第二章 轴向拉伸和压缩

合集下载

第二章 轴向拉伸和压缩

第二章  轴向拉伸和压缩

第二章 轴向拉伸和压缩§2−1 轴向拉伸和压缩的概念F(图2−1)则为轴向拉伸,此时杆被2−1虚线);若作用力F 压缩杆件(图(图2−2工程中许多构件,(图2−3)、各类(图2−4)等,这类结构的构2−1和图2−2。

§ 2−2 内力·截面法·轴力及轴力图一、横截面上的内力——轴力图2−5a 所示的杆件求解横截面m−m 的内力。

按截面法求解步骤有:可在此截面处假想将杆截断,保留左部分或右部分为脱离体,移去部分对保留部分的作用,用内力来代替,其合力F N ,如图2−5b 或图2−5c 所示。

对于留下部分Ⅰ来说,截面m −m 上的内力F N 就成为外力。

由于原直杆处于平衡状态,故截开后各部分仍应维持平衡。

根据保留部分的平衡条件得 mF N F N(a )(b ) (c )图2−5Ⅱ图2−1图2−2图2-4F F F F Fx==-=∑N N ,0,0 (2−1)式中,F N 为杆件任一截面m −m 上的内力,其作用线也与杆的轴线重合,即垂直于横截面并通过其形心,故称这种内力为轴力,用符号F N 表示。

若取部分Ⅱ为脱离体,则由作用与反作用原理可知,部分Ⅱ截开面上的轴力与前述部分上的轴力数值相等而方向相反(图2−5b,c)。

同样也可以从脱离体的平衡条件来确定。

二、轴力图当杆受多个轴向外力作用时,如图2−7a ,求轴力时须分段进行,因为AB 段的轴力与BC 段的轴力不相同。

要求AB 段杆内某截面m −m 的轴力,则假想用一平面沿m −m 处将杆截开,设取左段为脱离体(图2−7b),以F N Ⅰ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 F F -=ⅠN负号表示的方向与所设的方向相反,即为压力。

要求B C 段杆内某截面n-n 的轴力,则在n −n 处将杆截开,仍取左段为脱离体(图2−7c ),以F N Ⅱ代表该截面上的轴力。

于是,根据平衡条件∑F x =0,有 02N Ⅱ=+-F F F由此得F F =N Ⅱ在多个力作用时,由于各段杆轴力的大小及正负号各异,所以为了形象地表明各截面轴力的变化情况,通常将其绘成“轴力图”(图2−7d)。

材料力学(机械类)第二章 轴向拉伸与压缩

材料力学(机械类)第二章  轴向拉伸与压缩



拉伸压缩与剪切
1
பைடு நூலகம்
§2-1

轴向拉伸与压缩的概念和实例
轴向拉伸——轴力作用下,杆件伸长 (简称拉伸) 轴向压缩——轴力作用下,杆件缩短 (简称压缩)

2
拉、压的特点:

1.两端受力——沿轴线,大小相等,方向相反 2. 变形—— 沿轴线
3

§2-2 轴向拉伸或压缩时横截面上的内力和应力
1 、横截面上的内力
A3
2
l1 l2 y AA3 A3 A4 sin 30 tan 30 2 1.039 3.039mm
A
A A4
AA x2 y2 0.6 2 3.039 2 3.1mm
40
目录
例 2—5 截面积为 76.36mm² 的钢索绕过无摩擦的定滑轮 F=20kN,求刚索的应力和 C点的垂直位移。 (刚索的 E =177GPa,设横梁ABCD为刚梁)
16
§2-4

材料在拉伸时的力学性能
材料的力学性能是指材料在外力的作用下表现出的变 形和破坏等方面的特性。

现在要研究材料的整个力学性能(应力 —— 应变):
从受力很小
破坏
理论上——用简单描述复杂
工程上——为(材料组成的)构件当好医生
17
一、 低碳钢拉伸时的力学性能 (含碳量<0.3%的碳素钢)
力均匀分布于横截面上,σ等于常量。于是有:
N d A d A A
A A
得应力:

