高考数学考点25三视图与直观图试题解读与变式
高一数学空间几何体的三视图与直观图试题答案及解析

高一数学空间几何体的三视图与直观图试题答案及解析1.已知一个几何体的三视图如图所示.(Ⅰ)求此几何体的表面积;(Ⅱ)在如图的正视图中,如果点为所在线段中点,点为顶点,求在几何体侧面上从点到点的最短路径的长.【答案】(1);(2)【解析】(1)以三视图为载体考查几何体的表面积,关键是能够对给出的三视图进行恰当的分析,从三视图中发现几何体中各元素的位置关系和数量关系;(2)多面体的表面积是各个面的面积之和;组合体的表面积应注意重合部分的处理;(3)圆锥、圆柱、圆台的侧面是曲面,计算侧面积或长度时需要将这个曲面展为平面图形计算,而表面积是侧面积与底面圆的面积之和. 试题解析:(Ⅰ)由三视图知:此几何体是一个圆锥加一个圆柱,其表面积是圆锥的侧面积、圆柱的侧面积和圆柱的一个底面积之和.所以. 6分(Ⅱ)沿点到点所在母线剪开圆柱侧面,如图:则,所以从点到点在侧面上的最短路径的长为. 12分【考点】空间几何体的表面积.2.如果一个水平放置的图形的斜二测直观图是一个底面为,腰和上底均为的等腰梯形,那么原平面图形的面积是_______-【答案】【解析】如图,根据斜二测画法,可得原平面图形是直角梯形,在直观图中,分别过顶点作底面的高,由于是等腰梯形,可得底面边长为,所以在平面图形中,可知DC=2,所以S= ( AD+BC)·DC=.【考点】直观图和平面图的关系.3.下列命题中正确的是()A.空间三点可以确定一个平面B.三角形一定是平面图形C.若A、B、C、D既在平面α内,又在平面β内,则平面α和平面β重合D.四条边都相等的四边形是平面图形【答案】B【解析】不在同一直线的三点确定一个平面,故A错,B对;共线的四点可以构成无数个平面,故C错;正四面体的四个边都相等,但它不是平面图形,故D错.故选B.【考点】平面的基本性质.4.将棱长为2的正方体切割后得一几何体,其三视图如图所示,则该几何体的体积为___________.【答案】.【解析】由三视图可知,该几何体为正方体先切割得到的三棱柱后切割一三棱锥,如图所示,则其体积为.【考点】空间几何体的体积.5.某一几何体的三视图如图所示.按照给出的尺寸(单位:cm),(1)请写出该几何体是由哪些简单几何体组合而成的;(2)求出这个几何体的体积.【答案】(1) 正方体和直三棱柱;(2)10cm3.【解析】(1)画出已知三视图的直观图,就很容易获得此几何体是由哪些简单几何体组合而成的;(1)既然几何体是由简单几何体组合而成的,那就只需先求得各个简单几何体的体积,然后相加即得所求几何体的体积.试题解析:(1)如图是题中所给几何体的直观图,所以这个几何体可看成是由正方体及直三棱柱的组合体.(2)由,,可得.所求几何体的体积:【考点】1.三视图;2.直观图;3.体积公式.6.某向何体的三视图如图所示,则该几何体的体积为()A.B.C.D.【答案】A【解析】由三视图可知,该几何体是一个长方体和一个半圆柱组成的几何体,所以体积为。
高考数学 三视图和直观图训练 试题

智才艺州攀枝花市创界学校陕飞二中2021高考数学三视图和直观图训练考察内容:1、直观图和三视图;2、几何体的外表积和体积1、有一个几何体的三视图如下列图,这个几何体应是一个().A.棱台B.棱锥C.棱柱D.都不对2、一个几何体的三视图形状都一样、大小均相等,那么这个几何体不可以是().A.球B.三棱锥C.正方体D.圆柱4、以下几何体各自的三视图中,有且仅有两个视图一样的是().A.①②B.①③C.①④D.②④5、如下列图,①存在三棱柱,其主视图、俯视图如右图所示;②存在四棱柱,其主视图、俯视图如右图;③存在圆柱,其主视图,俯视图如图.).A.3B.2C.1D.6、将正方体(如图(a)所示)截去两个三棱锥,得到图(b)所示的几何体,那么该几何体的左视图为().7、某几何体的三视图如下列图,那么该几何体的体积为().A.B.3πC.D.6π.8、某几何体的三视图如下列图,该几何体的外表积是________.9、一个几何体的三视图如图,该几何体的外表积是().A.372B.360C.292D.28010、如图,某几何体的主视图、左视图和俯视图分别是等边三角形、等腰三角形和菱形,那么该几何体体积为().A .4B .4C .2D .211、某几何体的三视图如下列图,它的体积为().A .12πB .45πC .57πD .81π12、一个几何体的三视图如下列图,那么左视图的面积为().A .2+B .1+C .2+2D .4+13、设右图是某几何体的三视图,那么该几何体的体积为().A.