正弦波产生电路的设计

合集下载

lm358正弦波方波三角波产生电路

lm358正弦波方波三角波产生电路

《LM358正弦波、方波、三角波产生电路设计与应用》一、引言在电子领域中,波形发生器是一种非常重要的电路,它可以产生各种不同的波形信号,包括正弦波、方波和三角波等。

LM358作为一款宽幅增益带宽产品电压反馈运算放大器,被广泛应用于波形发生器电路中。

本文将探讨如何利用LM358设计正弦波、方波和三角波产生电路,并简要介绍其应用。

二、LM358正弦波产生电路设计1. 基本原理LM358正弦波产生电路的基本原理是利用振荡电路产生稳定的正弦波信号。

通过LM358的高增益和频率特性,结合RC滤波电路,可以实现较为稳定的正弦波输出。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电容C1和C2相连,形成反馈电路,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

(2)RC滤波电路。

在LM358的输出端接入RC滤波电路,通过调节电阻和电容的数值,可以实现所需的正弦波频率和幅值。

3. 电路测试连接电源并接入示波器进行测试,调节RC滤波电路的参数,可以观察到稳定的正弦波信号输出。

三、LM358方波产生电路设计1. 基本原理LM358方波产生电路的基本原理是通过LM358的高增益和高速响应特性,结合反相输入和正向输入,实现对方波信号的产生。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电阻R1和R2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

(2)反相输入和正向输入。

通过R1和R2的分压作用,实现LM358反相输入和正向输入,从而产生方波输出。

3. 电路测试连接电源并接入示波器进行测试,调节R1和R2的数值,可以观察到稳定的方波信号输出。

四、LM358三角波产生电路设计1. 基本原理LM358三角波产生电路的基本原理是通过LM358的反相输入和正向输入结合,实现对三角波信号的产生。

2. 电路设计(1)LM358引脚连接。

将LM358的引脚2和3分别与电容C1和C2相连,引脚1接地,引脚4和8分别接正负电源,引脚5接地,引脚7连接输出端。

2.1 文氏桥RC正弦波产生电路设计

2.1 文氏桥RC正弦波产生电路设计

• •
正反馈网络: 选频网络:
RC串并联网络
构成桥路
• 稳幅环节:二极管
实验原理
2.RC串并联选频网络
1
R
R //
F Uf Uo R
1
j C R//
1
1
1 j RC j RC
R
j C
jC jC 1 j RC
1
j3
j RC RC (
RC
)2
3
1 j( RC
1
)
RC
令f0
1 ,F 2πRC
• 计算最大可振荡频率 f M A X • 设计振荡频率,满足 f 0 f M A X
• 电源电压: 1 2 v
取 fMAX
S Rmin 2 V cc
实验内容
10K
1K
1K
0.01mF 10K
10K
0.01mF
实验内容
注意事项
1、需要注意双电源的连接方法; 2、需要注意上电的顺序。
预习要求
下次实验内容: 实验2.2 电压比较器电路设计
UESTC
常合二为一
• 选频网络:确定正弦波振荡频率
• 稳幅环节:稳定输出信号幅值(非线性环节)
分类:
放大电路自激振荡的平衡条件是: • RC正弦波振荡电路:1兆赫以下
• LC正弦波振荡电路:几百千赫~几百兆赫 • 石英晶体正弦波振荡电路:频率稳定
实验原理
1. 文氏桥RC正弦波产生电路
• 放大电路:同相比例运算放大器
3 j(
1 f
f0 )
当f
f