N A
F
FN
σ
10
例题2-2
A 1
45°
C
2

5 材料力学第二章 轴向拉伸和压缩

5 材料力学第二章 轴向拉伸和压缩
μ
16锰钢
合金钢 铸铁 混凝土 石灰岩 木材(顺纹)
196-216
186-216 59-162 15-35 41 10-12
0.25-0.30
0.25-0.30 0.23-0.27 0.16-0.18 0.16-0.34
橡胶
0.0078
0.47
25
材料力学
§2-5
轴向拉伸时材料的机械性能
一、试验条件及试验仪器
P BC段:N 2 3 P
1
3P + P
AB段:N
3
2 P
+

12
2P
三、横截面上的应力
问题提出: P P (一)应力的概念 P P
度量横截面 上分布内力 的集度
1.定义:作用在单位面积上的内力值。 2.应力的单位是: Pa KPa MPa GPa
3.应力:a:垂直截面的应力--正应力σ 拉应力为正,压应力为负。
※E为弹性模量,是衡量材料抵抗弹 性变形能力的一个指标。“EA”称 为杆的抗拉压刚度。
l E Sl S E E l l EA A
胡克定律:
=Eε
23
四、横向变形
d d 1 d 0
泊松比(或横向变形系数)
d d 1 d 0 相对变形: ' d0 d0
e
DE段:颈缩阶段。
• 材料的分类:根据试件断裂时的残余相对变形率将材料分类: 延伸率(δ )>5% 塑性变形:低碳钢,铜,塑料,纤维。 延伸率(δ )<5% 脆性变形:混凝土,石块,玻璃钢,陶瓷, 玻璃,铸铁。 • 冷作硬化:材料经过屈服而进入强化阶段后卸载,再加载时,弹 性极限明显增加,弹性范围明显扩大,承载能力增大的现象。 • 强度指标:对塑性材料,在拉断之前在残余变形0.2 %(产生 0.2%塑性应变)时对应的应力为这种材料的名义屈服应力,用 0.2表示 ,即此类材料的失效应力。 锰钢、镍钢、铜等 • 脆性材料拉伸的机械性能特点: 1.断裂残余相对变形率δ <5% 0.2 or s max b 2.弹性变形基本延伸到破坏 3.拉伸强度极限比塑性材料小的多 4.b是脆性材料唯一的强度指标

材料力学课件第二章 轴向拉伸和压缩

材料力学课件第二章 轴向拉伸和压缩

2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。

材料力学 第二章 轴向拉伸和压缩

材料力学 第二章  轴向拉伸和压缩

明德行远 交通天下
材料力学
2. 轴力的正负规定 FN 与外法线同向,为正轴力(拉力)
FN
FN F N > 0
FN与外法线反向,为负轴力(压力)
FN
FN
二、轴力图--表明构件不同截面轴力的变化规律
意 ①反映出轴力与截面位置变化关系,较直观; 义 ②确定最大轴力的数值及其所在横截面的位置,
即确定危险截面位置,为强度计算提供依据。
斜截面外法线方向为正,反之为负。
明德行远 交通天下
材料力学
a pa cosa cos2 a
pa
a
pa
sin a
cosa sin a
1
2
sin 2a
讨 论:
当a = 0°时, (a )max (横截面上正应力最大)
当a = 90°时,
( a )min 0
当a
=
±
45°时,| a
|max
2
结果表明,杆件的最大工作应力在BC段,其值为0.75MPa。
明德行远 交通天下
材料力学
二、斜截面上的应力
k
F
F
设有一等直杆受拉力F作用,横截面面积为A。
求:斜截面k-k上的应力。
F
αk

解:截面法求内力。由平衡方程:
Fa=F
F
则:pa
Fa Aa
Aa:斜截面面积;Fa:斜截面上内力。
由几何关系:
A
材料力学
第二章 轴向拉伸和压缩
明德行远 交通天下
材料力学
主要内容
• §2-1 轴向拉伸与压缩的概念 • §2-2 轴力及轴力图 • §2-3 应力 • §2-4 轴向拉伸或压缩杆件的变形及节点位移 • §2-5 材料拉伸和压缩时的力学性能 • §2-6 轴向拉伸和压缩杆件的强度计算 • §2-7 轴向拉(压)杆的超静定问题

