(完整word版)信息论与编码试卷及答案分解
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码试卷及答案1

二、综合题(每题10分,共60分)1.黑白气象传真图的消息只有黑色和白色两种,求:1)黑色出现的概率为0.3,白色出现的概率为0.7。
给出这个只有两个符号的信源X的数学模型。
假设图上黑白消息出现前后没有关联,求熵;2)假设黑白消息出现前后有关联,其依赖关系为:,,,,求其熵;2.二元对称信道如图。
;1)若,,求和;2)求该信道的信道容量和最佳输入分布。
3.信源空间为,试分别构造二元和三元霍夫曼码,计算其平均码长和编码效率。
4.设有一离散信道,其信道传递矩阵为,并设,试分别按最小错误概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
5.已知一(8,5)线性分组码的生成矩阵为。
求:1)输入为全00011和10100时该码的码字;2)最小码距。
6.设某一信号的信息传输率为5.6kbit/s,在带宽为4kHz的高斯信道中传输,噪声功率谱NO=5×10-6mw/Hz。
试求:(1)无差错传输需要的最小输入功率是多少?(2)此时输入信号的最大连续熵是多少?写出对应的输入概率密度函数的形式。
二、综合题(每题10分,共60分)1.答:1)信源模型为2)由得则2.答:1)2),最佳输入概率分布为等概率分布。
3.答:1)二元码的码字依序为:10,11,010,011,1010,1011,1000,1001。
平均码长,编码效率2)三元码的码字依序为:1,00,02,20,21,22,010,011。
平均码长,编码效率4.答:1)最小似然译码准则下,有,2)最大错误概率准则下,有,5.答:1)输入为00011时,码字为00011110;输入为10100时,码字为10100101。
2)6.答:1)无错传输时,有即则2)在时,最大熵对应的输入概率密度函数为信息论习题集二、填空(每空1分)(100道)1、在认识论层次上研究信息的时候,必须同时考虑到形式、含义和效用三个方面的因素。
2、1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3616236log 36215)(=⨯⨯+⨯⨯=∴ (4)信源空间:bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率bitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知bitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为%.如果你问一位男士:“你是否是红绿色盲”他的回答可能是:“是”,也可能“不是”。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码考试题(附答案版)

1.按发出符号之间的关系来分,信源可以分为(有记忆信源)和(无记忆信源)2.连续信源的熵是(无穷大),不再具有熵的物理含义。
3.对于有记忆离散序列信源,需引入(条件熵)描述信源发出的符号序列内各个符号之间的统计关联特性3.连续信源X,平均功率被限定为P时,符合(正态)分布才具有最大熵,最大熵是(1/2ln(2 ⅇ 2))。
4.数据处理过程中信息具有(不增性)。
5.信源冗余度产生的原因包括(信源符号之间的相关性)和(信源符号分布的不均匀性)。
6.单符号连续信道的信道容量取决于(信噪比)。
7.香农信息极限的含义是(当带宽不受限制时,传送1bit信息,信噪比最低只需-1.6ch3)。
8.对于无失真信源编码,平均码长越小,说明压缩效率(越高)。
9.对于限失真信源编码,保证D的前提下,尽量减少(R(D))。
10.立即码指的是(接收端收到一个完整的码字后可立即译码)。
11.算术编码是(非)分组码。
12.游程编码是(无)失真信源编码。
13.线性分组码的(校验矩阵)就是该码空间的对偶空间的生成矩阵。
14.若(n,k)线性分组码为MDC码,那么它的最小码距为(n-k+1)。
15.完备码的特点是(围绕2k个码字、汉明矩d=[(d min-1)/2]的球都是不相交的每一个接受吗字都落在这些球中之一,因此接收码离发码的距离至多为t,这时所有重量≤t的差错图案都能用最佳译码器得到纠正,而所有重量≤t+1的差错图案都不能纠正)。
16.卷积码的自由距离决定了其(检错和纠错能力)。
(对)1、信息是指各个事物运动的状态及状态变化的方式。
(对)2、信息就是信息,既不是物质也不是能量。
(错)3、马尔可夫信源是离散无记忆信源。
(错)4、不可约的马尔可夫链一定是遍历的。
(对)5、单符号连续信源的绝对熵为无穷大。
(错)6、序列信源的极限熵是这样定义的:H(X)=H(XL|X1,X2,…,XL-1)。
(对)7、平均互信息量I(X;Y)是接收端所获取的关于发送端信源X的信息量。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
信息论与编码试卷及答案