0
ቤተ መጻሕፍቲ ባይዱ
F
=
1

实验四波形发生与变换电路设计

实验四波形发生与变换电路设计

实验四波形发生与变换电路设计实验目的:1.了解波形发生电路的基本原理和设计方法。

2.了解电位器在波形发生电路中的应用。

3.掌握使用运算放大器实现波形发生电路的方法。

4.学会使用双稳态多谐振荡电路。

实验仪器:1.AD623全差动放大器芯片。

2.电位器。

3.电容器。

4.电阻器。

5.示波器。

6.功放芯片。

7.函数发生器。

8.蓝色草图记录纸。

实验原理:1.正弦波发生电路设计:正弦波发生电路是由运算放大器构成的,其主要由一个反相输入端,一个非反相输入端,以及一个输出端组成。

当输入端应用一定的正弦波信号时,通过运算放大器放大后,输出端可以得到相应的正弦波信号。

通过调节反相输入端和非反相输入端之间的电阻比例,可以改变输出端的幅度。

2.方波发生电路设计:方波发生电路是由运放和与运放相关的电阻、电容等元器件组成的。

电容的充放电过程可以实现方波的产生。

当电容放电时,输出端输出低电平,当电容充电时,输出端输出高电平。

通过改变电容的充放电时间和电压比例,可以改变输出端的频率和占空比。

3.三角波发生电路设计:三角波发生电路是由运放和与运放相关的电阻、电容等元器件组成的。

根据电容充放电的特性,可以通过改变电容充放电的时间常数,来实现产生三角波信号。

通过改变电容充放电的时间常数,可以改变输出端的频率。

实验步骤:1.正弦波发生电路设计:(2) 通过一个蓄电池连接 AD623 的 Vref 引脚来为芯片供电。

(3)将正弦波输入电压连接到AD623的非反相输入端。

(4)通过调节电位器的阻值,改变反相输入端和非反相输入端之间的电阻比例。

(5)连接示波器,观察并记录输出端的正弦波形状和幅度。

2.方波发生电路设计:(1)连接运放芯片。

(2)连接电位器,将其接入运放的非反相输入端。

(3)连接一个电容器。

(4)连接电阻器,用于调节电容充电和放电时间。

(5)连接示波器,观察并记录输出端的方波形状和频率。

3.三角波发生电路设计:(1)连接运放芯片。

正弦波发生电路

正弦波发生电路
03
在电子乐器中,RC正弦波发生电路可以用于合成器、效果器和采样器 等设备,产生音符和音效。
04
在科学实验中,RC正弦波发生电路可以用于模拟地震、潮汐等自然现 象,进行相关研究。
LC正弦波发生电路的应用实例
01 02 03 04
LC正弦波发生电路常用于产生高频信号,如无线电广播和电视信号。
在通信领域,LC正弦波发生电路可以作为载波信号,用于调制解调器 和无线传输系统。
晶体振荡器的工作原理
总结词
晶体振荡器是一种利用晶体元件的压电 效应产生振荡的电路。
VS
详细描述
晶体振荡器由一个晶体元件和两个电容组 成,通过调节电容的大小,可以改变振荡 频率。当晶体元件受到外力作用时,会产 生形变,进而产生交变电场,形成正弦波 。晶体振荡器的优点是输出信号的频率稳 定度高、精度高,但价格较高。
正弦波发生电路
目录 CONTENT
• 正弦波发生电路概述 • 正弦波发生电路的工作原理 • 正弦波发生电路的设计与实现 • 正弦波发生电路的性能指标与测
试方法 • 正弦波发生电路的应用实例
01
正弦波发生电路概述
正弦波的定义与特性
正弦波是一种周期性变化的波形,其幅度和频率均随时间变 化。在数学上,正弦波可以用三角函数表示,其波形呈正弦 曲线形状。
选择合适的晶体振荡器型号,根据晶 体振荡器的频率计算输出频率,选择 合适的运放配置以获得理想的输出波 形。
实现方法
根据设计步骤搭建电路,将晶体振荡 器接入电路中,通过运放进行信号放 大和缓冲,输出理想的正弦波信号。
数字信号发生器正弦波发生电路的设计与实现
设计步骤
选择合适的数字信号发生器芯片,根据芯片的规格和功能编写程序以生成正弦波信号, 选择合适的DAC配置以获得理想的输出波形。

正弦波有效电路

正弦波有效电路

正弦波有效电路
正弦波有效电路可以采用多种不同的配置,其中一种常用的设计是使用运算放大器和RC电路。

这种电路利用运算放大器作为放大器,将一个通过RC电路的信号进行放大,从而产生正弦波输出。

RC电路由一个电阻R和一个电容C组成,它们以特定的方式连接在一起。

这个电路可以作为正弦波发生器,因为它能够将输入的直流信号转换为交流信号。

在RC电路中,电阻和电容值的特定比值决定了输出信号的频率。

通过改变电阻或电容的值,可以调整输出信号的频率。

另外,还可以通过将多个RC电路串联或并联来提高输出信号的幅度或改变其频率特性。

通过这些方式,可以设计出适合特定需求的正弦波有效电路。

需要注意的是,由于电路中的元件值会受到温度、湿度等环境因素的影响,因此产生的正弦波可能会存在一定的失真。

为了获得更好的输出信号质量,可以选择具有高精度、低温度系数等特性的元件,并在电路设计中进行适当的调整和补偿。

方波三角波正弦波产生电路

方波三角波正弦波产生电路
本文设计的波形发生器采用集成运算放大器、电阻和电容等简单电路元件,实现了波形的产生与转换。工作原理主要是通过555定时器组成的多谐振荡器来产生方波,随后利用积分电路将方波转换为三角波,再通过低通正弦波波形的崎变。此外,本文还详细介绍了所使用的关键元件,如NE555计时IC和LF356 JFET输入型运算放大器,这些元件的特性使得电路具有高精度、高稳定度和低成本等优点。在电路板的制作与调试过程中,需要注意元件的安置、焊接质量以及电路板的测试方法,包括静态调试和动态测试,以确保电路板的正常工作。通过本次实验,不仅提高了同学们的动手能力和测试技术能力,还学会了如何设计电路、熟练电路焊接方法以及掌握调试方法与测试参数。