材料力学 第2章轴向拉伸与压缩

材料力学 第2章轴向拉伸与压缩
15mm×15mm的方截面杆。
A
FN128.3kN FN220kN
1
(2)计算各杆件的应力。
C
45°
2
B
s AB

FN 1 A1

28.3103
202
M
Pa90MPa
4
F
FN 1
F N 2 45°
y
Bx
s BC

FN 2 A2
21052103MPa89MPa
F
§2.4 材料在拉伸和压缩时的力学性能
22
5 圣维南原理
s FN A
(2-1)
(1)问题的提出
公式(2-1)的适用范围表明:公式不适用于集中力作
用点附近的区域。因为作用点附近横截面上的应力分布是非
均匀的。随着加载方式的不同。这点附近的应力分布方式就
会发生变化。 理论和实践研究表明:
不同的加力方式,只对力作
用点附近区域的应力分布有
显著影响,而在距力作用点
力学性能:指材料从开始受力至断裂的全部过程中,所表 现出的有关变形和破坏的特性和规律。
材料力学性能一般由试验测定,以数据的形式表达。 一、试验条件及试验仪器 1、试验条件:常温(20℃);静载(缓慢地加载);
2、标准试件:常用d=10mm,l=100 mm的试件
d
l
l =10d 或 l = 5d
36
b点是弹性阶段的最高点.
σe—
oa段为直线段,材料满足 胡克定律
sE
sp
E
se sp
s
f ab
Etana s
O
f′h
反映材料抵抗弹
性变形的能力.
40

材料力学--轴向拉伸和压缩

材料力学--轴向拉伸和压缩

2、轴力图的作法:以平行于杆轴线的横坐标(称为基
线)表示横截面的位置;以垂直于杆轴线方向的纵坐
标表示相应横截面上的轴力值,绘制各横截面上的轴 FN
力变化曲线。
x
§2-2 轴力、轴力图
三、轴力图
FN
3、轴力图的作图步骤:
x
①先画基线(横坐标x轴),基线‖轴线;
②画纵坐标,正、负轴力各绘在基线的一侧;
③标注正负号、各控制截面处 、单位及图形名称。
FN
4、作轴力图的注意事项: ①基线一定平行于杆的轴线,轴力图与原图上下截面对齐; ②正负分绘两侧, “拉在上,压在下”,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④整个轴力图比例一致。
50kN 50kN 50kN
第二章 轴向拉伸和压缩
第二章
轴向拉伸和压缩
第二章 轴向拉伸和压缩
§2 — 1 概述
§2 — 2 轴力 轴力图

§2 — 3 拉(压)杆截面上的应力
§2 — 4 拉(压)杆的变形 胡克定律 泊松比

§2 — 5 材料在拉伸与压缩时的力学性质
§2 — 6 拉(压)杆的强度计算
§2 — 7 拉(压)杆超静定问题
FN
作轴力图的注意事项: ①多力作用时要分段求解,一律先假定为正方向,优先考虑直接法; ②基线‖轴线,正负分绘两侧, “拉在上,压在下”,比例一致,封闭图形; ③正负号标注在图形内,图形上下方相应的地方只标注轴力绝对值,不带正负号; ④阴影线一定垂直于基线,阴影线可画可不画。
§ 2-3拉(压)杆截面上的应力
§2 — 8 连接件的实用计算
§2-1 概述 §2-1 概述
——轴向拉伸或压缩,简称为拉伸或压缩,是最简单也是做基本的变形。