一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是 0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的 N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5)居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高米以上的,而女孩中身高米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高以上”这一事件,则P(A)= p(B)= p(B|A)= (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=*= (2分)I(A|B)== (1分)四、(5)证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY) 证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分) 则()()()Y X I Y H X Y H ;-= 因为()()()X Y H X H XY H += (1分) 故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (1分)五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1) 黑色出现的概率为,白色出现的概率为。
信息论与编码习题参考答案(全)

信息论与编码习题参考答案 第一章 单符号离散信源1.1同时掷一对均匀的子,试求:(1)“2和6同时出现”这一事件的自信息量; (2)“两个5同时出现”这一事件的自信息量; (3)两个点数的各种组合的熵; (4)两个点数之和的熵;(5)“两个点数中至少有一个是1”的自信息量。
解:bitP a I N n P bit P a I N n P c c N 17.536log log )(361)2(17.418log log )(362)1(36662221111616==-=∴====-=∴===⨯==样本空间:(3)信源空间:bit x H 32.436log 3662log 3615)(=⨯⨯+⨯⨯=∴ bitx H 71.3636log 366536log 3610 436log 368336log 366236log 36436log 362)(=⨯⨯+⨯+⨯+⨯⨯=∴++ (5) bit P a I N n P 17.11136log log )(3611333==-=∴==1.2如有6行、8列的棋型方格,若有两个质点A 和B ,分别以等概落入任一方格内,且它们的坐标分别为(Xa ,Ya ), (Xb ,Yb ),但A ,B 不能同时落入同一方格内。
(1) 若仅有质点A ,求A 落入任一方格的平均信息量; (2) 若已知A 已落入,求B 落入的平均信息量; (3) 若A ,B 是可辨认的,求A ,B 落入的平均信息量。
解:bita P a P a a P a I a P A i 58.548log )(log )()(H 48log )(log )(481)(:)1(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率Θbitb P b P b b P b I b P A i 55.547log )(log )()(H 47log )(log )(471)(:B ,)2(481i i i i i ==-=∴=-=∴=∑=落入任一格的概率是落入任一格的情况下在已知ΘbitAB P AB P AB H AB P AB I AB P AB i i i i i i i 14.11)4748log()(log )()()(log )(471481)()3(47481=⨯=-=-=∴⨯=∑⨯=是同时落入某两格的概率1.3从大量统计资料知道,男性中红绿色盲的发病率为7%,女性发病率为0.5%.如果你问一位男士:“你是否是红绿色盲?”他的回答可能是:“是”,也可能“不是”。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、(11’)填空题(1)1948年,美国数学家香农发表了题为“通信的数学理论”的长篇论文,从而创立了信息论。
(2)必然事件的自信息是0 。
(3)离散平稳无记忆信源X的N次扩展信源的熵等于离散信源X的熵的N倍。
(4)对于离散无记忆信源,当信源熵有最大值时,满足条件为__信源符号等概分布_。
(5)若一离散无记忆信源的信源熵H(X)等于2.5,对信源进行等长的无失真二进制编码,则编码长度至少为 3 。
(6)对于香农编码、费诺编码和霍夫曼编码,编码方法惟一的是香农编码。
(7)已知某线性分组码的最小汉明距离为3,那么这组码最多能检测出_2_______个码元错误,最多能纠正___1__个码元错误。
(8)设有一离散无记忆平稳信道,其信道容量为C,只要待传送的信息传输率R__小于___C(大于、小于或者等于),则存在一种编码,当输入序列长度n足够大,使译码错误概率任意小。
