以后区的座位数为:10×34=340,所以该礼堂的座位总数是216+340=556个.故答案为:556个.20.(3分)(2020•常德)阅读理解:对于x3﹣(n2+1)x+n这类特殊的代数式可以按下面的方法分解因式:x3﹣(n2+1)x+n=x3﹣n2x﹣x+n=x(x2﹣n2)﹣(x﹣n)=x(x﹣n)(x+n)﹣(x﹣n)=(x﹣n)(x2+nx﹣1).理解运用:如果x3﹣(n2+1)x+n=0,那么(x﹣n)(x2+nx﹣1)=0,即有x﹣n=0或x2+nx﹣1=0,因此,方程x﹣n=0和x2+nx﹣1=0的所有解就是方程x3﹣(n2+1)x+n=0的解.解决问题:求方程x3﹣5x+2=0的解为x=2或x=﹣1+√2或x=﹣1−√2.【解答】解:∵x3﹣5x+2=0,∴x3﹣4x﹣x+2=0,∴x(x2﹣4)﹣(x﹣2)=0,∴x(x+2)(x﹣2)﹣(x﹣2)=0,则(x﹣2)[x(x+2)﹣1]=0,即(x﹣2)(x2+2x﹣1)=0,∴x﹣2=0或x2+2x﹣1=0,解得x=2或x=﹣1±√2,故答案为:x=2或x=﹣1+√2或x=﹣1−√2.21.(3分)(2020•徐州)如图,∠MON=30°,在OM上截取OA1=√3.过点A1作A1B1⊥OM,交ON于点B1,以点B1为圆心,B1O为半径画弧,交OM于点A2;过点A2作A2B2⊥OM,交ON于点B2,以点B2为圆心,B2O为半径画弧,交OM于点A3;按此规律,所得线段A20B20的长等于219.【解答】解:∵B1O=B1A1,B1A1⊥OA2,∴OA1=A1A2,∵B2A2⊥OM,B1A1⊥OM,∴B1A1∥B2A2,∴B1A1=12A2B2,∴A2B2=2A1B1,同法可得A 3B 3=2A 2B 2=22•A 1B 1,…, 由此规律可得A 20B 20=219•A 1B 1,∵A 1B 1=OA 1•tan30°=√3×√33=1, ∴A 20B 20=219, 故答案为219.22.(2020山西)(3分)如图是一组有规律的图案,它们是由边长相等的正三角形组合而成,第1个图案有4个三角形,第2个图案有7个三角形,第3个图案有10个三角形…按此规律摆下去,第n 个图案有 (3n +1) 个三角形(用含n 的代数式表示).【分析】根据图形的变化发现规律,即可用含n 的代数式表示. 解:第1个图案有4个三角形,即4=3×1+1 第2个图案有7个三角形,即7=3×2+1 第3个图案有10个三角形,即10=3×3+1 …按此规律摆下去,第n 个图案有(3n +1)个三角形. 故答案为:(3n +1).23.(2020东莞)如图,等腰12Rt OA A ∆,1121OA A A ==,以2OA 为直角边作23Rt OA A ∆,再以3OA 为直角边作34Rt OA A ∆,以此规律作等腰89Rt OA A ∆,则89OA A ∆的面积是_________.答案:64(或62)24.(2020四川自贡)(4分)如图,直线y =−√3x +b 与y 轴交于点A ,与双曲线y =kx 在第三象限交于B 、C 两点,且AB •AC =16.下列等边三角形△OD 1E 1,△E 1D 2E 2,△E 2D 3E 3,…的边OE1,E1E2,E2E3,…在x轴上,顶点D1,D2,D3,…在该双曲线第一象限的分支上,则k=4√3,前25个等边三角形的周长之和为60.【解答】解:设直线y=−√3x+b与x轴交于点D,作BE⊥y轴于E,CF⊥y轴于F.∵y=−√3x+b,∴当y=0时,x=√33b,即点D的坐标为(√33b,0),当x=0时,y=b,即A点坐标为(0,b),∴OA=﹣b,OD=−√33b.∵在Rt△AOD中,tan∠ADO=OAOD=√3,∴∠ADO=60°.∵直线y=−√3x+b与双曲线y=kx在第三象限交于B、C两点,∴−√3x+b=k x,整理得,−√3x2+bx﹣k=0,由韦达定理得:x1x2=√33k,即EB•FC=√33k,∵EBAB=cos60°=12,∴AB=2EB,同理可得:AC=2FC,∴AB•AC=(2EB)(2FC)=4EB•FC=4√33k=16,解得:k=4√3.由题意可以假设D1(m,m√3),∴m2•√3=4√3,∴m=2∴OE1=4,即第一个三角形的周长为12,设D2(4+n,√3n),∵(4+n)•√3n=4√3,解得n=2√2−2,∴E1E2=4√2−4,即第二个三角形的周长为12√2−12,设D3(4√2+a,√3a),由题意(4√2+a)•√3a=4√3,解得a=2√3−2√2,即第三个三角形的周长为12√3−12√2,…,∴第四个三角形的周长为12√4−12√3,∴前25个等边三角形的周长之和12+12√2−12+12√3−12√2+12√4−12√3+⋯+12√25−12√24=12√25=60,故答案为4√3,60.25.(3分)(2020•怀化)如图,△OB1A1,△A1B2A2,△A2B3A3,…,△A n﹣1B n A n,都是一边在x轴上的等边三角形,点B1,B2,B3,…,B n都在反比例函数y=√3x(x>0)的图象上,点A1,A2,A3,…,A n,都在x轴上,则A n的坐标为(2√n,0).解:如图,过点B1作B1C⊥x轴于点C,过点B2作B2D⊥x轴于点D,过点B3作B3E⊥x轴于点E,∵△OA1B1为等边三角形,∴∠B1OC=60°,OC=A1C,∴B1C=√3OC,设OC的长度为t,则B1的坐标为(t,√3t),把B1(t,√3t)代入y=√3x得t•√3t=√3,解得t=1或t=﹣1(舍去),∴OA1=2OC=2,∴A1(2,0),设A1D的长度为m,同理得到B2D=√3m,则B2的坐标表示为(2+m,√3m),把B2(2+m,√3m)代入y=√3x得(2+m)×√3m=√3,解得m=√2−1或m=−√2−1(舍去),∴A1D=√2−1,A1A2=2√2−2,OA2=2+2√2−2=2√2,∴A2(2√2,0)设A2E的长度为n,同理,B3E为√3n,B3的坐标表示为(2√2+n,√3n),把B3(2√2+n,√3n)代入y=√3x得(2√2+n)•√3n=√3,∴A2E=√3−√2,A2A3=2√3−2√2,OA3=2√2+2√3−2√2=2√3,∴A3(2√3,0),综上可得:A n(2√n,0),故答案为:(2√n,0).26.(2020青海)(2分)对于任意两个不相等的数a,b,定义一种新运算“⊕”如下:a⊕b =,如:3⊕2==,那么12⊕4=.解:12⊕4==.故答案为:.27.(2020青海)(4分)观察下列各式的规律:①1×3﹣22=3﹣4=﹣1;②2×4﹣32=8﹣9=﹣1;③3×5﹣42=15﹣16=﹣1. 请按以上规律写出第4个算式 4×6﹣52=24﹣25=﹣1 .用含有字母的式子表示第n 个算式为 n (n +2)﹣(n +1)2=﹣1 . 解:④4×6﹣52=24﹣25=﹣1.第n 个算式为:n (n +2)﹣(n +1)2=﹣1.故答案为:4×6﹣52=24﹣25=﹣1;n (n +2)﹣(n +1)2=﹣1. 28.(2020山东滨州)(5分)观察下列各式:123a =,235a =,3107a =,4159a =,52611a =,⋯,根据其中的规律可得n a =21(1)21n n n ++-+ (用含n 的式子表示). 【解答】解:由分析可得21(1)21n n n a n ++-=+.故答案为:21(1)21n n n ++-+.29.(2020山东泰安)(4分)如表被称为“杨辉三角”或“贾宪三角”.其规律是:从第三行起,每行两端的数都是“1”,其余各数都等于该数“两肩”上的数之和.表中两平行线之间的一列数:1,3,6,10,15,…,我们把第一个数记为a 1,第二个数记为a 2,第三个数记为a 3,…,第n 个数记为a n ,则a 4+a 200= 20110 .解:观察“杨辉三角”可知第n 个数记为a n =(1+2+…+n )=12n (n +1), 则a 4+a 200=12×4×(4+1)+12×200×(200+1)=20110. 故答案为:20110.30.(2020海南)(4分)海南黎锦有着悠久的历史,已被列入世界非物质文化遗产名录.如图是黎锦上的图案,每个图案都是由相同菱形构成的,若按照第1个图至第4个图中的规律编织图案,则第5个图中有 41 个菱形,第n 个图中有 2n 2﹣2n +1 个菱形(用含n 的代数式表示).解:∵第1个图中菱形的个数1=12+02, 第2个图中菱形的个数5=22+12, 第3个图中菱形的个数13=32+22, 第4个图中菱形的个数25=42+32, ∴第5个图中菱形的个数为52+42=41,第n 个图中菱形的个数为n 2+(n ﹣1)2=n 2+n 2﹣2n +1=2n 2﹣2n +1, 故答案为:41,2n 2﹣2n +1.三、解答题31.(2020长沙)我们不妨约定:若某函数图像上至少存在不同的两点关于原点对称,则把该函数称之为“H 函数”,其图像上关于原点对称的两点叫做一对“H 点”,根据该约定,完成下列各题(1)在下列关于x 的函数中,是“H 函数”的,请在相应题目后面的括号中打“√”,不是“H 函数”的打“×”①2y x =( ) ①my (m 0)x=≠( ) ①31y x =-( ) (2)若点()1,A m 与点(),4B n -关于x “H 函数” ()20y ax bx c a =++≠的一对“H 点”,且该函数的对称轴始终位于直线2x =的右侧,求,,a b c 的值域或取值范围;(3)若关于x 的“H 函数” 223y ax bx c =++(a ,b ,c 是常数)同时满足下列两个条件:①0a b c ++=,①(2)(23)0c b a c b a +-++<,求该H 函数截x 轴得到的线段长度的取值范围.【答案】(1)√;√;×;(2)-1<a <0,b=4,0<c <0;(3)2<12x x -<. 解:(1)①2y x =是 “H 函数”①my (m 0)x=≠是 “H 函数”①31y x =-不是 “H 函数”; 故答案为:√;√;×; (2)①A,B 是“H 点” ①A,B 关于原点对称, ①m=4,n=1①A(1,4),B (-1,-4) 代入223y ax bx c =++得44a b c a b c ++=⎧⎨-+=-⎩解得40b a c =⎧⎨+=⎩又①该函数的对称轴始终位于直线2x =的右侧,①-2ba >2 ①-42a>2 ①-1<a <0 ①a+c=0 ①0<c <0,综上,-1<a <0,b=4,0<c <0;(3)①223y ax bx c =++是“H 函数”①设H 点为(p,q )和(-p,-q ),代入得222323ap bp c qap bp c q⎧++=⎨-+=-⎩ 解得ap 2+3c=0,2bp=q ①p 2>0 ①a,c 异号, ①ac <0 ①a+b+c=0①b=-a -c ,①(2)(23)0c b a c b a +-++< ①(2)(23)0c a c a c a c a -----+< ①(2)(2)0c a c a -+< ①c 2<4a 2①22c a<4 ①-2<c a <2 ①-2<c a <0设t=ca,则-2<t <0设函数与x 轴的交点为(x 1,0)(x 2,0) ①x 1, x 2是方程223ax bx c ++=0的两根①12x x -== 又①-2<t <0①2<12x x -<.32.(2020山东青岛)实际问题:某商场为鼓励消费,设计了投资活动.方案如下:根据不同的消费金额,每次抽奖时可以从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取2张、3张、4张、…等若干张奖券,奖券的面值金额之和即为优惠金额.某顾客获得了一次抽取5张奖券的机会,小明想知道该顾客共有多少种不同的优惠金额? 问题建模:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有多少种不同的结果? 模型探究:我们采取一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,从中找出解决问题的方法. 探究一:(1)从1,2,3这3个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,也就是从3到5的连续整数,其中最小是3,最大是5,所以共有3种不同的结果.(2)从1,2,3,4这4个整数中任取2个整数,这2个整数之和共有多少种不同的结果? 表①如表①,所取的2个整数之和可以为3,4,5,6,7,也就是从3到7的连续整数,其中最小是3,最大是7,所以共有5种不同的结果.(3)从1,2,3,4,5这5个整数中任取2个整数,这2个整数之和共有______种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有______种不同的结果.探究二:(1)从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有______种不同的结果. (2)从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有______种不同的结果.探究三:从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有______种不同的结果.归纳结论:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有______种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,共有______种不同的优惠金额.拓展延伸:(1)从1,2,3,…,36这36个整数中任取多少个整数,使得取出的这些整数之和共有204种不同的结果?(写出解答过程)(2)从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有______种不同的结果.解:探究一:(3)如下表:所取的2个整数之和可以为3,4,5,6,7,8,9也就是从3到9的连续整数,其中最小是3,最大是9,所以共有7种不同的结果.(4)从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和的最小值是3,和的最大值是21,n - 所以一共有()213123n n --+=-种. 探究二:(1)从1,2,3,4这4个整数中任取3个整数,如下表:从1,2,3,4这4个整数中任取3个整数,这3个整数之和共有4种,(2)从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和的最小值是6,和的最大值是12,所以从1,2,3,4,5这5个整数中任取3个整数,这3个整数之和共有7种, 从而从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数, 这3个整数之和的最小值是6,和的最大值是33,n -所以一共有()336138n n --+=-种,探究三:从1,2,3,4,5这5个整数中任取4个整数, 这4个整数之和最小是10, 最大是14, 所以这4个整数之和一共有5种,从1,2,3,4,5,6这6个整数中任取4个整数, 这4个整数之和最小是10, 最大是18,, 所以这4个整数之和一共有9种,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和的最小值是10,和的最大值是46n -,所以一共有()46101415n n --+=- 种不同的结果.归纳结论:由探究一,从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取2个整数,这2个整数之和共有()23n -种.探究二,从1,2,3,…,n (n 为整数,且4n ≥)这n 个整数中任取3个整数,这3个整数之和共有()38n -种,探究三,从1,2,3,…,n (n 为整数,且5n ≥)这n 个整数中任取4个整数,这4个整数之和共有()415n - 种不同的结果.从而可得:从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果.问题解决:从100张面值分别为1元、2元、3元、…、100元的奖券中(面值为整数),一次任意抽取5张奖券,这5张奖券和的最小值是15,和的最大值是490,共有490151476-+=种不同的优惠金额.拓展延伸:(1) 从1,2,3,…,n (n 为整数,且3n ≥)这n 个整数中任取()1a a n <<个整数,这a 个整数之和共有()21an a -+种不同的结果. ∴ 当36,n = 有2361204,a a -+=236203,a a ∴-=-()218121,a ∴-= 1811a ∴-=或1811,a -=-29a ∴=或7.a =从1,2,3,…,36这36个整数中任取29个或7个整数,使得取出的这些整数之和共有204种不同的结果.(2)由探究可知:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,等同于从1,2,3,…,1n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,所以:从3,4,5,…,3n +(n 为整数,且2n ≥)这()1n +个整数中任取()11a a n <<+个整数,这a 个整数之和共有()211a n a ⎡⎤+-+⎣⎦种不同的结果. 33.(2020四川遂宁)(9分)阅读以下材料,并解决相应问题:小明在课外学习时遇到这样一个问题:定义:如果二次函数y =a 1x 2+b 1x +c 1(a 1≠0,a 1、b 1、c 1是常数)与y =a 2x 2+b 2x +c 2(a 2≠0,a 2、b 2、c 2是常数)满足a 1+a 2=0,b 1=b 2,c 1+c 2=0,则这两个函数互为“旋转函数”.求函数y =2x 2﹣3x +1的旋转函数,小明是这样思考的,由函数y =2x 2﹣3x +1可知,a 1=2,b 1=﹣3,c 1=1,根据a 1+a 2=0,b 1=b 2,c 1+c 2=0,求出a 2,b 2,c 2就能确定这个函数的旋转函数.请思考小明的方法解决下面问题:(1)写出函数y =x 2﹣4x +3的旋转函数.(2)若函数y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为旋转函数,求(m +n )2020的值.(3)已知函数y =2(x ﹣1)(x +3)的图象与x 轴交于A 、B 两点,与y 轴交于点C ,点A 、B 、C 关于原点的对称点分别是A 1、B 1、C 1,试求证:经过点A 1、B 1、C 1的二次函数与y =2(x ﹣1)(x +3)互为“旋转函数”.【解答】解:(1)由y =x 2﹣4x +3函数可知,a 1=1,b 1=﹣4,c 1=3,∵a 1+a 2=0,b 1=b 2,c 1+c 2=0,∴a 2=﹣1,b 2=﹣4,c 2=﹣3,∴函数y =x 2﹣4x +3的“旋转函数”为y =﹣x 2﹣4x ﹣3;(2)∵y =5x 2+(m ﹣1)x +n 与y =﹣5x 2﹣nx ﹣3互为“旋转函数”,∴{m −1=−n n −3=0, 解得:{m =−2n =3, ∴(m +n )2020=(﹣2+3)2020=1.(3)证明:当x =0时,y =2(x ﹣1)(x +3))=﹣6,∴点C 的坐标为(0,﹣6).当y =0时,2(x ﹣1)(x +3)=0,解得:x 1=1,x 2=﹣3,∴点A 的坐标为(1,0),点B 的坐标为(﹣3,0).∵点A ,B ,C 关于原点的对称点分别是A 1,B 1,C 1,∴A1(﹣1,0),B1(3,0),C1(0,6).设过点A1,B1,C1的二次函数解析式为y=a(x+1)(x﹣3),将C1(0,6)代入y=a(x+1)(x﹣3),得:6=﹣3a,解得:a=﹣2,过点A1,B1,C1的二次函数解析式为y=﹣2(x+1)(x﹣3),即y=﹣2x2+4x+6.∵y=2(x﹣1)(x+3)=2x2+4x﹣6,∴a1=2,b1=4,c1=﹣6,a2=﹣2,b2=4,c2=6,∴a1+a2=2+(﹣2)=0,b1=b2=4,c1+c2=6+(﹣6)=0,∴经过点A1,B1,C1的二次函数与函数y=2(x﹣1)(x+3)互为“旋转函数”.34.(2020•怀化)定义:对角线互相垂直且相等的四边形叫做垂等四边形.(1)下面四边形是垂等四边形的是④;(填序号)①平行四边形;②矩形;③菱形;④正方形(2)图形判定:如图1,在四边形ABCD中,AD∥BC,AC⊥BD,过点D作BD垂线交BC的延长线于点E,且∠DBC=45°,证明:四边形ABCD是垂等四边形.(3)由菱形面积公式易知性质:垂等四边形的面积等于两条对角线乘积的一半.应用:在图2中,面积为24的垂等四边形ABCD内接于⊙O中,∠BCD=60°.求⊙O的半径.【解答】解:(1)①平行四边形的对角线互相平分但不垂直和相等,故不是垂等四边形;②矩形对角线相等但不垂直,故不是垂等四边形;③菱形的对角线互相垂直但不相等,故不是垂等四边形;④正方形的对角线互相垂直且相等,故正方形是垂等四边形;故选:④;(2)∵AC⊥BD,ED⊥BD,∴AC∥DE,又∵AD∥BC,∴四边形ADEC 是平行四边形,∴AC =DE ,又∵∠DBC =45°,∴△BDE 是等腰直角三角形,∴BD =DE ,∴BD =AC ,又∵BD ⊥AC ,∴四边形ABCD 是垂等四边形;(3)如图,过点O 作OE ⊥BD ,∵四边形ABCD 是垂等四边形,∴AC =BD ,又∵垂等四边形的面积是24,∴12AC •BD =24, 解得,AC =BD =4√3,又∵∠BCD =60°,∴∠DOE =60°,设半径为r ,根据垂径定理可得:在△ODE 中,OD =r ,DE =2√3,∴r =DE sin60°=2√332=4,∴⊙O 的半径为4.35.(2020浙江宁波)(14分)定义:三角形一个内角的平分线和与另一个内角相邻的外角平分线相交所成的锐角称为该三角形第三个内角的遥望角.(1)如图1,∠E 是△ABC 中∠A 的遥望角,若∠A =α,请用含α的代数式表示∠E .(2)如图2,四边形ABCD 内接于⊙O ,AD ̂=BD ̂,四边形ABCD 的外角平分线DF 交⊙O于点F,连结BF并延长交CD的延长线于点E.求证:∠BEC是△ABC中∠BAC 的遥望角.(3)如图3,在(2)的条件下,连结AE,AF,若AC是⊙O的直径.①求∠AED的度数;②若AB=8,CD=5,求△DEF的面积.【解答】解:(1)∵BE平分∠ABC,CE平分∠ACD,∴∠E=∠ECD﹣∠EBD=12(∠ACD﹣∠ABC)=12∠A=12α,(2)如图1,延长BC到点T,∵四边形FBCD内接于⊙O,∴∠FDC+∠FBC=180°,又∵∠FDE+∠FDC=180°,∴∠FDE=∠FBC,∵DF平分∠ADE,∴∠ADF=∠FDE,∵∠ADF=∠ABF,∴∠ABF=∠FBC,∴BE是∠ABC的平分线,̂=BD̂,∵AD∴∠ACD=∠BFD,∵∠BFD+∠BCD=180°,∠DCT+∠BCD=180°,∴∠DCT=∠BFD,∴∠ACD=∠DCT,∴CE是△ABC的外角平分线,∴∠BEC是△ABC中∠BAC的遥望角.(3)①如图2,连接CF,∵∠BEC是△ABC中∠BAC的遥望角,∴∠BAC=2∠BEC,∵∠BFC=∠BAC,∴∠BFC=2∠BEC,∵∠BFC=∠BEC+∠FCE,∴∠BEC=∠FCE,∵∠FCE=∠F AD,∴∠BEC=∠F AD,又∵∠FDE=∠FDA,FD=FD,∴△FDE≌△FDA(AAS),∴DE=DA,∴∠AED=∠DAE,∵AC是⊙O的直径,∴∠ADC=90°,∴∠AED+∠DAE=90°,∴∠AED=∠DAE=45°,②如图3,过点A 作AG ⊥BE 于点G ,过点F 作FM ⊥CE 于点M ,∵AC 是⊙O 的直径,∴∠ABC =90°,∵BE 平分∠ABC ,∴∠F AC =∠EBC =12∠ABC =45°,∵∠AED =45°,∴∠AED =∠F AC ,∵∠FED =∠F AD ,∴∠AED ﹣∠FED =∠F AC ﹣∠F AD ,∴∠AEG =∠CAD ,∵∠EGA =∠ADC =90°,∴△EGA ∽△ADC ,∴AE AC =AG CD ,∵在Rt △ABG 中,AG =√22AB =4√2,在Rt △ADE 中,AE =√2AD ,∴AD AC =45, 在Rt △ADC 中,AD 2+DC 2=AC 2,∴设AD =4x ,AC =5x ,则有(4x )2+52=(5x )2,∴x =53,∴ED =AD =203,∴CE =CD +DE =353,∵∠BEC=∠FCE,∴FC=FE,∵FM⊥CE,∴EM=12CE=356,∴DM=DE﹣EM=5 6,∵∠FDM=45°,∴FM=DM=5 6,∴S△DEF=12DE•FM=259.36.(2020•株洲)如图所示,△OAB的顶点A在反比例函数y=kx(k>0)的图象上,直线AB交y轴于点C,且点C的纵坐标为5,过点A、B分别作y轴的垂线AE、BF,垂足分别为点E、F,且AE=1.(1)若点E为线段OC的中点,求k的值;(2)若△OAB为等腰直角三角形,∠AOB=90°,其面积小于3.①求证:△OAE≌△BOF;②把|x1﹣x2|+|y1﹣y2|称为M(x1,y1),N(x2,y2)两点间的“ZJ距离”,记为d(M,N),求d(A,C)+d(A,B)的值.【解答】解:(1)∵点E为线段OC的中点,OC=5,∴OE=12OC=52,即:E点坐标为(0,52),第 31 页 共 31 页 又∵AE ⊥y 轴,AE =1,∴A(1,52),∴k =1×52=52.(2)①在△OAB 为等腰直角三角形中,AO =OB ,∠AOB =90°,∴∠AOE +∠FOB =90°,又∵BF ⊥y 轴,∴∠FBO +∠FOB =90°,∴∠AOE =∠FBO ,在△OAE 和△BOF 中,{∠AEO =∠OFB =90°∠AOE =∠FBO AO =BO ,∴△OAE ≌△BOF (AAS ),②解:设点A 坐标为(1,m ),∵△OAE ≌△BOF ,∴BF =OE =m ,OF =AE =1,∴B (m ,﹣1),设直线AB 解析式为:l AB :y =kx +5,将AB 两点代入得:则{k +5=m km +5=−1. 解得{k 1=−3m 1=2,{k 2=−2m 2=3. 当m =2时,OE =2,OA =√5,S △AOB =52<3,符合;∴d (A ,C )+d (A ,B )=AE +CE +(BF ﹣AE )+(OE +OF )=1+CE +OE ﹣1+OE +1=1+CE +2OE =1+CO +OE =1+5+2=8,当m =3时,OE =3,OA =√10,S △AOB =5>3,不符,舍去;综上所述:d (A ,C )+d (A ,B )=8.。