π+12B.π+18C .9π+42D .36π+1814、一个几何体的三视图如下列图,那么此几何体的侧面积(单位:cm 2)为(). A .48B .64 C .80D .12015、一个几何体的三视图如所示,那么该几何体的体积为A .6B .5.5 C16、右图中的三个直角三角形是一个体积为320cm的几何体的三视图,那么h =cm17、某几何体的三视图如下列图,那么该几何体的体积为〔〕 A .316πB .320π C .340πD .π5 18、一个几何体的三视图如右图所示〔单位长度:cm 〕,那么此几何体的体积是A .1123cmB .32243cm C .963cm D .2243cm。
高考数学考点24简单的线性规划试题解读与变式(new)

考点24 简单的线性规划【考纲要求】1.掌握确定平面区域的方法(线定界、点定域).2.理解目标函数的几何意义,掌握解决线性规划问题的方法(图解法),注意线性规划问题与其他知识的综合.【命题规律】简单的线性规划是高考题中一定出现的,一般是在选择题或填空题中考查,有时会出现解答题中于其他知识结合考查.【典型高考试题变式】(一)求目标函数的最值例1。
【2017课标1,文7】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最大值为()A.0 B.1 C.2D.3【解析】如图,作出不等式组表示的可行域,则目标函数z x y=+经过(3,0)A时z取得最大值,故max 303z=+=,故选D.【名师点睛】本题主要考查线性规划问题,首先由不等式组作出相应的可行域,并明确可行域对应的封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数的最值取法或值域范围.【变式1】【改变结论】设x,y满足约束条件33,1,0,x yx yy+≤⎧⎪-≥⎨⎪≥⎩则z=x+y的最小值为()A .0B .1C .2D .3【答案】B【解析】如图,作出不等式组表示的可行域,则目标函数z x y =+经过(1,0)B 时z 取得最小值,故min 101z =+=,故选B .【变式2】【改变条件】变量x ,y 满足约束条件错误!则z =x +y 的最大值是( ) A .4- B .4 C .2 D .6 【答案】B(二)非线性目标函数的最值例2。
【2016高考山东文数】若变量x ,y 满足2,239,0,x y x y x +≤⎧⎪-≤⎨⎪≥⎩则x 2+y 2的最大值是( )A.4 B 。
9 C 。
10 D.12 【解析】画出可行域如图所示,点31A -(,)到原点距离最大,所以 22max ()10x y +=,选C 。
2022年高考数学空间几何体的直观图与三视图知识点专项练习含答案

专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)1.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√22.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm3.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√324.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√35.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 20216.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+47.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √638.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π39.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π10.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.11.