(9)平均错误概率不仅与信道本身的统计特性有关,还与___译码规则____________和___编码方法___有关三、(5')居住在某地区的女孩中有25%是大学生,在女大学生中有75%是身高1.6米以上的,而女孩中身高1.6米以上的占总数的一半。
假如我们得知“身高1.6米以上的某女孩是大学生”的消息,问获得多少信息量?解:设A表示“大学生”这一事件,B表示“身高1.60以上”这一事件,则P(A)=0.25 p(B)=0.5 p(B|A)=0.75 (2分)故 p(A|B)=p(AB)/p(B)=p(A)p(B|A)/p(B)=0.75*0.25/0.5=0.375 (2分)I(A|B)=-log0.375=1.42bit (1分)四、(5')证明:平均互信息量同信息熵之间满足I(X;Y)=H(X)+H(Y)-H(XY)证明:()()()()()()()()()()Y X H X H y x p y x p x p y x p x p y x p y x p Y X I X X Y j i j i Y i j i XYi j i j i -=⎥⎦⎤⎢⎣⎡---==∑∑∑∑∑∑log log log; (2分)同理()()()X Y H Y H Y X I -=; (1分) 则()()()Y X I Y H X Y H ;-= 因为()()()X Y H X H XY H += (1分) 故()()()()Y X I Y H X H XY H ;-+=即()()()()XY H Y H X H Y X I -+=; (1分)五、(18’).黑白气象传真图的消息只有黑色和白色两种,求:1) 黑色出现的概率为0.3,白色出现的概率为0.7。
给出这个只有两个符号的信源X 的数学模型。
假设图上黑白消息出现前后没有关联,求熵()X H ; 2) 假设黑白消息出现前后有关联,其依赖关系为,,,,求其熵()X H ∞。
3)分别求上述两种信源的冗余度,比较它们的大小并说明其物理意义。
解:1)信源模型为(1分)2)由题意可知该信源为一阶马尔科夫信源。
(2分) 由(4分)得极限状态概率(2分)(3分)3)119.02log )(121=-=X H γ (1分)447.02l o g )(122=-=∞X H γ (1分)12γγ>。
说明:当信源的符号之间有依赖时,信源输出消息的不确定性减弱。
而信源冗余度正是反映信源符号依赖关系的强弱,冗余度越大,依赖关系就越大。
(2分)六、(18’).信源空间为1234567()0.20.190.180.170.150.10.01X x x x x x x x P X ⎡⎤⎡⎤=⎢⎥⎢⎥⎣⎦⎣⎦,试分别构造二元香农码和二元霍夫曼码,计算其平均码长和编码效率(要求有编码过程)。
14.3)(71==∑=i i i l a p L 831.014.361.2)(===LX H R七(6’).设有一离散信道,其信道传递矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡2/16/13/13/12/16/16/13/12/1,并设⎪⎪⎪⎩⎪⎪⎪⎨⎧===41)(21)(41)(321x p x p x p ,试分别按最大后验概率准则与最大似然译码准则确定译码规则,并计算相应的平均错误概率。
1)(3分)最小似然译码准则下,有, 2)(3分)最大后验概率准则下,有,八(10').二元对称信道如图。
1)若()430=p ,()411=p ,求()X H 、()Y X H |和()Y X I ;;2)求该信道的信道容量。
解:1)共6分2), (3分)此时输入概率分布为等概率分布。
(1分)九、(18')设一线性分组码具有一致监督矩阵⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=110101100110111000H1)求此分组码n=?,k=?共有多少码字? 2)求此分组码的生成矩阵G 。
3)写出此分组码的所有码字。
4)若接收到码字(101001),求出伴随式并给出翻译结果。
解:1)n=6,k=3,共有8个码字。
(3分)()符号/749.0|bit Y X H =2)设码字()012345C C C C C C C =由T T HC 0=得⎪⎩⎪⎨⎧=⊕⊕⊕=⊕⊕=⊕⊕0000135034012C C C C C C C C C C (3分)令监督位为()012C C C ,则有⎪⎩⎪⎨⎧⊕=⊕=⊕=340451352CC C C C C C C C (3分)生成矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡101100110010011001 (2分) 3)所有码字为000000,001101,010011,011110,100110,101011,110101,111000。
(4分) 4)由TTHR S =得()101=S ,(2分)该码字在第5位发生错误,(101001)纠正为(101011),即译码为(101001)(1分)一、填空题(本题10空,每空1分,共10分)1、必然事件的自信息量是____0____,不可能事件的自信息量是___无穷______。