2020年中考数学二轮复习重要考点精析--新定义型题型-含答案

2020年中考数学二轮复习重要考点精析--新定义型题型-含答案

中考数学二轮复习重要考点精析新定义型题型一、中考专题诠释所谓“新定义”型问题,主要是指在问题中定义了中学数学中没有学过的一些概念、新运算、新符号,要求学生读懂题意并结合已有知识、能力进行理解,根据新定义进行运算、推理、迁移的一种题型.“新定义”型问题成为近年来中考数学压轴题的新亮点.在复习中应重视学生应用新的知识解决问题的能力二、解题策略和解法精讲“新定义型专题”关键要把握两点:一是掌握问题原型的特点及其问题解决的思想方法;二是根据问题情景的变化,通过认真思考,合理进行思想方法的迁移.三、中考典例剖析考点一:规律题型中的新定义例1 阅读下面的材料,先完成阅读填空,再按要求答题:sin30°=12,cos30°=2,则sin230°+cos230°= ;①sin45°=2,cos45°=2,则sin245°+cos245°= ;②sin60°=,cos60°=12,则sin260°+cos260°= .③…观察上述等式,猜想:对任意锐角A,都有sin2A+cos2A= .④(1)如图,在锐角三角形ABC中,利用三角函数的定义及勾股定理对∠A证明你的猜想;(2)已知:∠A为锐角(cosA>0)且sinA=35,求cosA.思路分析:①②③将特殊角的三角函数值代入计算即可求出其值;④由前面①②③的结论,即可猜想出:对任意锐角A,都有sin2A+cos2A=1;(1)如图,过点B作BD⊥AC于D,则∠ADB=90°.利用锐角三角函数的定义得出sinA=BD AB ,cosA=ADAB ,则sin2A+cos2A=222BD AD AB +,再根据勾股定理得到BD2+AD2=AB2,从而证明sin2A+cos2A=1;(2)利用关系式sin2A+cos2A=1,结合已知条件cosA >0且sinA=35,进行求解.解:∵sin30°=12,cos30°=3, ∴sin230°+cos230°=(12)2+(3)2=14+34=1;①∵sin45°=2,cos45°=2,∴sin245°+cos245°=(22)2+(22)2=12+12=1;②∵sin60°=32,cos60°=12,∴sin260°+cos260°=(3)2+(12)2=34+14=1.③观察上述等式,猜想:对任意锐角A ,都有sin2A+cos2A=1.④(1)如图,过点B 作BD ⊥AC 于D ,则∠ADB=90°.∵sinA=BD AB ,cosA=ADAB ,∴sin2A+cos2A=(BD AB )2+(ADAB )2=222BD AD AB +,∵∠ADB=90°,∴BD2+AD2=AB2,∴sin2A+cos2A=1.(2)∵sinA=35,sin2A+cos2A=1,∠A为锐角,∴45 =.点评:本题考查了同角三角函数的关系,勾股定理,锐角三角函数的定义,比较简单.对应训练1.我们知道,三角形的三条中线一定会交于一点,这一点就叫做三角形的重心.重心有很多美妙的性质,如关于线段比.面积比就有一些“漂亮”结论,利用这些性质可以解决三角形中的若干问题.请你利用重心的概念完成如下问题:(1)若O是△ABC的重心(如图1),连结AO并延长交BC于D,证明:23 AO AD=;(2)若AD是△ABC的一条中线(如图2),O是AD上一点,且满足23AOAD=,试判断O是△ABC的重心吗?如果是,请证明;如果不是,请说明理由;(3)若O是△ABC的重心,过O的一条直线分别与AB、AC相交于G、H(均不与△ABC的顶点重合)(如图3),S四边形BCHG,S△AGH分别表示四边形BCHG和△AGH的面积,试探究BCHGAGHSSV四边形的最大值.(1)证明:如答图1所示,连接CO并延长,交AB于点E.∵点O 是△ABC 的重心,∴CE 是中线,点E 是AB 的中点.∴DE 是中位线,∴DE ∥AC ,且DE=12AC . ∵DE∥AC,∴△AOC ∽△DOE ,∴AO AC OD DE =2, ∵AD=AO+OD ,∴AO AD =23.(2)答:点O 是△ABC 的重心.证明:如答图2,作△ABC 的中线CE ,与AD 交于点Q ,则点Q 为△ABC 的重心.由(1)可知,AO AD =23,而AO AD =23,∴点Q 与点O 重合(是同一个点),。

2020年中考数学二轮重难点专练附解答: 新定义型

2020年中考数学二轮重难点专练附解答: 新定义型

新定义型例1、对任意一个三位数n ,如果n 满足各数位上的数字互不相同,且都不为零,那么称这个数为“相异数”.将一个“相异数”任意两个数位上的数字对调后可以得到三个不同的新三位数,把这三个新三位数的和与111的商记为F (n ).例如n =123,对调百位与十位上的数字得到213,对调百位与个位上的数字得到321,对调十位与个位上的数字得到132,这三个新三位数的和为213+321+132=666,666÷111=6,所以F (123)=6. (1)计算:F (243),F (617);(2)若s ,t 都是“相异数”,其中s =100x +32,t =150+y (1≤x ≤9,1≤y ≤9,x ,y 都是正整数),规定:k =F (s )F (t ),当F (s )+F (t )=18时,求k 的最大值.【解答】解:(1)F (243)=(423+342+234)÷111=9; F (617)=(167+716+671)÷111=14.(2)∵s ,t 都是“相异数”,s =100x +32,t =150+y ,∴F (s )=(302+10x +230+x +100x +23)÷111=x +5,F (t )=(510+y +100y +51+105+10y )÷111=y +6. ∵F (t )+F (s )=18,∴x +5+y +6=x +y +11=18, ∴x +y =7.∵1≤x ≤9,1≤y ≤9,且x ,y 都是正整数,∴⎩⎨⎧x =1y =6或⎩⎨⎧x =2y =5或⎩⎨⎧x =3y =4或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2或⎩⎨⎧x =6y =1. ∵s 是“相异数”, ∴x ≠2,x ≠3. ∵t 是“相异数”, ∴y ≠1,y ≠5.∴⎩⎨⎧x =1y =6或⎩⎨⎧x =4y =3或⎩⎨⎧x =5y =2, ∴⎩⎨⎧F (s )=6F (t )=12或⎩⎨⎧F (s )=9F (t )=9或⎩⎨⎧F (s )=10F (t )=8, ∴k =F (s )F (t )=12或k =F (s )F (t )=1或k =F (s )F (t )=54,∴k 的最大值为54.例2、如图1,在正方形ABCD 的内部,作∠DAE =∠ABF =∠BCG =∠CDH ,根据三角形全等的条件,易得△DAE ≌△ABF ≌△BCG ≌△CDH ,从而得到四边形EFGH 是正方形. 类比探究如图2,在正△ABC 的内部,作∠BAD =∠CBE =∠ACF ,AD ,BE ,CF 两两相交于D ,E ,F 三点(D ,E ,F 三点不重合)(1)△ABD ,△BCE ,△CAF 是否全等?如果是,请选择其中一对进行证明. (2)△DEF 是否为正三角形?请说明理由.(3)进一步探究发现,△ABD 的三边存在一定的等量关系,设BD =a ,AD =b ,AB =c ,请探索a ,b ,c 满足的等量关系.【解答】解:(1)△ABD ≌△BCE ≌△CAF ;理由如下: ∵△ABC 是正三角形,∴∠CAB =∠ABC =∠BCA =60°,AB =BC ,∵∠ABD =∠ABC -∠2,∠BCE =∠ACB -∠3,∠2=∠3, ∴∠ABD =∠BCE ,在△ABD 和△BCE 中,⎩⎪⎨⎪⎧∠1=∠2AB =BC ∠ABD =∠BCE,∴△ABD ≌△BCE (ASA );(2)△DEF 是正三角形;理由如下: ∵△ABD ≌△BCE ≌△CAF , ∴∠ADB =∠BEC =∠CF A , ∴∠FDE =∠DEF =∠EFD , ∴△DEF 是正三角形;(3)作AG ⊥BD 于G ,如图所示: ∵△DEF 是正三角形,∴∠ADG =60°,在Rt △ADG 中,DG =12b ,AG =32b ,在Rt △ABG 中,c 2=⎝⎛⎭⎫a +12b 2+⎝⎛⎭⎫32b 2, ∴c 2=a 2+ab +b 2.例3、有这样一个问题:探究同一平面直角坐标系中系数互为倒数的正、反比例函数y =1k x 与y =kx(k ≠0)的图象性质. 小明根据学习函数的经验,对函数y =1k x 与y =kx ,当k >0时的图象性质进行了探究.下面是小明的探究过程:(1)如图所示,设函数y =1k x 与y =kx 图象的交点为A ,B ,已知A 点的坐标为(-k ,-1),则B 点的坐标为________;(2)若点P 为第一象限内双曲线上不同于点B 的任意一点.①设直线P A 交x 轴于点M ,直线PB 交x 轴于点N .求证:PM =PN . 证明过程如下:设P ⎝⎛⎭⎫m , km ,直线P A 的解析式为y =ax +b (a ≠0).则 ⎩⎪⎨⎪⎧-ka +b =-1ma +b = k m , 解得 ⎩⎨⎧a =b =________∴直线P A 的解析式为________请你把上面的解答过程补充完整,并完成剩余的证明.②当P 点坐标为(1,k )(k ≠1)时,判断△P AB 的形状,并用k 表示出△P AB 的面积.【解答】解:(1)由正、反比例函数图象的对称性可知,点A 、B 关于原点O 对称,∵A 点的坐标为(-k ,-1), ∴B 点的坐标为(k ,1). 故答案为:(k ,1).(2)①证明过程如下,设P ⎝⎛⎭⎫m ,km ,直线P A 的解析式为y =ax +b (a ≠0).则⎩⎪⎨⎪⎧-ka +b =-1ma +b =k m ,解得:⎩⎨⎧a =1m b =km -1, ∴直线P A 的解析式为y =1m x +km -1.当y =0时,x =m -k , ∴M 点的坐标为(m -k ,0).过点P 作PH ⊥x 轴于H ,如图1所示, ∵P 点坐标为⎝⎛⎭⎫m ,km ,∴H 点的坐标为(m ,0),∴MH =x H -x M =m -(m -k )=k . 同理可得:HN =k . ∴MH =HN , ∴PM =PN .故答案为:⎩⎨⎧a =1m b =k m-1;y =1m x +km -1.②由①可知,在△PMN 中,PM =PN , ∴△PMN 为等腰三角形,且MH =HN =k . 当P 点坐标为(1,k )时,PH =k , ∴MH =HN =PH ,∴∠PMH =∠MPH =45°,∠PNH =∠NPH =45°, ∴∠MPN =90°,即∠APB =90°, ∴△P AB 为直角三角形.当k >1时,如图1, S△P AB =S △PMN -S △OBN +S △OAM ,=12MN ﹒PH -12ON ﹒y B +12OM ﹒|y A |, =12×2k ×k -12(k +1)×1+12(k -1)×1, =k 2-1;当0<k <1时,如图2, S△P AB =S △OBN -S △PMN +S △OAM ,=12ON ﹒y B -k 2+12OM ﹒|y A |, =12(k +1)×1-k 2+12(1-k )×1, =1-k 2.例4、问题呈现:如图1,点E 、F 、G 、H 分别在矩形ABCD 的边AB 、BC 、CD 、DA 上,AE =DG ,求证:2S 四边形EFGH =S 矩形ABCD .(S 表示面积)实验探究:某数学实验小组发现:若图1中AH ≠BF ,点G 在CD 上移动时,上述结论会发生变化,分别过点E 、G 作BC 边的平行线,再分别过点F 、H 作AB 边的平行线,四条平行线分别相交于点A 1、B 1、C 1、D 1,得到矩形A 1B 1C 1D 1. 如图2,当AH >BF 时,若将点G 向点C 靠近(DG >AE ),经过探索,发现:2 S四边形EFGH=S 矩形ABCD +S 矩形A 1B 1C 1D 1.如图3,当AH >BF 时,若将点G 向点D 靠近(DG <AE ),请探索S 四边形EFGH 、S矩形ABCD与S 矩形A 1B 1C 1D 1,之间的数量关系,并说明理由.迁移应用:请直接应用“实验探究”中发现的结论解答下列问题:(1)如图4,点E 、F 、G 、H 分别是面积为25的正方形ABCD 各边上的点,已知AH >BF ,AE >DG ,S 四边形EFGH =11,HF =29,求EG 的长.(2)如图5,在矩形ABCD 中,AB =3,AD =5,点E 、H 分别在边AB 、AD 上,BE =1,DH =2,点F 、G 分别是边BC 、CD 上的动点,且FG =10,连接EF 、HG ,请直接写出四边形EFGH 面积的最大值.【解答】问题呈现:证明:如图1中,∵四边形ABCD是矩形,∴AB∥CD,∠A=90°,∵AE=DG,∴四边形AEGD是矩形,∴S△HGE=12S四边形EFGH,同理S△EGF=12S矩形BEGC,∴S四边形EFGH=S△HGE+S△EFG=12S矩形ABCD.实验探究:结论:2 S四边形EFGH=S矩形ABCD-S矩形A1B1C1D1.理由:∵=12,=12,=12,=12,∴S四边形EFGH=+++﹣,∴2S四边形EFGH =2+2+2+2﹣2,∴2S 四边形EFGH =S 矩形ABCD ﹣S 矩形A 1B 1C 1D 1.迁移应用:解:(1)如图4中,∵2S四边形EFGH=S矩形ABCD﹣S矩形A 1B 1C 1D 1,∴S 矩形A 1B 1C 1D 1=25﹣2×11=3=A 1B 1A 1D 1,∵正方形的面积为25,∴边长为5,∵A 1D 12=HF 2﹣52=29﹣25=4,∴A 1D 1=2,A 1B 1=32,∴EG 2=A 1B 12+52=1094,∴EG =109.(2)∵2 S 四边形EFGH =S 矩形ABCD +S 矩形A 1B 1C 1D 1.∴四边形A 1B 1C 1D 1面积最大时,四边形EFGH 的面积最大.①如图5-1中,当G 与C 重合时,四边形A 1B 1C 1D 1面积最大时,四边形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=1﹒(10-2)=10-2②如图5-2中,当G 与D 重合时,四边形A 1B 1C 1D 1面积最大时,四边形EFGH 的面积最大.此时矩形A 1B 1C 1D 1面积=2﹒1=2,∵2>10-2,∴四边形EFGH 的面积最大值=172.例5、定义:点P 是△ABC 内部或边上的点(顶点除外),在△P AB ,△PBC ,△PCA 中,若至少有一个三角形与△ABC 相似,则称点P 是△ABC 的自相似点.例如:如图1,点P 在△ABC 的内部,∠PBC =∠A ,∠BCP =∠ABC ,则△BCP ∽△ABC ,故点P 是△ABC 的自相似点.请你运用所学知识,结合上述材料,解决下列问题:在平面直角坐标系中,点M 是曲线y =3 3x (x >0)上的任意一点,点N 是x 轴正半轴上的任意一点.(1)如图2,点P 是OM 上一点,∠ONP =∠M ,试说明点P 是△MON 的自相似点;当点M 的坐标是( 3,3),点N 的坐标是( 3,0)时,求点P 的坐标;(2)如图3,当点M 的坐标是(3, 3),点N 的坐标是(2,0)时,求△MON 的自相似点的坐标;(3)是否存在点M 和点N ,使△MON 无自相似点?若存在,请直接写出这两点的坐标;若不存在,请说明理由.【解答】解:(1)∵∠ONP =∠M ,∠NOP =∠MON , ∴△NOP ∽△MON ,∴点P 是△MON 的自相似点;过P 作PD ⊥x 轴于D ,则tan ∠POD =MNON =3,∴∠MON =60°,∵当点M 的坐标是(3,3),点N 的坐标是(3,0), ∴∠MNO =90°, ∵△NOP ∽△MON , ∴∠NPO =∠MNO =90°, 在Rt △OPN 中,OP =ON cos60°=32, ∴OD =OP cos60°=32×12=34,PD =OP ﹒sin60°=32×32=34,{{dbc 5494c .png }} ∴P⎝⎛⎭⎫34,34;(2)作MH ⊥x 轴于H ,如图3所示: ∵点M 的坐标是(3,3),点N 的坐标是(2,0), ∴OM =32+(3)2=23,直线OM 的解析式为y =33x ,ON =2,∠MOH =30°,分两种情况:①如图3所示:∵P 是△MON 的相似点, ∴△PON ∽△NOM ,作PQ ⊥x 轴于Q ,∴PO =PN ,OQ =12ON =1,∵P 的横坐标为1, ∴y =33×1=33,{{eb 10936e .png }} ∴P ⎝⎛⎭⎫1,33; ②如图4所示: 由勾股定理得:MN =(3)2+12=2,∵P 是△MON 的相似点, ∴△PNM ∽△NOM , ∴PN ON =MN MO ,即PN 2=223, 解得:PN =233,即P 的纵坐标为233,代入y =33得:233=33x ,解得:x =2,∴P ⎝⎛⎭⎫2,233;综上所述:△MON 的自相似点的坐标为⎝⎛⎭⎫1,33或⎝⎛⎭⎫2,233; (3)存在点M 和点N ,使△MON 无自相似点,M (3,3),N (23,0);理由如下: ∵M (3,3),N (23,0),∴OM =23=ON ,∠MON =60°, ∴△MON 是等边三角形, ∵点P 在△MON 的内部,∴∠PON ≠∠OMN ,∠PNO ≠∠MON , ∴存在点M 和点N ,使△MON 无自相似点.。