运放正弦波发生电路

运放正弦波发生电路

运放正弦波发生电路
运放正弦波发生电路是一种使用运放(操作放大器)构建的电路,可以产生稳定的正弦波信号。

以下是一种常见的运放正弦波发生电路,称为综合反馈振荡器(也称为Wien桥振荡器):
首先,将一个运放作为放大器使用。

将运放的非反相输入端(+)和反相输入端(-)通过两个相等的电阻连接,并与一个电容并联,形成一个反馈网络。

然后,将输出端与反相输入端通过一个电容连接。

接下来,在反馈网络的输出端与非反相输入端之间添加一个可变电阻,用于调节振荡频率。

最后,通过电源为运放提供正负电压供电。

当电路开始工作时,由于反馈网络的存在,运放会放大信号,并将其输出到反馈网络。

通过适当选择电阻和电容的值,可以实现正反馈和负反馈之间的平衡,从而产生稳定的正弦波输出。

需要注意的是,为了使运放正弦波发生电路产生稳定的正弦波输出,需要正确选择电阻、电容和电源电压等参数,并保持适当的反馈网络的连接方式。

此外,一些调整和校准可能需要在实际搭建电路时进行,以确保输出的正弦波信号质量和稳定性。

RC正弦波产生电路

RC正弦波产生电路

Vi
Vo
通道耦合方式如何选择?
Vo2= -(Vo1+Vi)
4、电压传输特性---测量方法!
Vo
如何确定坐 标原点?
示波器的XY方式设置: 按钮Display菜单 (将“格式”置XY方 式) 此时CH1通道变为X通 道,CH2通道为Y通道。 调整灵敏度和位移旋钮, 显示合适的曲线。 Vi
电压传输特性即输出Vo与输入Vi的关系,可以用“逐点法” 取不同的Vi时测量Vo,逐点描出曲线。也可以用示波器 的“XY”显示方式直接显示传输特性曲线。
V
o
R1 R C
ቤተ መጻሕፍቲ ባይዱ 实验内容
• 调节Rp,观察负反馈强弱对输出波形Vo的影响 • 调节Rp,使振荡稳定且输出幅度最大不失真的情况下, 测量输出信号VoPP • 测量开环幅频特性和相频特性
• 用波形发生器调节出Vi • Vi幅值设为与上一步骤实测的Vo值 • 保持Vi幅值不变,调节频率 • 测量各个频率时输出的峰峰值 • 测量各个频率时与Vi的Vo相位差 填写P100表4.9.1



常见故障排查-正弦波产生电路
• 电路不起振
• 电路参数? • 电位器先调整到起振点附近(或用相应大小的固定电阻代替) • 电路连接?
• 运放供电方式?
调节Rp,观察Rp大小对输出波形的影响
2、记录不失真情况下Vo波形
稳定振荡时测量峰峰值和频率
3、测量开环幅频和相频特性,记录到p100表4.9.1
断开a点,调节输入信号的频率 此时输入的信号幅度保持和步骤2测量结果一致
用cursor功能测量时间差,换算为相差
4.
思考题
实验11报告要求

P106 用分压法输入直流电压,逐点测量传输特性( p105表4.11.1) 输入正弦波Vipp=4V、f=1kHz,观察并记录Vi、 Vo1、Vo波形 利用示波器的XY方式,观察并记录电路的电压传 输特性曲线。 思考题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电子系统综合设计实验报告
正弦波产生电路设计报告
一、实验设计目的和作用
1. 进行基本技能训练,如基本仪器仪表的使用,常用元器件的
识别、测量、熟练运用的能力,掌握设计资料、手册、标准
和规范以及使用仿真软件、实验设备进行调试和数据处理
等。

2. 学习较复杂的电子系统设计的一般方法,提高基于模拟、数
字电路等知识解决电子信息方面常见实际问题的能力,由学
生自行设计、自行制作和自行调试。

3. 培养理论联系实际的正确设计思想,训练综合运用已学过的
理论和生产实际知识去分析和解决工程实际问题的能力。

4.通过学员的独立思考和解决实际问题的过程,培养学员的创
新能力
二、设计的具体实现
实验要求用TL084设计正弦波产生电路。

正弦波产生方式有多种,本次试验采用较为简单的文氏桥振荡电路。

通过图书馆和上网查阅有关资料,确定如下电路。

Multisim原理图:
sch图
调节w1使电路起振,w2调节幅度
仿真结果:频率162Hz,幅度范围0.8—10V
三、实际制作调试和结果分析
频率:133.33Hz
幅度范围:1~9V
四、总结
第一次进行电路设计,遇到了很多麻烦。

Multisim、Protel等软件不熟悉,第一次焊电路焊工也不行。

通过实验,基本学会了这些软件的操作,制作过程中,自己的焊工有了很大进步。

虽然做了好几次才把电路调出来,但还是很满意。

五、参考文献
1.于红珍.通信电子电路【M】.北京:清华大学出版社,2005
2.康华光,陈大钦.电子技术基础模拟部分(第四版). 北京:高等教育出版社,1999.6
3.黄智伟.全国大学生电子设计竞赛【M】.北京:北京航空航天大学出版社,2006。

相关文档
最新文档