材料力学第二章-轴向拉伸与压缩

材料力学第二章-轴向拉伸与压缩
FN 3 P
1
2
P
P
1
2
FN1
3 P
3
P FN2
PP FN3
FN 1 P FN 2 0 FN 3 P
1
2
4、作内力图
P
P
P
3 P
1 FN
P
2
3
P x
[例2] 图示杆旳A、B、C、D点分别作用着大小为5P、8P、 4P、 P 旳力,方向如图,试画出杆旳轴力图。
OA PA
B PB
C PC
D PD
q
u 正应力旳正负号要求:
sx
sx sx
s
x
P
u 对变截面杆, 当截面变化缓慢时,横截面上旳 正应力也近似为均匀分布,可有:
s (x) FN (x)
A( x)
合力作用线必须与杆件轴线重叠;
圣维南原理
若用与外力系静力等 效旳合力替代原力系, 则这种替代对构件内应 力与应变旳影响只限于 原力系作用区域附近很 小旳范围内。 对于杆件,此范围相当 于横向尺寸旳1~1.5倍。
h
解: 1) BD杆内力N
取AC为研究对象,受力分析如图
mA 0 , (FNsinq ) (hctgq) Px 0
FN
Px
hcosq
2) BD杆旳最大应力: s max FN max PL A hAcosq
突变规律: 1、从左边开始,向左旳力产生正旳轴力,轴力图向上突变。 2、从右边开始,向右旳力产生正旳轴力,轴力图向上突变。 3、突变旳数值等于集中力旳大小。
即:离端面不远处,应力分布就成为均匀旳。
§2–3 直杆轴向拉压时斜截面上旳应力
一、斜截面上旳内力
n
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