中考数学压轴选择填空专题——新定义问题(有答案)

新定义问题例题精讲例 1.割圆术是我国古代数学家刘徽创造的一种求周长和面积的方法:随着圆内接正多边形边数的增加,它的周长和面积越来越接近圆周长和圆面积,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽就是大胆地应用了以直代曲、无限趋近的思想方法求出了圆周率.请你也用这个方法求出二次函数 y=14(x −4)2的图象与两坐标轴所围成的图形最接近的面积是( ) A. 5 B. 225 C. 4 D. 17﹣4π 【答案】 A【解析】【解答】解:如图,设抛物线与坐标轴的交点为A 、B ,则有: A (4,0),B (0,4);作直线l∥AB ,易求得直线AB :y=﹣x+4,所以设直线l :y=﹣x+h ,当直线l 与抛物线只有一个交点(相切)时,有: ﹣x+h=14(x ﹣4)2 ,整理得:14x 2﹣x+4﹣h=0, ∥=1﹣4×14(4﹣h )=0,即h=3;所以直线l :y=﹣x+3;设直线l 与坐标轴的交点为C 、D ,则C (3,0)、D (0,3),因抛物线的图象与两坐标轴所围成的图形面积大于S ∥OCD 小于S ∥OAB S ∥OCD =12×3×3=4.5. S ∥OAB =12×4×4=8, 故抛物线的图象与两坐标轴所围成的图形面积在4.5<S <8的范围内,选项中符合的只有A , 故选A .例2.定义一种对正整数n 的“F”运算: ①当n 为奇数时,结果为3n+5;②当n 为偶数时,结果为 n2k (其中k 是使 n2k 为奇数的正整数),并且运算重复进行. 例如,取n=26,那么当n=26时,第2016次“F 运算”的结果是________.【答案】 62【解析】【解答】解:根据题意,得 当n=26时,第1次的计算结果是262=13,第2次的计算结果是13×3+5=44, 第3次的计算结果是 4422 =11, 第4次的计算结果是11×3+5=38, 第5次的计算结果是382 =19,第6次的计算结果是19×3+5=62, 第7次的计算结果是622=31,第8次的计算结果是31×3+5=98, 第9次的计算结果是982=49,第10次的计算结果是49×3+5=152, 第11次的计算结果是15223=19,以下每6次运算一循环,∥(2016﹣4)÷6=335…2,∥第2016次“F 运算”的结果与第6次的计算结果相同,为62, 故答案为:62.例3.观察下列运算过程:S=1+3+32+33+…+32017+32018 ①, ①×3得3S=3+32+33+…+32018+32019 ②, ②﹣①得2S=32019﹣1,S=32019−12.运用上面计算方法计算:1+5+52+53+…+52018=________. 【答案】52019−14【解析】【解答】设S=1+5+52+53+…+52018 ①, 则5S=5+52+53+54…+52019②, ②﹣①得:4S=52019﹣1,所以S= 52019−14,故答案为:52019−14.例4.我国南宋著名数学家秦九韶在他的著作《数书九章》一书中,给出了著名的秦九韶公式,也叫三斜求积公式,即如果一个三角形的三边长分别为a ,b ,c ,则该三角形的面积为S= √14[a 2b 2−(a 2+b 2−c 22)2] .现已知∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为________. 【答案】1【解析】【解答】解:∥S= √14[a 2b 2−(a 2+b 2−c 22)2] ,∥∥ABC 的三边长分别为1,2, √5 ,则∥ABC 的面积为: S= √14(12+22−(√5)22)=1,故答案为:1.例5.设双曲线 y =kx (k >0) 与直线 y =x 交于 A , B 两点(点 A 在第三象限),将双曲线在第一象限的一支沿射线 BA 的方向平移,使其经过点 A ,将双曲线在第三象限的一支沿射线 AB 的方向平移,使其经过点 B ,平移后的两条曲线相交于点 P , Q 两点,此时我称平移后的两条曲线所围部分(如图中(k>0)的眸径为6时,k的值为阴影部分)为双曲线的“眸”,PQ为双曲线的“眸径”当双曲线y=kx________.【答案】【解析】【解答】解:∥双曲线是关于原点成中心对称,点P、Q关于原点对称和直线AB对称∥四边形PAQB是菱形∥PQ=6∥PO=3根据题意可得出∥APB是等边三角形∥在Rt∥POB中,OB=tan30°×PO=√3×3= √33设点B的坐标为(x,x)∥2x2=3x2= 3=k2故答案为:32习题练习一、单选题1.在平面直角坐标系中,对于平面内任意一点(x,y),若规定以下两种变换:①f(x,y)=(y,x).如f(2,3)=(3,2);②g(x,y)=(﹣x,﹣y),如g(2,3)=(﹣2,﹣3).按照以上变换有:f(g(2,3))=f(﹣2,﹣3)=(﹣3,﹣2),那么g(f(﹣6,7))等于()A.(7,6)B.(7,﹣6)C.(﹣7,6)D.(﹣7,﹣6)2.定义符号min{a,b}的含义为:当a≥b时min{a,b}=b;当a<b时min{a,b}=a.如:min{1,﹣3}=﹣3,min{﹣4,﹣2}=﹣4.则min{﹣x2+1,﹣x}的最大值是()A.√5−12B.√5+12C.1D.03.张华在一次数学活动中,利用“在面积一定的矩形中,正方形的周长最短”的结论,推导出“式子x+ 1x(x>0)的最小值是2”.其推导方法如下:在面积是1的矩形中设矩形的一边长为x,则另一边长是1x,矩形的周长是2(x+ 1x );当矩形成为正方形时,就有x= 1x(0>0),解得x=1,这时矩形的周长2(x+ 1x)=4最小,因此x+ 1x (x>0)的最小值是2.模仿张华的推导,你求得式子x2+9x(x>0)的最小值是()A.2B.1C.6D.104.如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是()A.1,2,3B.1,1,√2C.1,1,√3D.1,2,√35.在求1+6+62+63+64+65+66+67+68+69的值时,小林发现:从第二个加数起每一个加数都是前一个加数的6倍,于是她设:S=1+6+62+63+64+65+66+67+68+69①然后在①式的两边都乘以6,得:6S=6+62+63+64+65+66+67+68+69+610②②﹣①得6S﹣S=610﹣1,即5S=610﹣1,所以S= 610−15,得出答案后,爱动脑筋的小林想:如果把“6”换成字母“a”(a≠0且a≠1),能否求出1+a+a2+a3+a4+…+a2014的值?你的答案是()A.a2014−1a−1B.a2015−1a−1C.a2014−1aD.a2014﹣16.阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∥MOx的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2 √2)D.(50°,2 √2)7.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若(a+b)2=21,大正方形的面积为13,则小正方形的面积为()A.3B.4C.5D.68.两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,詹姆斯在探究筝形的性质时,得到如下结论:①AC∥BD;②AO=CO= 12AC;③∥ABD∥∥CBD,其中正确的结论有()A.0个B.1个C.2个D.3个9.若十位上的数字比个位上的数字、百位上的数字都大的三位数叫做中高数,如796就是一个“中高数”.若十位上数字为7,则从3、4、5、6、8、9中任选两数,与7组成“中高数”的概率是()A.12B.23C.25D.3510.对于两个不相等的实数a、b ,我们规定符号Max{a ,b}表示a、b中的较大值,如:Max{2,4}=4,按照这个规定,方程Max{x,﹣x} =2x+1x的解为().A.1﹣√2B.2﹣√2C.1+ √2或1﹣√2D.1+ √2或﹣111.设a,b是实数,定义@的一种运算如下:a@b=(a+b)2﹣(a﹣b)2,则下列结论:①若a@b=0,则a=0或b=0②a@(b+c)=a@b+a@c③不存在实数a,b,满足a@b=a2+5b2④设a,b是矩形的长和宽,若矩形的周长固定,则当a=b时,a@b最大.其中正确的是()A.②③④B.①③④C.①②④D.①②③12.宽与长的比是√5−12(约0.618)的矩形叫做黄金矩形,黄金矩形蕴藏着丰富的美学价值,给我们以协调和匀称的美感.我们可以用这样的方法画出黄金矩形:作正方形ABCD,分别取AD、BC的中点E、F,连接EF:以点F为圆心,以FD为半径画弧,交BC的延长线于点G;作GH∥AD,交AD的延长线于点H,则图中下列矩形是黄金矩形的是()A.矩形ABFEB.矩形EFCDC.矩形EFGHD.矩形DCGH13.对于实数a,b,定义符号min{a,b},其意义为:当a≥b时,min{a,b}=b;当a<b时,min{a,b}=a.例如:min={2,﹣1}=﹣1,若关于x的函数y=min{2x﹣1,﹣x+3},则该函数的最大值为()A.23B.1 C.43D.5314.已知点A在函数y1=−1x(x>0)的图象上,点B在直线y2=kx+1+k(k为常数,且k≥0)上,若A,B两点关于原点对称,则称点A,B为函数y1,y2图象上的一对“友好点”.请问这两个函数图象上的“友好点”对数的情况为()A.只有1对或2对B.只有1对C.只有2对D.只有2对或3对15.在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点.从一个格点移动到与之相距√5的另一个格点的运动称为一次跳马变换.例如,在4×4的正方形网格图形中(如图1),从点A经过一次跳马变换可以到达点B,C,D,E等处.现有20×20的正方形网格图形(如图2),则从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是()A.13B.14C.15D.1616.定义[x]表示不超过实数x的最大整数,如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函数y=[x]的图象如图所示,则方程[x]= 12x2的解为()#N.A. 0或 √2B. 0或2C. 1或 −√2D. √2 或﹣ √2 二、填空题17.对非负实数x“四舍五入”到个位的值记为(x ).即当n 为非负整数时,若n ﹣ 12 ≤x <n+ 12 ,则(x )=n .如(0.46)=0,(3.67)=4. 给出下列关于(x )的结论:①(1.493)=1;②(2x )=2(x );③若( 12x −1 )=4,则实数x 的取值范围是9≤x <11;④当x≥0,m 为非负整数时,有(m+2013x )=m+(2013x );⑤(x+y )=(x )+(y );其中,正确的结论有________(填写所有正确的序号).18.若x 是不等于1的实数,我们把11−x称为x 的差倒数,如2的差倒数是11−2=﹣1,﹣1的差倒数为11−(−1)=12,现已知x 1=﹣ 13,x 2是x 1的差倒数,x 3是x 2的差倒数,x 4是x 3的差倒数,…,依此类推,则x 2017=________.19.在∥ABC 中,P 是AB 上的动点(P 异于A 、B ),过点P 的直线截∥ABC ,使截得的三角形与∥ABC 相似,我们不妨称这种直线为过点P 的∥ABC 的相似线,简记为P (l x )(x 为自然数).(1)如图①,∥A=90°,∥B=∥C ,当BP=2PA 时,P (l 1)、P (l 2)都是过点P 的∥ABC 的相似线(其中l 1∥BC ,l 2∥AC ),此外,还有________条;(2)如图②,∥C=90°,∥B=30°,当BPBA =________时,P (l x )截得的三角形面积为∥ABC 面积的14 .20.规定:[x]表示不大于x 的最大整数,(x )表示不小于x 的最小整数,[x )表示最接近x 的整数(x≠n+0.5,n 为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.则下列说法正确的是________.(写出所有正确说法的序号) ①当x=1.7时,[x]+(x )+[x )=6; ②当x=﹣2.1时,[x]+(x )+[x )=﹣7;③方程4[x]+3(x )+[x )=11的解为1<x <1.5;④当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有两个交点.21.阅读理解:如图1,∥O 与直线a 、b 都相切,不论∥O 如何转动,直线a 、b 之间的距离始终保持不变(等于∥O 的直径),我们把具有这一特性的图形成为“等宽曲线”,图2是利用圆的这一特性的例子,将等直径的圆棍放在物体下面,通过圆棍滚动,用较小的力既可以推动物体前进,据说,古埃及人就是利用这样的方法将巨石推到金字塔顶的.拓展应用:如图3所示的弧三角形(也称为莱洛三角形)也是“等宽曲线”,如图4,夹在平行线c ,d 之间的莱洛三角形无论怎么滚动,平行线间的距离始终不变,若直线c ,d 之间的距离等于2cm ,则莱洛三角形的周长为________cm .22.经过三边都不相等的三角形的一个顶点的线段把三角形分成两个小三角形,如果其中一个是等腰三角形,另外一个三角形和原三角形相似,那么把这条线段定义为原三角形的“和谐分割线”.如图,线段CD是∥ABC 的“和谐分割线”,∥ACD为等腰三角形∥CBD和∥ABC相似,∥A =46°,则∥ACB的度数为________.答案解析部分一、单选题1.【答案】C【解析】【解答】解:∥f(﹣6,7)=(7,﹣6),∥g(f(﹣6,7))=g(7,﹣6)=(﹣7,6).故选C.2.【答案】A【解析】【解答】解:在同一坐标系xOy中,画出函数二次函数y=﹣x2+1与正比例函数y=﹣x的图象,如图所示.设它们交于点A、B.令﹣x2+1=﹣x,即x2﹣x﹣1=0,解得:x= 1+√52或1−√52,∥A(1−√52,√5−12),B(1+√52,−1−√52).观察图象可知:①当x≤ 1−√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而增大,其最大值为√5−12;②当1−√52<x<1+√52时,min{﹣x2+1,﹣x}=﹣x,函数值随x的增大而减小,其最大值为√5−12;③当x≥ 1+√52时,min{﹣x2+1,﹣x}=﹣x2+1,函数值随x的增大而减小,最大值为−1−√52.综上所示,min{﹣x2+1,﹣x}的最大值是√5−12.故选:A.3.【答案】C【解析】【解答】解:∥x>0,∥在原式中分母分子同除以x,即x 2+9x=x+ 9x,在面积是9的矩形中设矩形的一边长为x,则另一边长是9x,矩形的周长是2(x+ 9x);当矩形成为正方形时,就有x= 9x,(x>0),解得x=3,这时矩形的周长2(x+ 9x)=12最小,因此x+ 9x(x >0)的最小值是6.故答案为:C 4.【答案】D【解析】【解答】解:A 、∥1+2=3,不能构成三角形,故选项错误; B 、∥12+12=( √2 )2 , 是等腰直角三角形,故选项错误;C 、底边上的高是 (√32) = 12 ,可知是顶角120°,底角30°的等腰三角形,故选项错误;D 、解直角三角形可知是三个角分别是90°,60°,30°的直角三角形,其中90°÷30°=3,符合“智慧三角形”的定义,故选项正确. 故选:D . 5.【答案】B【解析】【解答】解:设S=1+a+a 2+a 3+a 4+…+a 2014 , ① 则aS=a+a 2+a 3+a 4+…+a 2014+a 2015 , ②, ②﹣①得:(a ﹣1)S=a 2015﹣1, ∥S= a 2015−1a−1,即1+a+a 2+a 3+a 4+…+a 2014= a 2015−1a−1.故答案为:B . 6.【答案】 A【解析】【解答】解:如图,设正六边形的中心为D ,连接AD ,∥∥ADO=360°÷6=60°,OD=AD , ∥∥AOD 是等边三角形, ∥OD=OA=2,∥AOD=60°, ∥OC=2OD=2×2=4,∥正六边形的顶点C 的极坐标应记为(60°,4). 故选:A .7.【答案】 C【解析】【解答】如图所示,∥ (a +b)2=21 ,∥ a 2+2ab +b 2 =21,∥大正方形的面积为13,2ab=21﹣13=8,∥小正方形的面积为13﹣8=5.故答案为:C . 8.【答案】 D【解析】【解答】解:在∥ABD 与∥CBD 中, {AD =CD AB =BC DB =DB, ∥∥ABD∥∥CBD (SSS ), 故③正确; ∥∥ADB=∥CDB ,在∥AOD 与∥COD 中,{AD =CD∠ADB =∠CDB OD =OD,∥∥AOD∥∥COD (SAS ),∥∥AOD=∥COD=90°,AO=OC , ∥AC∥DB ,故①②正确; 故选D9.【答案】 C【解析】【解答】解:列表得:∥与7组成“中高数”的概率是:1230=25 .故选C .10.【答案】 D【解析】【分析】根据x 与﹣x 的大小关系,取x 与﹣x 中的最大值化简所求方程,求出解即可.【解答】当x <﹣x , 即x <0时,所求方程变形得:﹣x= ,去分母得:x 2+2x+1=0,即x=﹣1;当x >﹣x , 即x >0时,所求方程变形得:x= ,即x 2﹣2x=1,解得:x=1+或x=1﹣(舍去), 经检验x=﹣1与x=1+都为分式方程的解.故选:D .11.【答案】C【解析】【解答】解:①根据题意得:a@b=(a+b )2﹣(a ﹣b )2 ∥(a+b )2﹣(a ﹣b )2=0,整理得:(a+b+a ﹣b )(a+b ﹣a+b )=0,即4ab=0, 解得:a=0或b=0,正确;②∥a@(b+c )=(a+b+c )2﹣(a ﹣b ﹣c )2=4ab+4aca@b+a@c=(a+b )2﹣(a ﹣b )2+(a+c )2﹣(a ﹣c )2=4ab+4ac , ∥a@(b+c )=a@b+a@c 正确;③a@b=a2+5b2,a@b=(a+b)2﹣(a﹣b)2,令a2+5b2=(a+b)2﹣(a﹣b)2,解得,a=0,b=0,故错误;④∥a@b=(a+b)2﹣(a﹣b)2=4ab,(a﹣b)2≥0,则a2﹣2ab+b2≥0,即a2+b2≥2ab,∥a2+b2+2ab≥4ab,∥4ab的最大值是a2+b2+2ab,此时a2+b2+2ab=4ab,解得,a=b,∥a@b最大时,a=b,故④正确,故选C.12.【答案】D【解析】【解答】解:设正方形的边长为2,则CD=2,CF=1 在直角三角形DCF中,DF= √12+22= √5∥FG= √5∥CG= √5﹣1∥ CGCD = √5−12∥矩形DCGH为黄金矩形故选D.13.【答案】D【解析】【解答】解:由题意得:{y=2x−1y=−x+3,解得:{x=43y=53,当2x﹣1≥﹣x+3时,x≥ 43,∥当x≥ 43时,y=min{2x﹣1,﹣x+3}=﹣x+3,由图象可知:此时该函数的最大值为53;当2x﹣1<﹣x+3时,x<43,∥当x<43时,y=min{2x﹣1,﹣x+3}=2x﹣1,由图象可知:此时该函数的最大值为53;综上所述,y=min{2x﹣1,﹣x+3}的最大值是当x= 43所对应的y的值,如图所示,当x= 43时,y= 53,故答案为:D.14.【答案】A【解析】【解答】解:设A(a,−1a ),根据题意点A关于坐标原点对称的点B(-a,1a)在直线y 2 = k x + 1 + k上,∥1a=-ak+1+k,整理得:ka2-(k+1)a+1=0 ①,即(a-1)(ka-1)=0,∥a-1=0或ka-1=0,则a=1或ka-1=0,若k=0,则a=1,此时方程①只有1个实数根,即两个函数图象上的“友好点”只有1对;若k≠0,则a=1k,此时方程①有2个实数根,即两个函数图象上的“友好点”有2对,综上所述,这两个函数图象上的“友好点”对数情况为1对或2对,故选:A.15.【答案】B【解析】【解答】解:如图1,连接AC,CF,则AF=3 √2,∥两次变换相当于向右移动3格,向上移动3格,又∥MN=20 √2,∥20 √2÷3 √2= 203,(不是整数)∥按A﹣C﹣F的方向连续变换10次后,相当于向右移动了10÷2×3=15格,向上移动了10÷2×3=15格,此时M位于如图所示的5×5的正方形网格的点G处,再按如图所示的方式变换4次即可到达点N处,∥从该正方形的顶点M经过跳马变换到达与其相对的顶点N,最少需要跳马变换的次数是14次,故选:B.16.【答案】A【解析】【解答】解:当1≤x<2时,12x2=1,解得x1= √2,x2=﹣√2;当x=0,12x2=0,x=0;当﹣1≤x <0时, 12x 2=﹣1,方程没有实数解;当﹣2≤x <﹣1时, 12 x 2=﹣1,方程没有实数解; 所以方程[x]= 12 x 2的解为0或 √2 .二、填空题17.【答案】 ①③④【解析】【解答】解:①(1.493)=1,正确;②(2x )≠2(x ),例如当x=0.3时,(2x )=1,2(x )=0,故②错误; ③若( 12x −1 )=4,则4﹣ 12 ≤ 12 x ﹣1<4+ 12 ,解得:9≤x <11,故③正确;④m 为整数,故(m+2013x )=m+(2013x ),故④正确;⑤(x+y )≠(x )+(y ),例如x=0.3,y=0.4时,(x+y )=1,(x )+(y )=0,故⑤错误; 综上可得①③正确. 故答案为:①③④ 18.【答案】−13【解析】【解答】解:由题意可得, x 1=﹣ 13 ,x 2= 11−(−13)=34 ,x 3=11−34=4 ,x 4= 11−4=−13 , 2017÷3=672…1, ∥x 2017= −13 , 故答案为: −13 . 19.【答案】 1 ;12或34或√34【解析】【解答】(1)存在另外 1 条相似线.如图1所示,过点P 作l 3∥BC 交AC 于Q ,则∥APQ∥∥ABC ; 故答案为:1;(2)设P (l x )截得的三角形面积为S ,S=14S ∥ABC , 则相似比为1:2.如图2所示,共有4条相似线:①第1条l 1 , 此时P 为斜边AB 中点,l 1∥AC ,∥BP BA =12;②第2条l 2 , 此时P 为斜边AB 中点,l 2∥BC ,∥BP BA =12;③第3条l 3 , 此时BP 与BC 为对应边,且BP BA =12, ∥BP BA=BPBC COS30o=√34;④第4条l 4 , 此时AP 与AC 为对应边,且AP AC =12, ∥AP AB=APAC sin30o=14, ∥BP BA =34.故答案为:12或12或√34.20.【答案】②③【解析】【解答】解:①当x=1.7时, [x]+(x )+[x )=[1.7]+(1.7)+[1.7)=1+2+2=5,故①错误;②当x=﹣2.1时, [x]+(x )+[x )=[﹣2.1]+(﹣2.1)+[﹣2.1)=(﹣3)+(﹣2)+(﹣2)=﹣7,故②正确;③当1<x <1.5时, 4[x]+3(x )+[x ) =4×1+3×2+1 =4+6+1=11,故③正确;④∥﹣1<x <1时,∥当﹣1<x <﹣0.5时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当﹣0.5<x <0时,y=[x]+(x )+x=﹣1+0+x=x ﹣1, 当x=0时,y=[x]+(x )+x=0+0+0=0,当0<x <0.5时,y=[x]+(x )+x=0+1+x=x+1,当0.5<x <1时,y=[x]+(x )+x=0+1+x=x+1,∥y=4x ,则x ﹣1=4x 时,得x= −13;x+1=4x 时,得x= 13;当x=0时,y=4x=0,∥当﹣1<x <1时,函数y=[x]+(x )+x 的图象与正比例函数y=4x 的图象有三个交点,故④错误, 故答案为:②③. 21.【答案】2π【解析】【解答】解:如图3,由题意知AB=BC=AC=2cm , ∥∥BAC=∥ABC=∥ACB=60°,∥ AB̂ 在以点C 为圆心、2为半径的圆上, ∥ AB̂ 的长为 60⋅π⋅2180= 2π3, 则莱洛三角形的周长为2π3×3=2π,故答案为:2π.22.【答案】113°或92°.【解析】【解答】∥△BCD ∼△BAC , ∥∥BCD=∥A=46°,∥△ACD 为等腰三角形,∥ADC>∥BCD , ∥∥ADC>∥A , ∥AC ≠CD ,①当AC=AD 时,∥ACD=∥ADC=12(180°-46°)=67°, ∥∥ACB=67°+46°=113°.②当DA=DC 时,∥ACD=∥A=46°,。