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 28312.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3二、单空题(本大题共4小题,共20分)13.某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O′A′B′C′为平行四边形,D′为C′B′的中点,则图(2)中平行四边形O′A′B′C′的面积为___________.14.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).15.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.16.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.14.设一正方形纸片ABCD边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥,O为正四棱锥底面中心.,(粘接损耗不计),图中AH PQ(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ的底角为x,试把正四棱锥的侧面积表示为x的函数,并求S范围.专题28 空间几何体的直观图与三视图一、单选题(本大题共12小题,共60分)17.已知一个几何体的正视图和侧视图如图(1)所示,其俯视图用斜二测画法所画出的水平放置的直观图是一个直角边长为1的等腰直角三角形(如图(2)所示),则此几何体的体积为()A. 1B. √2C. 2D. 2√2【答案】B【解析】解:根据直观图可得该几何体的俯视图是一个直角边长分别是2和√2的直角三角形,根据三视图可知该几何体是一个三棱锥,且三棱锥的高为3,所以体积V=13×(12×2×√2)×3=√2.故选B.18.正方形O′A′B′C′的边长为1cm,它是水平放置的一个平面图形的直观图(如图),则原图形的周长是()A. 6cmB. 8cmC. (2+3√2)cmD. (2+2√3)cm【答案】B【解析】解:如图,OA=1cm,在Rt△OAB中,OB=2√2 cm,∴AB=√OA2+OB2=3cm.∴四边形OABC的周长为8cm.故选B.19.一个几何体的三视图如图所示,则该几何体的表面积为()A. 3π2+1+√32B. 3π+12+√32C. 3π+1+√32D. 3π+1+√32【答案】C【解析】解:由三视图可知几何体上部为三棱锥,下部为半球,三棱锥的底面和2个侧面均为等腰直角三角形,直角边为1,另一个侧面为边长为√2的等边三角形,半球的直径2r=√2,故r=√22.∴S表面积=12×1×1×2+√34×(√2)2+12×4π×(√22)2+π×(√22)2−12×1×1=12+√32+3π2.故选:C.20.某几何体的三视图如图所示,则该几何体的表面积为()A. 3π+4+√3B. 3π+5+√3C. 52π+6+√3 D. 52π+4+√3【答案】A【解析】解:由已知中的三视图可得:该几何体是一个半圆柱和三棱锥的组合体半圆柱的半径为1高2,所以该组合体的面积故选A.21.已知某几何体的一条棱长为l,该棱在正视图中的投影长为√2020,在侧视图与俯视图中的投影长为a与b,且a+b=2√1011,则l的最小值为()A. √20212B. √40422C. √2021D. 2021【答案】C【解析】解:如图所示:设长方体中AB=m,BD为正投影,BE为侧投影,AC为俯视图的投影.故:BD=√2020,BE=a,AC=b,设AE=x,CE=y,BC=z,则:x2+y2+z2=l2,x2+y2=b2,y2+z2=a2,x2+z2=2020,所以2(x2+y2+z2)=a2+b2+2020,故:2l2=a2+b2+2020,因为a2+b2≥(a+b)22=2022,所以2l2≥2022+2020,则l≥√2021.故l的最小值为√2021.故选C.22.已知一几何体的三视图如图所示,则该几何体的表面积为()A. √24π+72B. √24π+4 C. 1+√24π+72D. 1+√24π+4【答案】D【解析】解:几何体左边为四分之一圆锥,圆锥的半径为1,高为1,右边为三棱锥,三棱锥底面是直角边长为1和2的直角三角形,高为1,所以几何体的表面积为:+12×(2+1)×1+12×√2×√(√5)2−(√22)2,故选D.23.