2、一信源有五种符号{a ,b ,c ,d ,e},先验概率分别为P a =0.5,P b =0.25,P c =0.125,P d =P e =0.0625。
符号“a”的自信息量为___1_____bit ,此信源的熵为__1.875______bit/符号。
3、如某线性分组码的最小汉明距d min =6,最多能纠正___2___个随机错。
4、根据密码算法所使用的加密密钥和解密密钥是否相同,可将密码体制分成___对称(单密钥)_____和___非对称(双密钥)____。
5、平均互信息量I(X;Y)与信源熵和条件熵之间的关系是__I(X:Y)=H(X)-H(X/Y)______。
6、克劳夫特不等式是唯一可译码__存在_______的充要条件。
{00,01,10,11}是否是唯一可译码?___是______。
三、单项选择题(本题共10小题;每小题2分,共20分) 1、对连续集的熵的描述不正确的是(A )A 连续集的熵和离散集的熵形式一致,只是用概率密度代替概率,用积分代替求和B 连续集的熵值无限大C 连续集的熵由绝对熵和微分熵构成D 连续集的熵可以是任意整数2、设信道输入为x m,输出为y,若译码准则是当P(y | x m’)≥P(y | x m),对所有m≠m’时,将y判为m’,则称该准则为(D)A 最大后验概率译码准则B 最小错误概率准则C 最大相关译码准则D 最大似然译码准则3、线性分组码不具有的性质是(C)A 任意多个码字的线性组合仍是码字B 最小汉明距离等于最小非0重量C 最小汉明距离为3D 任一码字和其校验矩阵的乘积c m H T=04、关于伴随式的描述正确的是(A)A 伴随式s与传送中信道出现的错误图样e有关B 通过伴随式s可以完全确定传送中信道出现的错误图样eC 伴随式s与发送的具体码字有关D 伴随式s与发送的具体码字有关,与传送中信道出现的错误图样e也有关5、率失真函数的下限为(B)A H(U) B0 C I(U; V) D没有下限6、纠错编码中,下列哪种措施不能减小差错概率(D)A 增大信道容量B 增大码长C 减小码率D 减小带宽7、已知某无记忆三符号信源a,b,c 等概分布,接收端为二符号集,其失真矩阵为,则信源的最大平均失真度Dmax 为(D)A 1/3B 2/3C 3/3D 4/38、一珍珠养殖场收获240 颗外观及重量完全相同的特大珍珠,但不幸被人用外观相同但重量仅有微小差异的假珠换掉1 颗。
一人随手取出3 颗,经测量恰好找出了假珠,不巧假珠又滑落进去,那人找了许久却未找到,但另一人说他用天平最多6 次能找出,结果确是如此,这一事件给出的信息量(A)。
A 0bitB log6bitC 6bitD log240bit9、已知随机噪声电压的概率密度函数p(x) =1/2,x 的取值范围为-1V 至+1V,若把噪声幅度从零开始向正负幅度两边按量化单位为0.1V 做量化,并且每秒取10 个记录,求该信源的时间熵(B )A 21.61bit/sB 43.22bit/sC 86.44 bit /sD 以上都不对10、彩色电视显像管的屏幕上有5×105 个像元,设每个像元有64 种彩色度,每种彩度又有16种不同的亮度层次,如果所有的彩色品种和亮度层次的组合均以等概率出现,并且各个组合之 间相互独立。
每秒传送25 帧图像所需要的信道容量(C ) A 50.106 B 75.106 C 125.106 D 250.106第7章 线性分组码1. 已知一个(5, 3)线性码C 的生成矩阵为:11001G 011010111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦(1)求系统生成矩阵;(2)列出C 的信息位与系统码字的映射关系;(3)求其最小Hamming 距离,并说明其检错、纠错能力; (4)求校验矩阵H ;(5)列出译码表,求收到r =11101时的译码步骤与译码结果。
解:(1)线性码C 的生成矩阵经如下行变换:23132110011001101101011010011100111100111001101101010100011100111⎡⎤⎡⎤⎢⎥⎢⎥−−−−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥−−−−−−→⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦将第、加到第行将第加到第行得到线性码C 的系统生成矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=111000*********S G(2)码字),,,(110-=n c c c c 的编码函数为[][][]111000*********)(210m m m m f c ++==生成了的8个码字如下信息元 系统码字 000 00000 001 00111 010 01010 011 01101 100 10011 10110100110 11001 11111110(3) 最小汉明距离d =2,所以可检1个错,但不能纠错。