2020年九年级数学中考总复习新定义专题训练测试卷含参考答案及试题解析

2020年九年级数学中考总复习新定义专题训练测试卷一.选择题(共20小题)1.对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.402.定义:在平面直角坐标系中,圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=﹣x+12与x轴、y轴分别交于A,B两点,点P在x轴上,⊙P与l相切,当P在线段OA(点P与点O,A不重台)上运动时,使得⊙P成为整圆的点P个数是()A.3个B.5个C.7个D.9个二.填空题(共20小题)3.定义:在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒数点”.直线y=﹣2x+1上有两点A,B,它们的“倒数点”点A′,B′均在反比例函数的图象上.若AB=,则k=.4.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点(1,1).(﹣2,﹣2).(,),…,都是等值点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个等值点(,),且当m≤x≤3时,函数y=ax2+4x+c﹣(a ≠0)的最小值为﹣9,最大值为﹣1,则m的取值范围是.三.解答题(共60分)5.(10分)对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.6.(10分)定义:把函数y=(m>0)的图象叫做正值双曲线.把函数y=(m<0)的图象叫做负值双曲线.(1)请写出正值双曲线的两条性质;(2)如图,直线l经过点A(﹣1,0),与负值双曲线y=(m<0)交于点B(﹣2,﹣1).P是射线AB上的一点,过点P作x轴的平行线分别交该负值双曲线于M,N两点(点M在点N的左边).①求直线l的解析式和m的值;②是否存在点P,使得S△AMN=4S△APM?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.7.(10分)【阅读理解】设点P在正方形ABCD内部,当点P到正方形的一条边的两个端点距离相等时,称点P为该边的“等距点”.举例:如图,正方形ABCD中,若P A=PD,则称点P为边AD的“等距点”.【解题运用】已知,点P在边长为a的正方形ABCD内部.(1)设点P是边AD的“等距点”,求证:点P也是边BC的“等距点”;(2)若点P是边BC的“等距点”,连接P A,PB,求△P AB周长的最小值(用含a的式子表示);(3)若点P是边CD的“等距点”,连接PB,PC,PD,当PB=a,且sin∠ADP•sin∠BPC=cos2θ时,求锐角θ的度数.8.(15分)定义:在平面直角坐标系xOy中,对于点P和图形M,如果线段OP与图形M 有公共点时,就称点P为关于图形M的“亲近点”.已知平面直角坐标系xOy中,点A(1,),B(5,),连接AB.(1)在P1(1,2),P2(3,2),P3(5,2)这三个点中,关于线段AB的“亲近点”是;(2)若线段CD上的所有点都是关于线段AB的“亲近点”,点C(t,)、D (t+6,),求实数t的取值范围;(3)若⊙A与y轴相切,直线l:y=过点B,点E是直线l上的动点,⊙E半径为2,当⊙E上所有点都是关于⊙A的“亲近点”时,直接写出点E横坐标n的取值范围.9.(15分)平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为,面积为;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.2020年九年级数学中考总复习新定义专题训练测试卷参考答案与试题解析一.选择题(共2小题)1.对于有理数x,我们规定{x}表示不小于x的最小整数,如{2.2}=3,{2}=2,{﹣2.5}=﹣2,若{}=3,则x的取值可以是()A.10B.20C.30D.40解:有题意得:,解不等式①得:x>16,解不等式②得:x≤26,不等式组的解集为16<x≤26,20符合x的取值范围.故选:B.2.定义:在平面直角坐标系中,圆心坐标和半径均为整数的圆称为“整圆”.如图,直线l:y=﹣x+12与x轴、y轴分别交于A,B两点,点P在x轴上,⊙P与l相切,当P在线段OA(点P与点O,A不重台)上运动时,使得⊙P成为整圆的点P个数是()A.3个B.5个C.7个D.9个解:∵直线l:y=﹣x+12与x轴、y轴分别交于A、B,∴A(16,0),B(0,12),∴OB=12,OA=16,∴AB==20,∴sin∠BAO==,∵⊙P与l相切,设切点为M,连接PM,则PM⊥AB,∴PM=P A,设P(x,0),∴P A=16﹣x,∴⊙P的半径PM=P A=﹣x,∵x为整数,PM为整数,∴x可以取1,6,11,3个数,∴使得⊙P成为整圆的点P个数是3.故选:A.二.填空题(共2小题)3.定义:在平面直角坐标系xOy中,对于不在坐标轴上的任意一点P(x,y),我们把点P′(,)称为点P的“倒数点”.直线y=﹣2x+1上有两点A,B,它们的“倒数点”点A′,B′均在反比例函数的图象上.若AB=,则k=﹣.解:如图过点A作AC⊥x轴,过B点作CB⊥y轴,BC交AC于点C∴∠ACB=90°∵直线y=﹣2x+1交x轴,y轴于E点,D点∴E(,0),D(0,1)∴tan∠ODE=∵AC∥OD∴∠CAD=∠ODE∴tan∠CAD=且AB==∴BC=1,AC=2设A(a,﹣2a+1),∴若B点在A点下方,则B(a+1,﹣2a﹣1)若B点在A点上方,则B(a﹣1,﹣2a+3)∵它们的“倒数点”点A′,B′均在反比例函数的图象上∴a=﹣或a=∴A1(,),或A2(,﹣)∴A1'(﹣4,),A2'(,﹣2)∴k=﹣4.在平面直角坐标系xOy中,若点P的横坐标和纵坐标相等,则称点P为等值点.例如点(1,1).(﹣2,﹣2).(,),…,都是等值点.已知二次函数y=ax2+4x+c(a≠0)的图象上有且只有一个等值点(,),且当m≤x≤3时,函数y=ax2+4x+c﹣(a ≠0)的最小值为﹣9,最大值为﹣1,则m的取值范围是﹣1≤m≤1.解:令ax2+4x+c=x,即ax2+3x+c=0,由题意,△=32﹣4ac=0,即4ac=9,又方程的根为=,解得a=﹣2,c=﹣.故函数y=ax2+4x+c﹣=﹣2x2+4x﹣3=﹣2(x﹣1)2﹣1,如图,该函数图象顶点为(1,﹣1),由于函数图象在对称轴x=1左侧y随x的增大而增大,在对称轴右侧y随x的增大而减小,且当m≤x≤3时,函数y=﹣2x2+4x﹣3的最小值为﹣9,最大值为﹣1,∴﹣1≤m≤1,故答案为:﹣1≤m≤1.三.解答题(共5小题)5.对于平面直角坐标系xOy中的点P,Q,给出如下定义:若P,Q为某个三角形的顶点,且边PQ上的高h,满足h=PQ,则称该三角形为点P,Q的“生成三角形”.(1)已知点A(4,0);①若以线段OA为底的某等腰三角形恰好是点O,A的“生成三角形”,求该三角形的腰长;②若Rt△ABC是点A,B的“生成三角形”,且点B在x轴上,点C在直线y=2x﹣5上,则点B的坐标为(1,0),(3,0)或(7,0).;(2)⊙T的圆心为点T(2,0),半径为2,点M的坐标为(2,6),N为直线y=x+4上一点,若存在Rt△MND,是点M,N的“生成三角形”,且边ND与⊙T有公共点,直接写出点N的横坐标x N的取值范围.解:(1)①如图,不妨设满足条件的三角形为等腰△OAR,则OR=AR.过点R作RH ⊥OA于点H,∴OH=HA,∵以线段OA为底的等腰△OAR恰好是点O,A的“生成三角形”,∴RH=OA=4.∴OR=,答:该三角形的腰长为.(2)②如图所示:若A为直角顶点时,点B的坐标为(1,0)或(7,0);若B为直角顶点时,点B的坐标为(1,0)或(3,0)综上,点B的坐标为(1,0),(3,0)或(7,0).(2)由图可得:若N为直角顶点:﹣1﹣≤x N≤0;若M为直角顶点:﹣6≤x N≤﹣2;综上,﹣6≤x N≤0.答:点N的横坐标x N的取值范围为:﹣6≤x N≤0.6.定义:把函数y=(m>0)的图象叫做正值双曲线.把函数y=(m<0)的图象叫做负值双曲线.(1)请写出正值双曲线的两条性质;(2)如图,直线l经过点A(﹣1,0),与负值双曲线y=(m<0)交于点B(﹣2,﹣1).P是射线AB上的一点,过点P作x轴的平行线分别交该负值双曲线于M,N两点(点M在点N的左边).①求直线l的解析式和m的值;②是否存在点P,使得S△AMN=4S△APM?若存在,请求出所有满足条件的点P的坐标;若不存在,请说明理由.解:(1)①当x<0时,y随x的增大而增大;当x>0时,y随x的增大而减小;②无论x取何值,y>0;③图象与坐标轴没有交点;④图象分布在第一、二象限,等等;(2)①设直线l的解析式为y=kx+b.∵直线l过点A(﹣1,0)和点B(﹣2,﹣1),∴解得,∴直线l的解析式为y=x+1.∵双曲线y=(m<0)交于点B(﹣2,﹣1),∴m=2×(﹣1)=﹣2,即:m的值为﹣2;②若存在,设点P的坐标为(p,p+1),则点M(,p+1),点N(﹣,p+1).∴S△AMN=|﹣﹣|×|p+1|=2,若点P在线段AB上,则S△APM=(p﹣)×[﹣(p+1)]=(﹣P2﹣P+2).∵S△AMN=4S△APM,∴2=4×(﹣P2﹣P+2),即P2+P﹣1=0.解得p1=,p2=(舍去),若点P与点B重合,△APM不存在;若点P在线段AB的延长线上,则S△APM=(﹣p)×[﹣(p+1)]=(P2+P﹣2).∵S△AMN=4S△APM,∴2=4×(P2+P﹣2),即P2+P﹣3=0.解得p3=,p4=(舍去).故存在点P(,)和(,),使得S△AMN=4S△APM.7.【阅读理解】设点P在正方形ABCD内部,当点P到正方形的一条边的两个端点距离相等时,称点P为该边的“等距点”.举例:如图,正方形ABCD中,若P A=PD,则称点P为边AD的“等距点”.【解题运用】已知,点P在边长为a的正方形ABCD内部.(1)设点P是边AD的“等距点”,求证:点P也是边BC的“等距点”;(2)若点P是边BC的“等距点”,连接P A,PB,求△P AB周长的最小值(用含a的式子表示);(3)若点P是边CD的“等距点”,连接PB,PC,PD,当PB=a,且sin∠ADP•sin∠BPC=cos2θ时,求锐角θ的度数.(1)证明:如图1中,连接PB,PC.∵四边形ABCD是正方形,∴AB=CD,∠BAD=∠CDA=90°,∵P A=PD,∴∠P AD=∠PDA,∴∠BAP=∠CDP,∴△BAP≌△CDP(SAS),∴PB=PC,∴点P也是边BC的“等距点”;(2)如图2中,∵点P是边BC的“等距点”,∴点P在线段BC的垂直平分线上,连接BD交MN于点P,连接P A,此时P A+PB的值最小,即△P AB的周长最小,周长的最小值=AB+P A+PB=AB+PD+PB=AB+BD=a+a.(3)如图3中,∵点P是边CD的“等距点”,∴由(1)可知:点P也是边AB点,∴P A=PB,∵PB=AB=a,∴P A=AB=PB,∴△P AB是等边三角形,∴∠P AB=∠PBA=60°,∵∠DAB=∠CBA=90°,∴∠DAP=∠CBP=30°,∵AD=AP,BP=BC,∴∠ADP=∠APD=∠BPC=∠BCP=75°,∵sin∠ADP•sin∠BPC=cos2θ,∴cos2θ=sin75°•sin75°=cos215°,∴锐角θ=15°.8.定义:在平面直角坐标系xOy中,对于点P和图形M,如果线段OP与图形M有公共点时,就称点P为关于图形M的“亲近点”.已知平面直角坐标系xOy中,点A(1,),B(5,),连接AB.(1)在P1(1,2),P2(3,2),P3(5,2)这三个点中,关于线段AB的“亲近点”是P2和P3;(2)若线段CD上的所有点都是关于线段AB的“亲近点”,点C(t,)、D (t+6,),求实数t的取值范围;(3)若⊙A与y轴相切,直线l:y=过点B,点E是直线l上的动点,⊙E半径为2,当⊙E上所有点都是关于⊙A的“亲近点”时,直接写出点E横坐标n的取值范围.解:(1)如图1:由“亲近点”的定义可以判断OP2与OP3与AB线段有公共点,∴线段AB的“亲近点”是P2与P3,故答案为P2和P3;(2)线段CD上的所有点都是关于线段AB的“亲近点”,∵t+6>t,∴O、A、C在一条直线上,O、B、D在一条直线上,此时线段CD上的所有点都是关于线段AB的“亲近点”,∴=,∴t=3,∴,∴t=,∴≤t≤3;(3)y=过点B,∴b=6,∴y=﹣x+6,如图2:过原点的直线与⊙A相切于点F,连接OA,过点A作AG⊥x轴,∵OA=2,AF=1,∴∠AOF=30°,∵AG=,OG=1,∴∠AOG=60°,∴∠FOG=30°,当⊙E与⊙A的切线相切时,⊙E上所有点都是关于⊙A的“亲近点”,∴OP⊥PE,∵Q(6,0),∴PQ=3,∵⊙E的半径PE=2,∴EQ=5,∴E点横坐标n=6﹣=;如图3:当⊙E与y轴相切时,⊙E上所有点都是关于⊙A的“亲近点”,∴E点横坐标n=2,∴2≤n≤;9.平面直角坐标系xOy中,对于任意的三个点A、B、C,给出如下定义:若矩形的任何一条边均与某条坐标轴平行,且A,B,C三点都在矩形的内部或边界上,则称该矩形为点A,B,C的“三点矩形”.在点A,B,C的所有“三点矩形”中,若存在面积最小的矩形,则称该矩形为点A,B,C的“最佳三点矩形”.如图1,矩形DEFG,矩形IJCH都是点A,B,C的“三点矩形”,矩形IJCH是点A,B,C的“最佳三点矩形”.如图2,已知M(4,1),N(﹣2,3),点P(m,n).(1)①若m=1,n=4,则点M,N,P的“最佳三点矩形”的周长为18,面积为18;②若m=1,点M,N,P的“最佳三点矩形”的面积为24,求n的值;(2)若点P在直线y=﹣2x+4上.①求点M,N,P的“最佳三点矩形”面积的最小值及此时m的取值范围;②当点M,N,P的“最佳三点矩形”为正方形时,求点P的坐标;(3)若点P(m,n)在抛物线y=ax2+bx+c上,且当点M,N,P的“最佳三点矩形”面积为12时,﹣2≤m≤﹣1或1≤m≤3,直接写出抛物线的解析式.解:(1)①如图1,画出点M,N,P的“最佳三点矩形”,可知矩形的周长为6+6+3+3=18,面积为3×6=18;故答案为:18,18.②∵M(4,1),N(﹣2,3),∴|x M﹣x N|=6,|y M﹣y N|=2.又∵m=1,点M,N,P的“最佳三点矩形”的面积为24.∴此矩形的邻边长分别为6,4.∴n=﹣1或5.(2)如图2,①易得点M,N,P的“最佳三点矩形”面积的最小值为12;分别将y=3,y=1代入y=﹣2x+4,可得x分别为,;结合图象可知:≤m≤;②当点M,N,P的“最佳三点矩形”为正方形时,边长为6,分别将y=7,y=﹣3代入y=﹣2x+4,可得x分别为﹣,;∴点P的坐标为(﹣,7)或(,﹣3);(3)如图3,设抛物线的解析式为y=ax2+bx+c,经过点(﹣1,1),(1,1),(3,3),∴,,∴,同理抛物线经过点(﹣1,3),(1,3),(3,1),可求得抛物线的解析式为y=﹣,∴抛物线的解析式y=x2+或y=﹣x2+.。

2020年中考数学高频重点《新定义问题》专题突破精练精解(含答案)