某圆柱的正视图是如图所示的边长为2的正方形,圆柱表面上的点A,B,C,D,F在正视图中分别对应点A,B,C,E,F.其中E,F分别为AB,BC的中点,则异面直线AC与DF所成角的余弦值为()A. 13B. √23C. √33D. √63【答案】D【解析】解:如图所示,连结DE,EF,易知EF//AC,所以异面直线AC与DF所成角为∠DFE,由正视图可知,DE⊥平面ABC,所以DE⊥EF.由于AB=BC=2,所以EF=√2,又DE=1,所以DF=√3,在RtΔEFM中,cos∠DFE=√2√3=√63,故选D.24.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为()A. 22π3B. 28π3C. 34π3D. 40π3【答案】C【解析】解:根据几何体得三视图转换为几何体为:该几何体是由一个底面半径为2,高为3的半圆柱和一个半径为2的半球组成,故:V=12⋅π×22×3+12×43×π×23=34π3.故选C.25.如图,网络纸上小正方形的边长为1,粗实线画出的某几何体的三视图,则该几何体的体积是()A. 18πB. 21πC. 27πD. 36π【答案】A【解析】解:该几何体是一个四分之一的圆和圆锥的组合体,如图:有题意知该圆的直径为6cm,圆锥的高为3cm,则该几何体的体积为13×π×32×3+1 4×43π×33=18π,故选A.26.如图所是某一容器三视图,现容中匀速注水,容器中的度h随时间变可能图象是()A. B. C. D.【答案】B【解析】解:三视图表示的容器倒的圆锥,下细,上面,刚开始度增加的相快些.曲越竖直”,后,高度增加来越慢,图越平稳.故B.27.如图是一个四棱锥的三视图,则该几何体的体积为()A. 403B. 323C. 163D. 283【答案】A【解析】解:由三视图得到其直观图(下图所示),则体积为:13×[12(1+4)×4]×4=403,故选A .28.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的体积为A. 64−8√2π3B. 64−4√2π3C. 64−8π3D. 64−4π3【答案】A【解析】解:这是一个有一条侧棱垂直于底面的四棱锥内部挖去了一个八分之一的球,四棱锥的底面边长和高都等于4,八分之一球的半径为2√2,,故选A .二、单空题(本大题共4小题,共20分)29. 某组合体的正视图和侧视图如图(1)所示,它的俯视图的直观图是图(2)中粗线所表示的平面图形,其中四边形O ′A ′B ′C ′为平行四边形,D ′为C ′B ′的中点,则图(2)中平行四边形O ′A ′B ′C ′的面积为___________.【答案】3√2【解析】解:由正视图和侧视图可得俯视图如下:∴|O′A′|=4,|O′C′|=32,∠A′O′C′=45°,∴S ΔA′O′C′=12|O′A′|·|O′C′|·sin∠A′O′C′ =12×4×32×√22=3√22, ∴S ▱O′A′B′C′=2S △A′O′C′=3√2, 故答案为3√2.30.以图①为正视图,在图②③④⑤中选两个分别作为侧视图和附视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次为_____________(写出符合求的一组答案即可).【答案】②⑤或③④【解析】解:由高度可知,侧视图只能为②或③,侧视图为②,如图(1)平面PAC⊥平面ABC,PA=PC=√2,BA=BC=√5,AC=2,俯视图为⑤;侧视图为③,如图(2),PA⊥平面ABC,PA=1,AC=AB=√5,BC=2,俯视图为④.故答案为②⑤或③④.31.在棱长为1的正方体ABCD−A1B1C1D1中,点M,N分别是棱B1C1,C1D1的中点,过A,M,N三点作正方体的截面,将截面多边形向平面ADD1A1作投影,则投影图形的面积为.