集度最大处开始。
应力就是单位面积上的内力
全应力
参照图示,围绕M点取微小面积△A。根据均匀连续假设,
△A上必存在分布内力,设它的合力为△F ,与△A的比值为
§2-1 轴向拉伸与压缩的概念
F
F
F
F
计算简图
轴向拉伸是在轴向力作用下,杆件产生伸长变形,也简称拉伸 轴向压缩是在轴向力作用下,杆件产生缩短变形,也简称压缩 1. 受力特点:作用于杆件两端的外力大小相等,方向相反,作 用线与杆件轴线重合,即称轴向力。 2. 变形特点:杆件变形是沿轴线方向的伸长或缩短。
F q=F/l F
F
l
2l
l
解: 1、求支反力 FR = F
1
F2 q
FR
1
F 2
F F'=2ql FR
F
3 F
3
F
FR = F FR = F FR = F
FR = F
1
F2 q
1
F2
3 Fx
3
FN1 = F
Fq
FN3 = F
F N2
F
x1
F F Fx1
l
FN 2
F
x1
F
Fx 0
FN2
2F
- FR
2)取:取其中任意部分为研究对象,而弃去另一部分。 3)代:用作用于截面上的内力,代替弃去部分对留下部分的 作用力。
4)平:建立留下部分的平衡条件,由外力确定未知的内力。
一般来说,在采用截面法之前不要使用力的可传性原理,以 免引起错误。
三、轴力
(1)截开; (a) F
m
F
(2)代替; (b) F
m
40kN
55kN 25kN
20kN
A
B
C
600 300 500
1800
D
E
400
解: 求支反力 FR 10kN
FR
F1=40kN F2=55kN F3=25kN
1
2
3
4 F4= 20kN
A1
B 2 C 3D 4 E
FR
F1=40kN F2=55kN F3=25kN
1
2
3
4 F4= 20kN
A1
B 2 C 3D 4 E
弹性体内力的特征: (1)连续分布力系
(2)与外力组成平衡力系(特殊情形下内力本身形成自相平衡
力系)
F1
F2
F3
Fn
杆件各截面上内力变化规律随着外力的变化而改变。
内力主矢与主矩
F1
FR
F3
M
在确定的坐标系中,轴力、剪 力、扭矩、弯矩及其可能产 生的变形效应。
FQ
FR
FN
Mx
MB
M
内力的正负号规则 同一位置处左、右侧截面上内力分量必须具有相同的正负号。
横截面1-1: 注意假设轴力为拉力
FR
1 FN1
A1
横截面2-2:
FR
F1
2 FN2
A
B2
FN1 10kN(拉) FN2 50kN(拉)
FR
F1=40kN F2=55kN F3=25kN
1
2
3
4 F4= 20kN
A1
B 2 C 3D 4 E
横截面3-3: 此时取截面3-3右边为分离体方便,
仍假设轴力为拉力。
CB段:作截面2—2,取左段部分(图c),并假设 N 2 方向如图所示。由 X 0 ,N2 15 5 0
得 N2 10 kN (压力),方向应与图中所示方向相反。 (2)绘轴力图 选截面位置为横 坐标;相应截面 上的轴力为纵坐 标,根据适当比 例,绘出图线。
例2-2 试作图示杆的轴力图。
材料力学(I)
中国地质大学工程学院力学课部 2020年8月7日
第二章 轴向拉伸和压缩
§2-1 轴向拉伸与压缩的概念 §2-2 内力. 截面法. 轴力及轴力图 §2-3 轴向拉(压)杆横截面及斜截面上的应力 §2-4 轴向拉(压)杆件的变形. 胡克定律 §2-5 轴向拉(压)杆件的变形能 §2-6 材料在拉伸和压缩时的力学性能 §2-7 强度条件. 安全系数. 许用应力 §2-8 拉(压)杆超静定问题 §2-9 应力集中的概念
m FN
m
x
FN F
(3)平衡。 (c)
FN m
F
m
可看出:杆件任一横截面上的内力,其作用线均与杆
件的轴线重合,因而称之为轴力,用记号FN表示。
轴力的符号规定:
引起伸长变形的轴力为正——拉力(背离截面); 引起压缩变形的轴力为负——压力(指向截面)。
(a) F (b) F
(c)
(a) F (b) F
§2-2 内力. 截面法. 轴力及轴力图
一、内力
弹性体受力后,由于变形,其内部各点均会发生相对位移,
因而产生相互作用力。
F
FF
F
内力——由于物体受外力作用而引起的其内部各质点间相互 作用的力的改变量。
根据可变形固体的连续性假设可知,物体内部相邻部分之间 的作用力是一个连续分布的内力系,我们所说的内力是该内 力系的合成(力或力偶)
n
(e)
F
n
B
A
n
Bቤተ መጻሕፍቲ ባይዱ
A
四、轴力图
若用平行于杆轴线的坐标表示横截面的位置,用垂直于杆轴 线的坐标表示横截面上轴力的数值,所绘出的图线可以表明 轴力与截面位置的关系,称为轴力图。
F
FF
F
F
FN图
F
FN图
例2-1 求图示杆件的内力,并作轴力图。
解:(1)计算各段内力 AC段:作截面1—1,取左段部分(图b)。 由 X 0 得 N1 5 kN (拉力)
FN3 5kN( 压) FN3 3 F3
F4
3D
E
同理 FN4 20kN(拉) FN4 3
F4
3E
FR
F1=40kN F2=55kN F3=25kN
1
2
3
4 F4= 20kN
A1
B 2 C 3D 4 E
50
20 10
5
FN图(kN)
由轴力图可看出 FN,max FN2 50kN
例2-3:试作图示杆的轴力图。
FN FN
FQ FQ
二、截面法(求内力的一般方法)
假想用截面把构件分成两部分,以显示并确定内力的方法。
(1)截面的两侧必定出现大小相等,方向相反的内力;(2) 被假想截开的任一部分上的内力必定与外力相平衡。
用截面法求内力可归纳为四个字:
1)截:欲求某一截面的内力,沿该截面将构件假想地截成两 部分。
(c)
m
m
m FN
m
x
FN m
m
m
mm
m
x
m
m
F FN F
F
F FN F
F
注意:
用截面法法求内力的过程中,在截面取分离体前,作用于物
体上的外力(荷载)不能任意移动或用静力等效的相当力系
替代。
n
m
F
n Fm
n
m
C
B
A
(a)
FN=F m
F
m
A
(b)
FN=F n
F
n
m
C
B
A
(d)
FN=0 m
m
A
FN=F
-
Fx1 l
0
FN2
Fx1 l
F
F q=F/l F
F
l
2l
l
FN
F
F
F
思考:
此题中FNmax发生在何处?最危险截面又在何处?
§2-3 轴向拉(压)杆横截面及斜截面上的应力
一、应力:分布内力在一点的集度
F1
F2
F3
Fn
工程构件,大多数情形下,内力并非均匀分布,集度的定义
不仅准确而且重要,因为“ 破坏”或“ 失效”往往从内力
相关文档
最新文档