【中考数学】专题16 新定义问题【达标要求】【知识梳理】1.“新定义”问题的概念及特征“新定义”问题其主要特征是以初中生已学过的知识为出发点,通过类比、引申、拓展给出新的数学概念(数学公式);或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,通过分析近年来中考试卷中出现的这类“新定义”型试题大致分为三种类型:(1)定义“新规则,新运算”型;(2)定义数学新概念型;(3)定义新函数、新知识型.2.“新定义”问题类型和常用解题方法(1)定义“新规则,新运算”型“新规则,新运算”型一般是先通过阅读示例的解题过程,理解方法要点,并体会蕴含其中的数学思想;再由特殊到一般对新方法加以应用,特别是在解决一般情况时要注意题目中看似不经意的限制条件.(2)定义数学新概念型定义数学新概念型在中考试题中一般以中档题出现,能较好的考查学生领悟定义的性质与判定的功能,认真审题、缜密思维的习惯以及对数学知识的综合运用能力、迁移能力和发现探究能力.(3)定义新函数,新知识型定义新函数,新知识型主要考查学生的阅读理解能力,应变能力和创新能力.解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握教学中的基本概念和基本的性质.3. “新定义”问题类型应对策略数学教学也就是数学语言的教学,这是因为数学语言是数学知识和数学思想的载体,数学知识与数学思想最终要通过数学语言表达出来并获得理解、掌握、交流和应用.因此,在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法.在中考复习中,要关注初、高中内容的衔接,对与初中数学知识密切相关,或简单的高中数学问题要尽量关注,适当进行“一题多变”、“一题多解”、“一法多用”的教学活动.【精练精解】1.对于一个函数,自变量x取a时,函数值y也等于a,我们称a为这个函数的不动点.如果二次函数y=x2+2x+c 有两个相异的不动点x1、x2,且x1<1<x2,则c的取值范围是()A.c<-3 B.c<-2 C.14c D.c<12.从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =L ,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .43.已知: [x]表示不超过x 的最大整数,例: [3.9]=3,[−1.8]=−2,令关于k 的函数f(k)=[k+14]−[k4] (k 是正整数),例:f(3)=[3+14]−[34]=1,则下列结论错误..的是( ) A .f(1)=0 B .f(k +4)=f(k) C .f(k +1)≥f(k)D .f(k)=0或14.已知点()00,P x y 到直线y kx b =+的距离可表示为d =,例如:点(0,1)到直线26y x =+的距离d ==y x =和4y x =-之间的距离为_______.5.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=; 22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.6.规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号)7.如图,已知抛物线y 1=﹣x 2+4x 和直线y 2=2x .我们规定:当x 取任意一个值时,x 对应的函数值分别为y 1和y 2,若y 1≠y 2,取y 1和y 2中较小值为M ;若y 1=y 2,记M=y 1=y 2.①当x >2时,M=y 2;②当x <0时,M 随x 的增大而增大;③使得M 大于4的x 的值不存在;④若M=2,则x=1.上述结论正确的是_____(填写所有正确结论的序号).8.阅读材料:定义:如果一个数的平方等于﹣1,记为i 2=﹣1,这个数i 叫做虚数单位,把形如a +bi (a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似. 例如计算:(4+i )+(6﹣2i )=(4+6)+(1﹣2)i =10﹣i ; (2﹣i )(3+i )=6﹣3i +2i ﹣i 2=6﹣i ﹣(﹣1)=7﹣i ; (4+i )(4﹣i )=16﹣i 2=16﹣(﹣1)=17; (2+i )2=4+4i +i 2=4+4i ﹣1=3+4i 根据以上信息,完成下面计算: (1+2i )(2﹣i )+(2﹣i )2= 7﹣i .9.已知点P (x 0,y 0)到直线y =kx +b 的距离可表示为d =,例如:点(0,1)到直线y =2x +6的距离d ==.据此进一步可得两条平行线y =x 和y =x ﹣4之间的距离为 2 .10.对任意一个四位数n ,如果千位与十位上的数字之和为9,百位与个位上的数字之和也为9,则称n 为“极数”.(1)请任意写出三个“极数”;并猜想任意一个“极数”是否是99的倍数,请说明理由;(2)如果一个正整数a 是另一个正整数b 的平方,则称正整数a 是完全平方数.若四位数m 为“极数”,记D (m )=33m,求满足D (m )是完全平方数的所有m.11.阅读以下材料:对数的创始人是苏格兰数学家纳皮尔(J.Nplcr,1550﹣1617年),纳皮尔发明对数是在指数书写方式之前,直到18世纪瑞士数学家欧拉(Evlcr,1707﹣1783年)才发现指数与对数之间的联系.对数的定义:一般地,若a x=N(a>0且a≠1),那么x叫做以a为底N的对数,记作x=log a N,比如指数式24=16可以转化为对数式4=log216,对数式2=log525,可以转化为指数式52=25.我们根据对数的定义可得到对数的一个性质:log a(M•N)=log a M+log a N(a>0,a≠1,M>0,N>0),理由如下:设log a M=m,log a N=n,则M=a m,N=a n,∴M•N=a m•a n=a m+n,由对数的定义得m+n=log a(M•N)又∵m+n=log a M+log a N∴log a(M•N)=log a M+log a N根据阅读材料,解决以下问题:(1)将指数式34=81转化为对数式;(2)求证:log a=log a M﹣log a N(a>0,a≠1,M>0,N>0)(3)拓展运用:计算log69+log68﹣log62=.12.阅读下面的材料:如果函数y=f(x)满足:对于自变量x的取值范围内的任意x1,x2,(1)若x1<x2,都有f(x1)<f(x2),则称f(x)是增函数;(2)若x1<x2,都有f(x1)>f(x2),则称f(x)是减函数.例题:证明函数f(x)=(x>0)是减函数.证明:设0<x1<x2,f(x1)﹣f(x2)=﹣==.∵0<x1<x2,∴x2﹣x1>0,x1x2>0.∴>0.即f(x1)﹣f(x2)>0.∴f(x1)>f(x2).∴函数f(x)═(x>0)是减函数.根据以上材料,解答下面的问题:已知函数f(x)=+x(x<0),f(﹣1)=+(﹣1)=0,f(﹣2)=+(﹣2)=﹣(1)计算:f(﹣3)=,f(﹣4)=;(2)猜想:函数f(x)=+x(x<0)是函数(填“增”或“减”);(3)请仿照例题证明你的猜想.13.阅读下面的材料:按照一定顺序排列着的一列数称为数列,数列中的每一个数叫做这个数列的项.排在第一位的数称为第一项,记为a 1,排在第二位的数称为第二项,记为a 2,依此类推,排在第n 位的数称为第n 项,记为a n .所以,数列的一般形式可以写成:a 1,a 2,a 3,…,a n ,….一般地,如果一个数列从第二项起,每一项与它前一项的差等于同一个常数,那么这个数列叫做等差数列,这个常数叫做等差数列的公差,公差通常用d 表示.如:数列1,3,5,7,…为等差数列,其中a 1=1,a 2=3,公差为d =2. 根据以上材料,解答下列问题:(1)等差数列5,10,15,…的公差d 为 ,第5项是 .(2)如果一个数列a 1,a 2,a 3,…,a n …,是等差数列,且公差为d ,那么根据定义可得到:a 2﹣a 1=d ,a 3﹣a 2=d ,a 4﹣a 3=d ,…,a n ﹣a n ﹣1=d ,…. 所以 a 2=a 1+da 3=a 2+d =(a 1+d )+d =a 1+2d , a 4=a 3+d =(a 1+2d )+d =a 1+3d ,……由此,请你填空完成等差数列的通项公式:a n =a 1+( )d . (3)﹣4041是不是等差数列﹣5,﹣7,﹣9…的项?如果是,是第几项?14.一般地,如果x 4=a (a≥0),则称x 为a 的四次方根,一个正数a 的四次方根有两个.它们互为相反数,记为=10,则m=__________.15.对于实数a ,b ,定义运算“◎”如下:a ◎b=(a+b )2﹣(a ﹣b )2.若(m+2)◎(m ﹣3)=24,则m=__________.16.规定:如果一个四边形有一组对边平行,一组邻边相等,那么四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,-1),P 是二次函数y=x 2的图象上在第一象限内的任意一点,PQ 垂直直线y=-1于点Q ,则四边形PMNQ 是广义菱形.其中正确的是 .(填序号)17.定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A=80°,则它的特征值k= .18. 《道德经》中的“道生一,一生二,二生三,三生万物”道出了自然数的特征.在数的学习过程中,我们会对其中一些具有某种特性的数进行研究,如学习自然数时,我们研究了奇数、偶数、质数、合数等.现14在我们来研究另一种特珠的自然数—“纯数”.定义:对于自然数n,在计算n+(n+1)+(n+2)时,各数位都不产生进位,则称这个自然数n为“纯数”,例如:32是”纯数”,因为计算32+33+34时,各数位都不产生进位;23不是“纯数”,因为计算23+24+25时,个位产生了进位.(1)判断2019和2020是否是“纯数”?请说明理由;(2)求出不大于100的“纯数”的个数.19.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形;(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上;(3)如图3,在(1)的条件下,取EF中点M,连接DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,求邻余线AB的长.20.若一个函数当自变量在不同范围内取值时,函数表达式不同,我们称这样的函数为分段函数.下面我们参照学习函数的过程与方法,探究分段函数y=图象与性质.列表:x…﹣3﹣﹣2﹣﹣1﹣0123…y…121012…描点:在平面直角坐标系中,以自变量x的取值为横坐标,以相应的函数值y为纵坐标,描出相应的点,如图所示.(1)如图,在平面直角坐标系中,观察描出的这些点的分布,作出函数图象;(2)研究函数并结合图象与表格,回答下列问题:①点A(﹣5,y1),B(﹣,y2),C(x1,),D(x2,6)在函数图象上,则y1y2,x1x2;(填“>”,“=”或“<”)②当函数值y=2时,求自变量x的值;③在直线x=﹣1的右侧函数图象上有两个不同的点P(x3,y3),Q(x4,y4),且y3=y4,求x3+x4的值;④若直线y=a与函数图象有三个不同的交点,求a的取值范围.21.数学活动课上,张老师引导同学进行如下探究:如图1,将长为12cm的铅笔AB斜靠在垂直于水平桌面AE的直尺FO的边沿上,一端A固定在桌面上,图2是示意图.活动一如图3,将铅笔AB绕端点A顺时针旋转,AB与OF交于点D,当旋转至水平位置时,铅笔AB的中点C 与点O重合.数学思考(1)设CD=xcm,点B到OF的距离GB=ycm.①用含x的代数式表示:AD的长是cm,BD的长是cm;②y与x的函数关系式是,自变量x的取值范围是.活动二(2)①列表:根据(1)中所求函数关系式计算并补全表格x(cm)654 3.53 2.5210.50y(cm)00.55 1.2 1.58_____ 2.473 4.29 5.08_____②描点:根据表中数值,继续描出①中剩余的两个点(x,y).③连线:在平面直角坐标系中,请用平滑的曲线画出该函数的图象.数学思考(3)请你结合函数的图象,写出该函数的两条性质或结论.22.定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC中,AB=AC,AD是△ABC的角平分线,E,F分别是BD,AD上的点.求证:四边形ABEF是邻余四边形.(2)如图2,在5×4的方格纸中,A,B在格点上,请画出一个符合条件的邻余四边形ABEF,使AB是邻余线,E,F在格点上.(3)如图3,在(1)的条件下,取EF中点M,连结DM并延长交AB于点Q,延长EF交AC于点N.若N为AC的中点,DE=2BE,QB=3,求邻余线AB的长.23.如图,平面内的两条直线l1、l2,点A,B在直线l1上,点C、D在直线l2上,过A、B两点分别作直线l 2的垂线,垂足分別为A 1,B 1,我们把线段A 1B 1叫做线段AB 在直线l 2上的正投影,其长度可记作T (AB ,CD )或T (AB ,2l ),特别地线段AC 在直线l 2上的正投影就是线段A 1C .请依据上述定义解决如下问题:(1)如图1,在锐角△ABC 中,AB =5,T (AC ,AB )=3,则T (BC ,AB )= ;(2)如图2,在Rt △ABC 中,∠ACB =90°,T (AC ,AB )=4,T (BC ,AB )=9,求△ABC 的面积;(3)如图3,在钝角△ABC 中,∠A =60°,点D 在AB 边上,∠ACD =90°,T (AD ,AC )=2,T (BC ,AB )=6,求T (BC ,CD ),24.已知平面图形S ,点P 、Q 是S 上任意两点,我们把线段PQ 的长度的最大值称为平面图形S 的“宽距”.例如,正方形的宽距等于它的对角线的长度. (1)写出下列图形的宽距: ①半径为1的圆: ;②如图1,上方是半径为1的半圆,下方是正方形的三条边的“窗户形“: ; (2)如图2,在平面直角坐标系中,已知点A (﹣1,0)、B (1,0),C 是坐标平面内的点,连接AB 、BC 、CA 所形成的图形为S ,记S 的宽距为d .①若d =2,用直尺和圆规画出点C 所在的区域并求它的面积(所在区域用阴影表示);②若点C 在⊙M 上运动,⊙M 的半径为1,圆心M 在过点(0,2)且与y 轴垂直的直线上.对于⊙M 上任意点C ,都有5≤d ≤8,直接写出圆心M 的横坐标x 的取值范围.25.定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x =,y =那么称点T 是点A ,B 的融合点.例如:A(﹣1,8),B(4,﹣2),当点T(x,y)满足x==1,y==2时,则点T(1,2)是点A,B的融合点.(1)已知点A(﹣1,5),B(7,7),C(2,4),请说明其中一个点是另外两个点的融合点.(2)如图,点D(3,0),点E(t,2t+3)是直线l上任意一点,点T(x,y)是点D,E的融合点.①试确定y与x的关系式.②若直线ET交x轴于点H.当△DTH为直角三角形时,求点E的坐标.26.某中学数学兴趣小组在一次课外学习与探究中遇到一些新的数学符号,他们将其中某些材料摘录如下:对于三个实数a,b,c,用M{a,b,c}表示这三个数的平均数,用min{a,b,c}表示这三个数中最小的数.例如:M{1,2,9}==4,min{1,2,﹣3}=﹣3,min{3,1,1}=1.请结合上述材料,解决下列问题:(1)①M{(﹣2)2,22,﹣22}=;②min{sin30°,cos60°,tan45°}=;(2)若M{﹣2x,x2,3}=2,求x的值;(3)若min{3﹣2x,1+3x,﹣5}=﹣5,求x的取值范围.