【答案】712【解析】解:直线MN分别与直线A1D1,A1B1交于E,F两点,连接AE,AF,分别与棱DD1,BB1交于G,H两点,连接GN,MH,得到截面五边形AGNMH,向平面ADD1A1作投影,得到五边形AH1M1D1G,由点M,N分别是棱B1C1,C1D1的中点,可得D1E=D1N=12,由△D1EG∽△DAG,可得DG=2D1G=23,同理BH=2B1H=23,则AH1=2A1H1=23,A1M1=D1M1=12,则S AH1M1D1G =1−S A1H1M1−S ADG=1−12×12×13−12×1×23=712,故答案为:712.32.把平面图形α上的所有点在另一个平面上的射影所构成的图形β称为图形α在这个平面上的射影,如图所示,在三棱锥A−BCD中,BC⊥DC,AD⊥DC,BC⊥AB,BC= CD=4,AC=4√3,则△ADB在平面ABC上的射影的面积是________.【答案】8√2【解析】解:因为BC⊥DC,AD⊥DC,BC⊥AB,BC=CD=4,AC=4√3,把三棱锥A−BCD放入如图所示的棱长为4的正方体中,过点D作CE的垂线DF,垂足为F,连接AF,BF,因为BC⊥平面CE,DF⊂平面CE,故BC⊥DF又BC∩CE=C,BC,CE⊂平面ABC则DF⊥平面ABC,故△ADB在平面ABC上的射影为△AFB,因为AB=√42+42=4√2,×4×4√2=8√2,所以△AFB的面积为12即△ADB在平面ABC上的射影的面积为8√2.故答案为8√2.三、解答题(本大题共2小题,共20分)13.设某几何体的三视图如图(尺寸的长度单位为cm),(1)用斜二测画法画出该几何体的直观图(不写画法);(2)求该几何体最长的棱长.【答案】(1)答案见解析;(2)4cm.【解析】(1)(2)如下图,SE⊥面ABC,线段AC中点为D2,3,1,4,2,=1======,BD AC SE cm AE cm CE cm AC cm AD DC cm DE cm⊥,=,3BD cm在等腰ABC中,AB AC=在Rt SEA△中,SA=在Rt SEC△中,SC△中,BE==在Rt BDE∴⊥SE⊥面ABC,SE BE在Rt SEB△中,SB=<==<<,在三梭锥S-ABC中,SC AB AC SA SB AC所以最长的棱为AC ,长为4cm14.设一正方形纸片ABCD 边长为4厘米,切去阴影部分所示的四个全等的等腰三角形,剩余为一正方形纸片和四个全等的等腰三角形,沿虚线折起,恰好能做成一个正四棱锥(粘接损耗不计),图中AH PQ ⊥,O 为正四棱锥底面中心.,(1)若正四棱锥的棱长都相等,请求出它的棱长并画出它的直观图示意图;(2)设等腰三角形APQ 的底角为x ,试把正四棱锥的侧面积表示为x 的函数,并求S 范围.【答案】(1),画图见解析;(2)161tan 2tan S x x=++,()0,4.【解析】(1)由题意,设正四棱锥的棱长为a,则AH =,2a AC a +===(2)设PH b =,则tan AH b x =,由2tan 2a x a ⋅+=a =,从而22116tan 442tan 2(tan 1)APQ x S S PQ AH a x x ==⋅⋅⋅==+△,其中(tan 1),x ∈+∞,∴16(0,4)1tan 2tan S x x=∈++。
高考命题交汇点的新宠---三视图与直观图

故本题应选 D .
【 点评 】 本题考 查形 式新颖 ,可 以考
二 、 给 出 三 视 图 ( 部 分 ) 考 查 直 截去一个角所得多面体的直观图 ,其余是 或 。 ( ) 正 视 图 下 面 ,按 照 画 三 视 图 的 1在
单位 :c . m) 查对 三视 图画法规则的掌握情况以及对 常 观 图 ( 其 他 视 图 ) 的 画 法 ,并 求几 何 体 它 的正 视 图和 左 视 图 ( 或
一
( A)2 / 、
( C)4
D
( )2 / B 、
( D)2v5 、 /
C
主 视 图
左 视 图
甄
俯 视 图
图3
解 :( ) 1 由三视图可知 ,该几何体 由
C
、
给 出 几何 体 ,识 别 三视 图
A m B
正方体 和四棱柱组成 ,如 图 4所示.
图2
见简单几何体的感知、领 悟能力和 空间想 的 表 面 积 和体 积
象 能力 .
例 3 一 个 几 何 体 按 比例 绘 制 的 三 视 要 求 画 出该 多 面 体 的俯 视 图 ; [ 0 1年 第 4期 ] 础 教 育 论 坛 21 基
() 2 按照给出的尺寸 ,求该多面体的
因为 、丁 /
() 方体 1正 () 2 圆锥
=口 ,Vq+ m一=b ,
正方体 的体积 为 1 =l 1 : X
所 以 (2 ) b 一1 =6 a —1 +( ) .