【阅读】数学中,常对同一个量(图形的面积、点的个数、三角形的内角和等)用两种不同的方法计算,从而建立相等关系,我们把这一思想称为“算两次”.“算两次”也称做富比尼原理,是一种重要的数学思想.【理解】(1)如图1,两个边长分别为a、b、c的直角三角形和一个两条直角边都是c的直角三角形拼成一个梯形.用两种不同的方法计算梯形的面积,并写出你发现的结论;(2)如图2,n行n列的棋子排成一个正方形,用两种不同的方法计算棋子的个数,可得等式:n2=1+3+5+7+…+2n﹣1.;【运用】(3)n边形有n个顶点,在它的内部再画m个点,以(m+n)个点为顶点,把n边形剪成若干个三角形,设最多可以剪得y个这样的三角形.当n=3,m=3时,如图3,最多可以剪得7个这样的三角形,所以y=7.①当n=4,m=2时,如图4,y=6;当n=5,m=3时,y=9;②对于一般的情形,在n边形内画m个点,通过归纳猜想,可得y=n+2(m﹣1)(用含m、n的代数式表示).请对同一个量用算两次的方法说明你的猜想成立.27.若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为,易知=10m+n;同理,一个三位数、四位数等均可以用此记法,如=100a+10b+c.【基础训练】(1)解方程填空:①若+=45,则x=2;②若﹣=26,则y=4;③若+=,则t=7;【能力提升】(2)交换任意一个两位数的个位数字与十位数字,可得到一个新数,则+一定能被11整除,﹣一定能被9整除,•﹣mn一定能被10整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532﹣235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为495;②设任选的三位数为(不妨设a>b>c),试说明其均可产生该黑洞数.28.(1)阅读理解如图,点A,B在反比例函数y=的图象上,连接AB,取线段AB的中点C.分别过点A,C,B作x 轴的垂线,垂足为E,F,G,CF交反比例函数y=的图象于点D.点E,F,G的横坐标分别为n﹣1,n,n+1(n>1).小红通过观察反比例函数y=的图象,并运用几何知识得出结论:AE+BG=2CF,CF>DF由此得出一个关于,,,之间数量关系的命题:若n>1,则.(2)证明命题小东认为:可以通过“若a﹣b≥0,则a≥b”的思路证明上述命题.小晴认为:可以通过“若a>0,b>0,且a÷b≥1,则a≥b”的思路证明上述命题.请你选择一种方法证明(1)中的命题.29.【概念认识】城市的许多街道是相互垂直或平行的,因此,往往不能沿直线行走到达目的地,只能按直角拐弯的方式行走.可以按照街道的垂直和平行方向建立平面直角坐标系xOy,对两点A(x1,y1)和B(x2,y2),用以下方式定义两点间距离:d(A,B)=|x1﹣x2|+|y1﹣y2|.【数学理解】(1)①已知点A(﹣2,1),则d(O,A)=3.②函数y=﹣2x+4(0≤x≤2)的图象如图①所示,B是图象上一点,d(O,B)=3,则点B的坐标是(1,2).(2)函数y=(x>0)的图象如图②所示.求证:该函数的图象上不存在点C,使d(O,C)=3.(3)函数y=x2﹣5x+7(x≥0)的图象如图③所示,D是图象上一点,求d(O,D)的最小值及对应的点D的坐标.【问题解决】(4)某市要修建一条通往景观湖的道路,如图④,道路以M为起点,先沿MN方向到某处,再在该处拐一次直角弯沿直线到湖边,如何修建能使道路最短?(要求:建立适当的平面直角坐标系,画出示意图并简要说明理由)30.将在同一平面内如图放置的两块三角板绕公共顶点A旋转,连接BC,DE.探究S△ABC与S△ADE的比是否为定值.(1)两块三角板是完全相同的等腰直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图①)(2)一块是等腰直角三角板,另一块是含有30°角的直角三角板时,S△ABC:S△ADE是否为定值?如果是,求出此定值,如果不是,说明理由.(图②)(3)两块三角板中,∠BAE+∠CAD=180°,AB=a,AE=b,AC=m,AD=n(a,b,m,n为常数),S△ABC:S△ADE是否为定值?如果是,用含a,b,m,n的式子表示此定值(直接写出结论,不写推理过程),如果不是,说明理由.(图③)31.我们知道,各个角都相等,各条边都相等的多边形叫做正多边形.对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形.(1)已知凸五边形ABCDE的各条边都相等.①如图1,若AC=AD=BE=BD=CE,求证:五边形ABCDE是正五边形;②如图2,若AC=BE=CE,请判断五边形ABCDE是不是正五边形,并说明理由:(2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF的各条边都相等.①若AC=CE=EA,则六边形ABCDEF是正六边形;(假)②若AD=BE=CF,则六边形ABCDEF是正六边形.(假)32.如图,P是与弦AB所围成的图形的外部的一定点,C是上一动点,连接PC交弦AB于点D.小腾根据学习函数的经验,对线段PC,PD,AD的长度之间的关系进行了探究.下面是小腾的探究过程,请补充完整:(1)对于点C在上的不同位置,画图、测量,得到了线段PC,PD,AD的长度的几组值,如下表:位置1位置2位置3位置4位置5位置6位置7位置8PC/cm 3.44 3.30 3.07 2.70 2.25 2.25 2.64 2.83PD/cm 3.44 2.69 2.00 1.360.96 1.13 2.00 2.83AD/cm0.000.78 1.54 2.30 3.01 4.00 5.11 6.00在PC,PD,AD的长度这三个量中,确定的长度是自变量,的长度和的长度都是这个自变量的函数;(2)在同一平面直角坐标系xOy中,画出(1)中所确定的函数的图象;(3)结合函数图象,解决问题:当PC=2PD时,AD的长度约为cm.33.定义:若实数x,y满足x2=2y+t,y2=2x+t,且x≠y,t为常数,则称点M(x,y)为“线点”.例如,点(0,﹣2)和(﹣2,0)是“线点”.已知:在直角坐标系xOy中,点P(m,n).(1)P1(3,1)和P2(﹣3,1)两点中,点P2是“线点”;(2)若点P是“线点”,用含t的代数式表示mn,并求t的取值范围;(3)若点Q(n,m)是“线点”,直线PQ分别交x轴、y轴于点A,B,当|∠POQ﹣∠AOB|=30°时,直接写出t的值.34.定义:(一)如果两个函数y1,y2,存在x取同一个值,使得y1=y2,那么称y1,y2为“合作函数”,称对应x的值为y1,y2的“合作点”;(二)如果两个函数为y1,y2为“合作函数”,那么y1+y2的最大值称为y1,y2的“共赢值”.(1)判断函数y=x+2m与y=是否为“合作函数”,如果是,请求出m=1时它们的合作点;如果不是,请说明理由;(2)判断函数y=x+2m与y=3x﹣1(|x|≤2)是否为“合作函数”,如果是,请求出合作点;如果不是,请说明理由;(3)已知函数y=x+2m与y=x2﹣(2m+1)x+(m2+4m﹣3)(0≤x≤5)是“合作函数”,且有唯一合作点.①求出m的取值范围;②若它们的“共赢值”为24,试求出m的值.35.图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.【中考数学】专题16 新定义问题【达标要求】【知识梳理】1.“新定义”问题的概念及特征“新定义”问题其主要特征是以初中生已学过的知识为出发点,通过类比、引申、拓展给出新的数学概念(数学公式);或将一些能与初中知识相衔接的高中“新知识”,通过阅读材料呈现给初中学生,让他们将这些“新知识”与已学知识联系起来,正确理解其内容、思想和方法,把握其本质,通过类比、猜想、迁移来运用新知识解决实际问题,通过分析近年来中考试卷中出现的这类“新定义”型试题大致分为三种类型:(1)定义“新规则,新运算”型;(2)定义数学新概念型;(3)定义新函数、新知识型.2.“新定义”问题类型和常用解题方法(1)定义“新规则,新运算”型“新规则,新运算”型一般是先通过阅读示例的解题过程,理解方法要点,并体会蕴含其中的数学思想;再由特殊到一般对新方法加以应用,特别是在解决一般情况时要注意题目中看似不经意的限制条件.(2)定义数学新概念型 定义数学新概念型在中考试题中一般以中档题出现,能较好的考查学生领悟定义的性质与判定的功能,认真审题、缜密思维的习惯以及对数学知识的综合运用能力、迁移能力和发现探究能力.(3)定义新函数,新知识型 定义新函数,新知识型主要考查学生的阅读理解能力,应变能力和创新能力.解这类试题的关键是:正确理解新定义,并将此定义作为解题的依据,同时熟练掌握教学中的基本概念和基本的性质.3. “新定义”问题类型应对策略 数学教学也就是数学语言的教学,这是因为数学语言是数学知识和数学思想的载体,数学知识与数学思想最终要通过数学语言表达出来并获得理解、掌握、交流和应用.因此,在平时的教学过程中要从细节中挖掘出数学的本质特征,引领学生找到解决问题的思想方法. 在中考复习中,要关注初、高中内容的衔接,对与初中数学知识密切相关,或简单的高中数学问题要尽量关注,适当进行“一题多变”、“一题多解”、“一法多用”的教学活动.【精练精解】1.对于一个函数,自变量x 取a 时,函数值y 也等于a ,我们称a 为这个函数的不动点.如果二次函数y=x 2+2x+c 有两个相异的不动点x 1、x 2,且x 1<1<x 2,则c 的取值范围是( ) A .c <-3 B .c <-2C .14c <D .c <1【答案】B【解析】 当y=x 时,x=x 2+2x+c ,即为x 2+x+c=0,由题意可知:x 1,x 2是该方程的两个实数根,所以12121x x x x c +=-⎧⎨⋅=⎩,∵x 1<1<x 2,∴(x 1-1)(x 2-1)<0,即x 1x 2-(x 1+x 2) +1<0, ∴c -(-1)+1<0,∴c <-2.又知方程有两个不相等的实数根,故Δ>0, 即12-4c >0,解得:c <14∴c 的取值范围为c <-2 . 2.从1-,1,2,4四个数中任取两个不同的数(记作,k k a b )构成一个数组{},K k k M a b =(其中1,2,,k S =L ,且将{},k k a b 与{},k k b a 视为同一个数组),若满足:对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,则S 的最大值( )A .10B .6C .5D .4【答案】C【分析】找出i i a b +的值,结合对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+,即可得出S 的最大值.【详解】解:∵110,121-+=-+=,143,123-+=+=,145,246+=+=, ∴i i a b +共有5个不同的值.又∵对于任意的{},i i i M a b =和{},(,1,1)j i j M a b i j i S j S =≠≤≤≤≤都有i i j j a b a b +≠+, ∴S 的最大值为5. 故选:C .3.已知: [x]表示不超过x 的最大整数,例: [3.9]=3,[−1.8]=−2,令关于k 的函数f(k)=[k+14]−[k4] (k 是正整数),例:f(3)=[3+14]−[34]=1,则下列结论错误..的是( ) A .f(1)=0 B .f(k +4)=f(k) C .f(k +1)≥f(k) D .f(k)=0或1【答案】C 【详解】 A. f (1)=[1+14]−[14]=0-0=0,故A 选项正确,不符合题意;B. f (k +4)=[k+4+14]−[k +44]=[1+k +14]−[1+k 4]=[k +14]−[k 4],f (k )=[k +14]−[k 4], 所以f (k +4)=f (k ),故B 选项正确,不符合题意; C. f (k +1)=[k+1+14]−[k +14]=[k +24]−[k +14],f (k )= [k +14]−[k 4], 当k=3时,f (3+1)=[3+24]−[3+14]=0,f (3)= [3+14]−[34]=1,此时f (k +1)<f (k ),故C 选项错误,符合题意; D.设n 为正整数, 当k=4n 时,f (k )=[4n +14]−[4n4]=n -n=0, 当k=4n+1时,f (k )=[4n +24]−[4n +14]=n -n=0, 当k=4n+2时,f (k )=[4n +34]−[4n +24]=n -n=0, 当k=4n+3时,f (k )=[4n +44]−[4n +34]=n+1-n=1, 所以f (k )=0或1,故D 选项正确,不符合题意, 故选C.4.已知点()00,P x y 到直线y kx b =+的距离可表示为d =,例如:点(0,1)到直线26y x =+的距离d ==y x =和4y x =-之间的距离为_______.【答案】【解析】当0x =时,0y x ==,即点(0,0)在直线y x =上, 因为点(0,0)到直线4y x =-的距离为:d === 因为直线y x =和4y x =-平行,所以这两条平行线之间的距离为故答案为5.阅读材料:定义:如果一个数的平方等于1-,记为21i =-,这个数i 叫做虚数单位,把形如a bi +(a ,b 为实数)的数叫做复数,其中a 叫这个复数的实部,b 叫这个复数的虚部.它的加、减、乘法运算与整式的加、减、乘法运算类似.例如计算:(4)(62)(46)(12)10i i i i ++-=++-=-;2(2)(3)6326(1)7i i i i i i i -+=-+-=---=-; 2(4)(4)1616(1)17i i i +-=-=--=; 22(2)4444134i i i i i +=++=+-=+根据以上信息,完成下面计算:2(12)(2)(2)i i i +-+-=_______.【答案】7i -【解析】根据题目材料,可得复数计算方法,先去括号,再进行加减运算. 【详解】解:222(12)(2)(2)24244i i i i i i i i +-+-=-+-++-26i i =--61i =-+7i =-.故答案为:7i -.6.规定:如果一个四边形有一组对边平行,一组邻边相等,那么称此四边形为广义菱形.根据规定判断下面四个结论:①正方形和菱形都是广义菱形;②平行四边形是广义菱形;③对角线互相垂直,且两组邻边分别相等的四边形是广义菱形;④若M 、N 的坐标分别为(0,1),(0,1),-P 是二次函数214y x =的图象上在第一象限内的任意一点,PQ 垂直直线1y =-于点Q ,则四边形PMNQ 是广义菱形.其中正确的是_____.(填序号) 【答案】①②④【解析】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确; ②平行四边形有一组对边平行,没有一组邻边相等,②错误; ③由给出条件无法得到一组对边平行,③错误; ④设点21,4P m m ⎛⎫ ⎪⎝⎭,则(),1Q m -,由勾股定理可得2114PQ MP m ==+,MP PQ =和//MN PQ ,所以四边形PMNQ 是广义菱形.④正确;【详解】①根据广义菱形的定义,正方形和菱形都有一组对边平行,一组邻边相等,①正确; ②平行四边形有一组对边平行,没有一组邻边相等,②错误; ③由给出条件无法得到一组对边平行,③错误; ④设点21,4P m m ⎛⎫⎪⎝⎭,则(),1Q m -,∴2114MP m ==+,2114PQ m =+,∵点P 在第一象限, ∴0m >, ∴2114MP m =+, ∴MP PQ =, 又∵//MN PQ ,∴四边形PMNQ 是广义菱形. ④正确;。

2020届中考数学(真题版)专项练习:新定义与阅读理解题及参考答案

新定义与阅读理解题1.(2019自贡)阅读下列材料:小明为了计算1+2+22+…+22017+22018的值,采用以下方法:设S=1+2+22+…+22017+22018①,则2S=2+22+…+22018+22019②,②–①得2S–S=S=22019–1,∴S=1+2+22+…+22017+22018=22019–1.请仿照小明的方法解决以下问题:(1)1+2+22+…+29=__________;(2)3+32+…+310=__________;(3)求1+a+a2+…+a n的和(a>0,n是正整数),请写出计算过程.解:(1)设S=1+2+22+…+29①,则2S=2+22+…+210②,②–①得2S–S=S=210–1,∴S=1+2+22+…+29=210–1;故答案为:210–1;(2)设S=3+3+32+33+34+…+310①,则3S=32+33+34+35+…+311②,②–①得2S=311–1,所以S=1131 2-,即3+32+33+34+ (310)1131 2-;故答案为:1131 2-;(3)设S=1+a+a2+a3+a4+…+a n①,则aS=a+a2+a3+a4+…+a n+a n+1②,②–①得:(a–1)S=a n+1–1,a=1时,不能直接除以a–1,此时原式等于n+1;a≠1时,a–1才能做分母,所以S=111naa+--,即1+a+a2+a3+a4+…+a n=111naa+--.2.(2019随州)若一个两位数十位、个位上的数字分别为m,n,我们可将这个两位数记为mn,易知mn=10m+n;同理,一个三位数、四位数等均可以用此记法,如abc=100a+10b+c.【基础训练】(1)解方程填空:①若2x+3x=45,则x=__________;②若7y–8y=26,则y=__________;③若93t+58t=131t,则t=__________;【能力提升】(2)交换任意一个两位数mn的个位数字与十位数字,可得到一个新数nm,则mn+nm一定能被__________整除,mn–nm一定能被__________整除,mn•nm–mn一定能被__________整除;(请从大于5的整数中选择合适的数填空)【探索发现】(3)北京时间2019年4月10日21时,人类拍摄的首张黑洞照片问世,黑洞是一种引力极大的天体,连光都逃脱不了它的束缚.数学中也存在有趣的黑洞现象:任选一个三位数,要求个、十、百位的数字各不相同,把这个三位数的三个数字按大小重新排列,得出一个最大的数和一个最小的数,用得出的最大的数减去最小的数得到一个新数(例如若选的数为325,则用532–235=297),再将这个新数按上述方式重新排列,再相减,像这样运算若干次后一定会得到同一个重复出现的数,这个数称为“卡普雷卡尔黑洞数”.①该“卡普雷卡尔黑洞数”为__________;②设任选的三位数为abc(不妨设a>b>c),试说明其均可产生该黑洞数.解:(1)①∵mn=10m+n,∴若2x+3x=45,则10×2+x+10x+3=45,∴x=2,故答案为:2.②若7y–8y=26,则10×7+y–(10y+8)=26,解得y=4,故答案为:4.③由abc=100a+10b+c,及四位数的类似公式得若93t+58t=131t,则100t+10×9+3+100×5+10t+8=1000×1+100×3+10t+1,∴100t=700,∴t=7,故答案为:7.(2)∵mn+nm=10m+n+10n+m=11m+11n=11(m+n),∴则mn+nm一定能被11整除,∵mn–nm=10m+n–(10n+m)=9m–9n=9(m–n),∴mn–nm一定能被9整除.∵mn•nm–mn=(10m+n)(10n+m)–mn=100mn+10m2+10n2+mn–mn=10(10mn+m2+n2)∴mn•nm–mn一定能被10整除.故答案为:11;9;10.(3)①若选的数为325,则用532–235=297,以下按照上述规则继续计算,972–279=693,963–369=594,954–459=495,954–459=495,…故答案为:495.②当任选的三位数为abc 时,第一次运算后得:100a +10b +c –(100c +10b +a )=99(a –c ), 结果为99的倍数,由于a >b >c ,故a ≥b +1≥c +2, ∴a –c ≥2,又9≥a >c ≥0, ∴a –c ≤9,∴a –c =2,3,4,5,6,7,8,9,∴第一次运算后可能得到:198,297,396,495,594,693,792,891, 再让这些数字经过运算,分别可以得到:981–189=792,972–279=693,963–369=594,954–459–495,954–459=495…, 故都可以得到该黑洞数495.3.(2019衢州)定义:在平面直角坐标系中,对于任意两点A (a ,b ),B (c ,d ),若点T (x ,y )满足x 3a c+=,y 3b d+=那么称点T 是点A ,B 的融合点. 例如:A (﹣1,8),B (4,﹣2),当点T (x ,y )满足x 143-+==1,y ()823+-==2时,则点T (1,2)是点A ,B 的融合点.(1)已知点A (﹣1,5),B (7,7),C (2,4),请说明其中一个点是另外两个点的融合点. (2)如图,点D (3,0),点E (t ,2t +3)是直线l 上任意一点,点T (x ,y )是点D ,E 的融合点. ①试确定y 与x 的关系式.②若直线ET 交x 轴于点H .当△DTH 为直角三角形时,求点E 的坐标.解:(1)∵17 3 +﹣=2,573+=4,∴点C(2,4)是点A、B的融合点;(2)①由融合点定义知x13=(t+3),y13=(2t+3),则t=3x﹣3,则y13=(6x﹣6+3)=2x﹣1;②要使△DTH为直角三角形,可分三种情况讨论:(i)当∠DHT=90°时,如图1所示,设T(m,2m﹣1),则点E(m,2m+3),由点T是点D,E的融合点得:m32302133m mm+++=-=或,解得:m32=,即点E(32,6);(ii)当∠TDH=90°时,如图2所示,则点T(3,5),由点T是点D,E的融合点得:点E(6,15);(iii)当∠HTD=90°时,该情况不存在;综上所述,符合题意的点为(32,6)或(6,15).4.(2019天水)如图1,对角线互相垂直的四边形叫做垂美四边形.(1)概念理解:如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由;(2)性质探究:如图1,四边形ABCD的对角线AC、BD交于点O,AC⊥BD.试证明:AB2+CD2=AD2+BC2;(3)解决问题:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连结CE、BG、GE.已知AC=4,AB=5,求GE的长.解:(1)四边形ABCD是垂美四边形.理由如下:∵AB=AD,∴点A在线段BD的垂直平分线上,∵CB=CD,∴点C在线段BD的垂直平分线上,∴直线AC是线段BD的垂直平分线,∴AC⊥BD,即四边形ABCD是垂美四边形;(2)如图1,∵AC⊥BD,∴∠AOD=∠AOB=∠BOC=∠COD=90°,由勾股定理得,AB2+CD2=AO2+BO2+DO2+CO2=AD2+BC2,∴AD2+BC2=AB2+CD2;(3)连接CG、BE,∵∠CAG=∠BAE=90°,∴∠CAG+∠BAC=∠BAE+∠BAC,即∠GAB=∠CAE,在△GAB和△CAE中,AG ACGAB CAE AB AE=⎧⎪∠=∠⎨⎪=⎩,∴△GAB≌△CAE(SAS),∴∠ABG=∠AEC,又∠AEC+∠AME=90°,∴∠ABG+∠AME=90°,即CE⊥BG,∴四边形CGEB是垂美四边形,由(2)得,CG2+BE2=CB2+GE2,∵AC=4,AB=5,∴BC=3,CG,BE∴GE2=CG2+BE2-CB2=73,∴GE5.(2019白银)阅读下面的例题及点拨,并解决问题:例题:如图①,在等边△ABC中,M是BC边上一点(不含端点B,C),N是△ABC的外角∠ACH的平分线上一点,且AM=MN.求证:∠AMN=60°.点拨:如图②,作∠CBE=60°,BE与NC的延长线相交于点E,得等边△BEC,连接EM.易证:△ABM≌△EBM(SAS),可得AM=EM,∠1=∠2;又AM=MN,则EM=MN,可得∠3=∠4;由∠3+∠1=∠4+∠5=60°,进一步可得∠1=∠2=∠5,又因为∠2+∠6=120°,所以∠5+∠6=120°,即:∠AMN=60°.问题:如图③,在正方形A1B1C1D1中,M1是B1C1边上一点(不含端点B1,C1),N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,且A1M1=M1N1.求证:∠A1M1N1=90°.解:延长A1B1至E,使EB1=A1B1,连接EM1、EC1,如图所示:则EB1=B1C1,∠EB1M1=90°=∠A1B1M1,∴△EB1C1是等腰直角三角形,∴∠B1EC1=∠B1C1E=45°,∵N1是正方形A1B1C1D1的外角∠D1C1H1的平分线上一点,∴∠M1C1N1=90°+45°=135°,∴∠B1C1E+∠M1C1N1=180°,∴E、C1、N1三点共线,在△A1B1M1和△EB1M1中,11111111 1111A B EBA B M EBMMB M B=⎧⎪∠=∠⎨⎪=⎩,∴△A1B1M1≌△EB1M1(SAS),∴A1M1=EM1,∠1=∠2,∵A 1M 1=M 1N 1,∴EM 1=M 1N 1,∴∠3=∠4,∵∠2+∠3=45°,∠4+∠5=45°,∴∠1=∠2=∠5, ∵∠1+∠6=90°,∴∠5+∠6=90°, ∴∠A 1M 1N 1=180°﹣90°=90°. 6.(2019江西)特例感知(1)如图1,对于抛物线211y x x =--+,2221y x x =--+,2331y x x =--+,下列结论正确的序号是_________;①抛物线1y ,2y ,3y 都经过点(0,1)C ;②抛物线2y ,3y 的对称轴由抛物线1y 的对称轴依次向左平移12个单位得到; ③抛物线1y ,2y ,3y 与直线1y =的交点中,相邻两点之间的距离相等. 形成概念(2)把满足21n y x nx =--+(n 为正整数)的抛物线称为“系列平移抛物线”.知识应用在(2)中,如图2.①“系列平移抛物线”的顶点依次为1P ,2P ,3P ,…,n P ,用含n 的代数式表示顶点n P 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:1C ,2C ,3C ,…,n C ,其横坐标分别为:1k --,2k --,3k --,…,k n --(k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.③在②中,直线1y =分别交“系列平移抛物线”于点1A ,2A ,3A ,…,n A ,连接n n C A ,11n n C A --,判断n n C A ,11n n C A --是否平行?并说明理由.解:(1)①当x =0,1231y y y ===,所以正确;②123,,y y y 的对称轴分别是直线112x =-,21x =-,332x =-,所以正确;③123,,y y y 与1y =交点(除了点C )横坐标分别为–1,–2,–3,所以距离为1,都相等,正确.(2)①2224124n n n y x nx x +⎛⎫=--+=-++ ⎪⎝⎭,所以顶点24,24n n n P ⎛⎫+- ⎪⎝⎭,令顶点n P 横坐标2n x =-,纵坐标244n y +=,22241142n n y x +⎛⎫==-+=+ ⎪⎝⎭, 即:n P 顶点满足关系式21y x =+.②相邻两点之间的距离相等.理由:根据题意得;()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++, ∴C n C n –1两点之间的铅直高度=()2211k nk k k nk k --++---+=.C n C n –1两点之间的水平距离=1()1k n k n --+---=.∴由勾股定理得C n C n –12=k 2+1,∴C n C n –1③n n C A 与11n n C A --不平行. 理由:根据题意得:()2,1n C k n k nk ----+,()211,1n C k n k nk k ---+--++,(),1n A n -,()11,1n A n --+.过C n ,C n –1分别作直线y =1的垂线,垂足为D ,E ,所以D (–k –n ,1),E (–k –n +1,1).在Rt △DA n C n 中,tan ∠DA n C n =()2211()n n k nk C D k nk k n A D n k n k---++===+----, 在Rt △EA n –1C n –1中,tan ∠EA n –1C n –1=()22111111(1)n n k nk k C E k nk k k n A E n k n k-----+++-===+--+---+, ∵1k n +-≠k n +,∴tan ∠DA n C n ≠tan ∠EA n –1C n –1,∴n n C A 与11n n C A --不平行.7.(2019济宁)阅读下面的材料:如果函数y =f (x )满足:对于自变量x 的取值范围内的任意x 1,x 2,(1)若x 1<x 2,都有f (x 1)<f (x 2),则称f (x )是增函数;(2)若x 1<x 2,都有f (x 1)>f (x 2),则称f (x )是减函数.例题:证明函数f (x )=6x(x >0)是减函数. 证明:设0<x 1<x 2, f (x 1)–f (x 2)=()212112121266666x x x x x x x x x x ---==. ∵0<x 1<x 2,∴x 2–x 1>0,x 1x 2>0.∴()21126x x x x ->0.即f (x 1)–f (x 2)>0. ∴f (x 1)>f (x 2),∴函数f (x )═6x (x >0)是减函数. 根据以上材料,解答下面的问题:已知函数f (x )=21x+x (x <0), f (–1)=21(1)-+(–1)=0,f (–2)=21(2)-+(–2)=–74. (1)计算:f (–3)=__________,f (–4)=__________;(2)猜想:函数f (x )=21x+x (x <0)是__________函数(填“增”或“减”);(3)请仿照例题证明你的猜想.解:(1)∵f (x )=21x +x (x <0), ∴f (–3)=21(3)-–3=–269,f (–4)=21(4)-–4=–6316, 故答案为:–269,–6316; (2)∵–4<–3,f (–4)>f (–3),∴函数f (x )=21x +x (x <0)是增函数, 故答案为:增;(3)设x 1<x 2<0,∵f (x 1)–f (x 2)=12221211x x x x +--=(x 1–x 2)(1–122212x x x x +) ∵x 1<x 2<0,∴x 1–x 2<0,x 1+x 2<0,∴f (x 1)–f (x 2)<0,∴f (x 1)<f (x 2),∴函数f (x )=21x +x (x <0)是增函数. 8.(2019宁波)定义:有两个相邻内角互余的四边形称为邻余四边形,这两个角的夹边称为邻余线.(1)如图1,在△ABC 中,AB =AC ,AD 是△ABC 的角平分线,E ,F 分别是BD ,AD 上的点.求证:四边形ABEF 是邻余四边形.(2)如图2,在5×4的方格纸中,A ,B 在格点上,请画出一个符合条件的邻余四边形ABEF ,使AB 是邻余线,E ,F 在格点上.(3)如图3,在(1)的条件下,取EF 中点M ,连结DM 并延长交AB 于点Q ,延长EF 交AC 于点N .若N 为AC 的中点,DE =2BE ,QB =3,求邻余线AB 的长.解:(1)∵AB=AC,AD是△ABC的角平分线,∴AD⊥BC,∴∠ADB=90°,∴∠DAB+∠DBA=90°,∴∠FAB与∠EBA互余,∴四边形ABEF是邻余四边形;(2)如图所示(答案不唯一),四边形ABEF即为所求;(3)∵AB=AC,AD是△ABC的角平分线,∴BD=CD,∵DE=2BE,∴BD=CD=3BE,∴CE=CD+DE=5BE,∵∠EDF=90°,M为EF中点,∴DM=ME.∴∠MDE=∠MED,∵AB=AC,∴∠B=∠C,∴△DBQ∽△ECN,∴35 QB BDNC CE==,∵QB=3,∴NC=5,∵AN=CN,∴AC=2CN=10,∴AB =AC =10.9.(2019枣庄)对于实数a 、b ,定义关于“⊗”的一种运算:a ⊗b =2a +b ,例如3⊗4=2×3+4=10.(1)求4⊗(–3)的值;(2)若x ⊗(–y )=2,(2y )⊗x =–1,求x +y 的值.解:(1)根据题中的新定义得:原式=8–3=5;(2)根据题中的新定义化简得:2241x y x y -=⎨+=-⎧⎩①②, ①+②得:3x +3y =1,则x +y =13. 10.(2019河北)如图,约定:上方相邻两数之和等于这两数下方箭头共同指向的数.示例:即4+3=7.则(1)用含x 的式子表示m =__________;(2)当y =–2时,n 的值为__________.解:(1)根据约定的方法可得:m =x +2x =3x ;故答案为:3x ;(2)根据约定的方法即可得x +2x +2x +3=m +n =y .当y =–2时,5x +3=–2.解得x =–1.∴n =2x +3=–2+3=1.11.(2019白银)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k =__________.解:①当∠A 为顶角时,等腰三角形两底角的度数为:218080︒-︒=50°, ∴特征值k =808505︒=︒;②当∠A为底角时,顶角的度数为:180°–80°–80°=20°,∴特征值k=208014︒=︒;综上所述,特征值k为85或14;12.(2019湘西)阅读材料:设a=(x1,y1),b=(x2,y2),如果a∥b,则x1•y2=x2•y1,根据该材料填空,已知a=(4,3),b=(8,m),且a∥b,则m=__________.解:∵a=(4,3),b=(8,m),且a∥b,∴4m=3×8,∴m=6.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年中考数学二轮专项——新定义类问题1. (2019湘西州)阅读材料:设a →=(x 1,y 1),b →=(x 2,y 2),如果a → ∥b →,则x 1·y 2=x 2·y 1.根据该材料填空:已知a →=(4,3),b →=(8,m ),且a →∥b →,则m =________.2. (2019株洲改编)从-1,1,2,4四个数中任取两个不同的数(记作a k ,b k )构成一个数组M k ={a k ,b k }(其中k =1,2,…,S ,且将{a k ,b k }与{b k ,a k }视为同一个数组),若满足:对于任意的M i ={a i ,b i }和M j ={a j ,b j }(i ≠j ,1≤i ≤S ,1≤j ≤S )都有a i +b i ≠a j +b j ,则S 的最大值为________.3. (2019成华区二诊)对于实数a ,b ,定义运算“※”如下:a ※b =a 2-ab .例如:5※3=52-5×3=10.若(x +1)※(x -2)=6,则x 的值为________.4. (2019武侯区二诊)定义[x ]表示不超过实数x 的最大整数,例如:[0.82]=0,[6]=6,[-135]=-3,[-7]=-7.若规定:对于实数m ,f (m )=[2-m 3]-[m 5],例如:f (7)=[2-73]-[75]=[-53]-[75]=-2-1=-3.则f (-6)=______.5.(2019锦江区一诊)新定义:[a ,b ,c ]为二次函数y =ax 2+bx +c (a ≠0,a ,b ,c 为实数)的“图象数”.若“图象数”是[m -1,m -2,m -3]的二次函数的图象经过原点,则m =________.6. (2018成都黑白卷)对于两个不相等的实数a 、b ,定义一种新的运算:a @b =ab a +b ,如6@15=6×156+15=31021=107.已知m ,n 是一元二次方程x 2-21x +7=0的两个不相等的实数根,则[(m +n )@mn ]@3=________.7. (2019甘肃省卷)定义:等腰三角形的顶角与其一个底角的度数的比值k 称为这个等腰三角形的“特征值”.若等腰△ABC 中,∠A =80°,则它的特征值k =________.8. 定义:如果一元二次方程ax 2+bx +c =0(a ≠0)满足a +b +c =0,那么我们称这个方程为“凤凰方程”.已知ax 2+bx +c =0(a ≠0)是“凤凰方程”,且有两个相等的实数根,则a 与c 的关系是____________.9. (2019贵港)我们定义一种新函数:形如y =|ax 2+bx +c |(a ≠0,且b 2-4ac >0)的函数叫做“鹊桥”函数.小丽同学画出了“鹊桥”函数y =|x 2-2x -3|的图象(如图所示),并写出下列五个结论:①图象与坐标轴的交点为(-1,0),(3,0)和(0,3);②图象具有对称性,对称轴是直线x =1;③当-1≤x ≤1或x ≥3时,函数值y 随x 的增大而增大;④当x =-1或x =3时,函数的最小值是0;⑤当x =1时,函数的最大值是4.其中正确结论的个数是____________.第9题图10. (2019都江堰区一诊)定义:平面直角坐标系中,若抛物线y =ax 2上的两点A 、B 满足OA =OB ,且tan ∠OAB =12,那么我们就称线段AB 为该抛物线的“通径”,抛物线y =12x 2的“通径”长为________. 11. (2016成都B 卷24题)实数a ,n ,m ,b 满足a <n <m <b ,这四个数在数轴上对应的点分别是A ,N ,M ,B (如图).若AM 2=BM ·AB ,BN 2=AN ·AB ,则称m 为a ,b 的“黄金大数”,n 为a ,b 的“黄金小数”,当b -a =2时,a ,b 的黄金大数与黄金小数之差m -n =________.第11题图12. (2017成都黑白卷)定义1:在△ABC 中,若顶点A ,B ,C 按逆时针方向排列,则规定它的面积为“有向面积”;若顶点A ,B ,C 按顺时针方向排列,则规定它的面积的相反数为△ABC 的“有向面积”.“有向面积”用S 表示,例如图①中,S △ABC =S △ABC ,图②中,S △ABC =-S △AB C .定义2:在平面内任取一个△ABC 和点P (点P 不在△ABC 的三边所在直线上),称有序数组(S △PBC ,S △PCA ,S △P AB )为点P 关于△ABC 的“面积坐标”,记作P (S △PBC ,S △PCA ,S △P AB ),例如图③中,菱形ABCD 的边长为2,∠ABC =60°,则S △ABC =3,点D 关于△ABC 的“面积坐标”D (S △DBC ,S △DCA ,S △DAB )为D (3,-3,3).在图③中,我们知道S △ABC =S △DBC +S △DAB -S △DCA ,利用“有向面积”,我们也可以把上式表示为:S △ABC =S △DBC +S △DAB +S △DC A .应用新知:如图④,正方形ABCD 的边长为1,点D 关于△ABC 的“面积坐标”是________________.第12题图13. (2017成都B 卷24题)在平面直角坐标系xOy 中,对于不在坐标轴上的任意一点P (x ,y ),我们把点P ′(1x ,1y )称为点P 的“倒影点”.直线y =-x +1上有两点A ,B ,它们的倒影点A ′,B ′均在反比例函数y =k x 的图象上,若AB =22,则k =________.14. (2019双流区一诊)若实数m ,n 满足m +n =3mn ,且n ≠0时,就称点P (m ,m n)为“完美点”,若反比例函数y =k x 的图象上存在两个“完美点”A ,B ,且AB =83,则k 的值为________. 15. (2019成都B 卷25题)如图,在平面直角坐标系xOy 中,我们把横、纵坐标都是整数的点称为“整点”.已知点A 的坐标为(5,0),点B 在x 轴的上方,△OAB 的面积为152,则△OAB 内部(不含边界)的整点的个数为________.第15题图16. (2015成都B 卷25题) 如果关于x 的一元二次方程ax 2+bx +c =0有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”. 以下关于倍根方程的说法,正确的是________(写出所有正确说法的序号).① 方程x 2-x -2=0是倍根方程;② 若(x -2)(mx +n )=0是倍根方程,则4m 2+5mn +n 2=0;③ 若点(p ,q )在反比例函数y =2x的图象上,则关于x 的方程px 2+3x +q =0是倍根方程;④ 若方程ax 2+bx +c =0是倍根方程,且相异两点M (1+t ,s ),N (4-t ,s )都在抛物线y =ax 2+bx +c 上,则方程ax 2+bx +c =0的一个根为54. 17. (2018成都黑白卷)在边长为1的小正方形组成的方格纸中,每个小正方形的顶点称为“格点”.从一个格点移动到与之相距5的另一个格点的运动称为一次“跳马变换”.例如,在3×3的正方形网格图形中(如图①),从点A 经过一次跳马变换可以到达点B ,C ,D ,E 等处.现有25×25的正方形网格图形(如图②),则从该正方形的顶点M 经过跳马变换到达与其相对的顶点N ,最少需要“跳马变换”________次.第17题图18. (2014成都B 卷23题)在边长为1的小正方形组成的方格纸中,称小正方形的顶点为“格点”,顶点全在格点上的多边形为“格点多边形”.格点多边形的面积记为S ,其内部的格点数记数为N ,边界上的格点数记为L .例如,图中三角形ABC 是格点三角形,其中S =2,N =0,L =6;图中格点多边形DEFGHI 所对应的S ,N ,L 分别是________.经探究发现,任意格点多边形的面积S 可表示为S =aN +bL +c ,其中a ,b ,c 为常数,则当N =5,L =14时,S =________(用数值作答).第18题图19. (2019高新区二诊)规定:经过三角形的一个顶点且将三角形的周长分为相等的两部分的直线叫做该三角形的“等周线”,“等周线”被这个三角形截得的线段叫做该三角形的“等周径”.例如等腰三角形底边上的中线即为它的“等周径”.Rt△ABC中,∠C=90°,AC=4,BC=3,若直线l为△ABC的“等周线”,则△ABC 的所有“等周径”长为________.参考答案1. 6 【解析】a →=(4,3),b →=(8,m ),且a →∥b →,∴4m =24,∴m =6.2. 5 【解析】假设M 1={-1,1},M 2={-1,2},M 3={-1,4},M 4={1,2},M 5={1,4},M 6={2,4},∵-1+1=0,-1+2=1,-1+4=3,1+2=3,1+4=5,2+4=6,∴a i +b i 共有5个不同的值.∵M 3=M 4,∴舍去M 3或M 4.可得S 的最大值为5.3. 1 【解析】由题意得,(x +1)2-(x +1)(x -2)=6,整理得,3x +3=6,解得x =1.4. 4 【解析】根据题意可得,f (-6)=[2+63]-[-65]=[83]-[-65]=2-(-2)=4. 5. 3 【解析】根据题意得y =(m -1)x 2+(m -2)x +m -3,把(0,0)代入得m -3=0,解得m =3. 6. 25【解析】∵m ,n 是一元二次方程x 2-21x +7=0的两个不相等的实数根,∴m +n =21,mn =7.∵a @b =ab a +b ,∴[(m +n )@mn ]@3=(21@7)@3=21×721+7@3=34@3=34×334+3=25. 7. 85或14 【解析】当∠A 为顶角时,则底角∠B =∠C =12(180°-∠A )=50°,此时的特征值k =80°50°=85;当∠A 为底角时,则顶角(∠B 或∠C )=180°-2∠A =20°,此时的特征值k =20°80°=14.综上所述,k 为85或14. 8. a =c 【解析】∵一元二次方程ax 2+bx +c =0(a ≠0)有两个相等的实数根,∴b 2-4ac =0,又∵a +b +c =0,∴将b =-a -c 代入b 2-4ac =0得,(-a -c )2-4ac =0,即(a +c )2-4ac =a 2+2ac +c 2-4ac =a 2-2ac +c 2=(a -c )2=0,∴a =c .9. 4 【解析】当x 2-2x -3=0时,解得x 1=-1,x 2=3,∴图象与x 轴的交点坐标为(-1,0),(3,0),当x =0时y =|-3|=3,∴与y 轴的交点坐标为(0,3),故①正确;∵当x =1-t 时,y =|(1-t )2-2(1-t )-3|=|1-2t +t 2-2+2t -3|=|t 2-4|,当x =1+t 时,y =|(1+t )2-2(1+t )-3|=|1+2t +t 2-2-2t -3|=|t 2-4|,∴当x =1-t 和x =1+t 时,对应的函数值相同,即函数图象关于直线x =1对称,故②正确;由图象可知,当-1≤x ≤1或当x ≥3时,y 随x 的增大而增大,故③正确;∵由图象可知,当x =-1或x =3时,y =0,且是函数的最小值,故④正确;由图象可知,函数无最大值,故⑤错误.综上可知,正确结论的个数是4.10. 2 【解析】由题意得,A 、B 两点关于y 轴对称,设点A 位于第二象限,点A 的坐标为(-2a ,a ),则a =12×(-2a )2,解得a =0(舍去)或a =12,∴点A 的横坐标是-1,则点B 的横坐标是1,∴AB =1-(-1)=2.11. 25-4 【解析】设AN =y ,MN =x ,由题意可知AM 2=BM ·AB ,∴(x +y )2=2(2-x -y ),解得x +y =5-1(负值已舍去);又∵BN 2=AN ·AB ,∴(2-y )2=2y ,解得y =3+5(舍去)或y =3- 5.∴x =x +y -y =25-4.∴m -n =MN =x =25-4.12 . (12,-12,12) 【解析】依题意得S △ABC =S △ABC =12×1×1=12,则点D 关于△ABC 的“面积坐标”D (S △DBC ,S △DCA ,S △DAB )为(12,-12,12). 13. -43【解析】设A 、B 的坐标分别为A (a ,-a +1),B (b ,-b +1),∵AB =22,∴(a -b )2+(-a +1+b -1)2=(22)2,∴a -b =±2,由倒影点的定义得A ′(1a ,11-a ),B ′(1b ,11-b),又∵A ′、B ′都在反比例函数y =k x 的图象上,∴k =1a (1-a )=1b (1-b ),则a (1-a )=b (1-b ),整理得(a -b )(1-a -b )=0,∵a -b =±2,∴1-a -b =0,即a +b =1,解方程组⎩⎪⎨⎪⎧a +b =1a -b =2或⎩⎪⎨⎪⎧a +b =1a -b =-2,得⎩⎨⎧a =32b =-12或⎩⎨⎧a =-12b =32,∴k =1a (1-a )=-43. 14. 13336 【解析】∵m +n =3mn 且n ≠0,∴m n +1=3m ,即m n=3m -1,∴P (m ,3m -1),即“完美点”在直线y =3x -1上,设点A 、B 坐标分别为(x 1,y 1),(x 2,y 2),令k x=3x -1,化简得3x 2-x -k =0,∵AB =83,∴|x 1-x 2|=43,由韦达定理x 1+x 2=33,x 1x 2=-33k ,∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=169,∴13+433k =169,解得k =13336. 15. 4或5或6 【解析】如解图,∵S △AOB =12OA ·y B =12×5·y B =152,∴y B =3.∴点B 在直线y =3上,设AB 与直线y =2交于点D ,与直线y =1交于点F ,OB 与直线y =2交于点C ,与直线y =1交于点E ,则△BCD ∽△BOA ,∴CD OA =13,解得CD =53,∵每两个格点之间的距离为1,∴CD 之间最少有1个格点,最多有2个格点;同理△BEF ∽△BOA ,∴EF OA =23,解得EF =103>3,∴EF 之间最少有3个格点,最多有4个格点,则△OAB 内的格点数可能有1+3=4或1+4=5或2+3=5或2+4=6,即△AOB 内的格点数可能是4或5或6个.第15题解图16. ②③ 【解析】逐个结论分析如下:序号 逐个分析 正误① 方程x 2-x -2=0的两个根是x 1=2,x 2=-1,x 1≠2x 2,不符合题意② 倍根方程的两个根是x 1=2,x 2=-n m ,则2=-2n m ,得n =-m ;或者-n m=4,得n =-4m ,将以上两式分别代入4m 2+5mn +n 2,结果均为0,符合题意√③ ∵点(p ,q )在反比例函数y =2x 的图象上,∴q =2p ,将其代入px 2+3x +q =0中,整理得2x 2+3qx +q 2=0,解得x 1=-q ,x 2=-q 2,∴x 1=2x 2,符合题意√④ 根据抛物线经过点M ,N ,且点M ,N 纵坐标相同,则该抛物线的对称轴为直线x =1+t +4-t 2=2.5,设方程ax 2+bx +c =0的两个根为x 1,x 2,根据题意,得x 1=2x 2或2x 1=x 2,则x 1+x 22=2.5,解得x 1=103,x 2=53或x 1=53,x 2=103,不符合题意17. 18 【解析】如解图①,连接AC ,CF ,则AF =32,∴两次变换相当于向右移动3格,向上移动3格,又∵MN =252,252÷32=253(不是整数),∴按A -C -F 的方向连续变换14次后,相当于向右移动了14÷2×3=21格,向上移动了14÷2×3=21格,此时M 位于如图所示的4×4的正方形网格的点G 处,再按解图②所示的方式变换4次即可到达点N 处,∴从该正方形的顶点M 经过“跳马变换”到达与其相对的顶点N ,最少需要“跳马变换”的次数是14+4=18次.第17题解图18. 7,3,10;11 【解析】由定义结合题图,易得格点多边形DEFGHI 内部格点数N 有3个,边界格点数L 有10个,把多边形DEFGHI 分割为△DEF 、△DFI 、正方形FGHI ,易计算其面积分别为1,2,4,∴格点多边形DEFGHI 的面积为1+2+4=7;由题中所给格点多边形的表达式S =aN +bL +c 中a ,b ,c 为常数,想到如果得到a ,b ,c 的值即可解决题中问题,构造一个特殊的多边形,即面积为1的格点正方形,其S ,N ,L 分别为1,0,4,结合S =2,N =0,L =6;S =7,N =3,L =10两个图形可列方程组为⎩⎪⎨⎪⎧1=4b +c 2=6b +c 7=3a +10b +c ,解得⎩⎪⎨⎪⎧a =1b =12c =-1,∴S =N +12L -1,∴当N =5,L =14时,S =5+12×14-1=11. 19.25或32或655 【解析】当AD 为△ABC 的等周线时,如解图①,设CD =x ,则BD =3-x ,根据题意可得4+x =5+3-x ,解得x =2,在Rt △ACD 中,AD =42+22=25;当BD 为△ABC 的等周线时,如解图②,设CD =x ,则AD =4-x ,根据题意可得3+x =5+4-x ,解得x =3,在Rt △BCD 中,BD =32+32=32;当CD 为△ABC 的等周线时,如解图③,设AD =x ,则BD =5-x ,根据题意可得4+x=3+5-x ,解得x =2,则AD =2,BD =3,过点C 作CN ⊥AB 于点N ,则12AC ·BC =12AB ·CN ,可得CN =125,在Rt △BCN 中,BN =32-(125)2=95,∴ND =BD -BN =3-95=65,在Rt △CND 中,CD =(125)2+(65)2=655.综上所述,△ABC 的所有“等周径”长为25或32或655.第19题解图。

相关文档
最新文档