所 以 +b 8 .
四 柱 体 为 #一1 1 , 棱 的 积 ×x:
二 二
算 问题并汇在一起进行考查 ,如面积 、体
2023年高考数学(文科)一轮复习课件——空间几何体的结构、三视图和直观图

考点二 空间几何体的三视图
例1 (1)(2021·全国乙卷)以图①为正视图,在图②③④⑤中选两个分别作为侧视 图和俯视图,组成某个三棱锥的三视图,则所选侧视图和俯视图的编号依次 为__③__④__(_或__②__⑤__,__答__案__不__唯__一__)_____(写出符合要求的一组答案即可).
_平__行__且__相__等___
相交于_一__点___,但 不一定相等
延长线交于___一__点_
_平__行__四__边__形___
_三__角__形___
__梯__形__
索引
(2)旋转体的结构特征
名称
圆柱
圆锥
圆台
图形
互相平行且相等,
母线
__垂__直__于底面
相交于__一__点__
轴截面 侧面展开图
索引
2.(易错题)在如图所示的几何体中,是棱柱的为___③__⑤___(填写所有正确的序号). 解析 由棱柱的定义可判断③⑤属于棱柱.
索引
3.如图,长方体ABCD-A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体
是( C )
A.棱台
B.四棱柱
C.五棱柱
D.六棱柱
解析 由几何体的结构特征,剩下的几何体为五棱柱.
索引
训练1 (1)如图,网格纸的各小格都是正方形,粗实线画
出的是一个几何体的三视图,则这个几何体是( B )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 解析 由题知,该几何体的三视图为一个三角形、两个四边形,经分析可 知该几何体为三棱柱.
索引
(2)(2022·成都检测)一个几何体的三视图如图所示,
索引
解析 根据“长对正、高平齐、宽相等”及图中数据,可知图②③只能是侧 视图,图④⑤只能是俯视图,则组成某个三棱锥的三视图,所选侧视图和俯 视图的编号依次是③④或②⑤.若是③④,则三棱锥如图1所示;若是②⑤, 则三棱锥如图2所示.
高考数学复习考点知识与题型专题讲解52---空间几何体的直观图与三视图

1.斜二测画法 斜二测画法的主要步骤如下: (1)建立直角坐标系. 在已知水平放置的平面图形中取互相垂直的 Ox, Oy ,建立直 角坐标系. (2)画出斜坐标系. 在画直观图的纸上(平面上)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 O ' x ',O ' y ', 使 ∠x 'O ' y ' = 45o (或135o ), 它们确 定的平面表示水平平面. (3)画出对应图形. 在已知图形平行于 x 轴的线段, 在直观图中画成平行于 x ' 轴 的线段, 且长度保持不变; 在已知图形平行于 y 轴的线段, 在直观图中画成平行于 y ' 轴, 且长度变为原来的一般. 可简化为 “横不变, 纵减半”. (4)擦去辅助线. 图画好后, 要擦去 x ' 轴、 y ' 轴及为画图添加的辅助线(虚线). 被挡住的棱画虚线. 注: 直观图和平面图形的面积比为 2 : 4 . 2.平行投影与中心投影 平行投影的投影线是互相平行的, 中心投影的投影线相交于一点. 二、空间几何体的三视图 1.三视图的概念 将几何体由前至后、由左至右、由上至下分别作正投影得到的三个投影图依次叫做 该几何体的正(主)视图、左(侧)视图、俯视图, 统称三视图. 它们依次反应了几何体 的高度与长度、高度与宽度、长度与宽度. 2.作、看三视图的三原则 (1)位置原则:
2 / 27
度量原则长对正、高平齐、宽相等即正俯同长、正侧同高、俯侧同宽 虚实原则轮廓线、现则实、隐则虚 俯视图 几何体上下方向投影所得到的投影图反映几何体的长度和宽度 口诀 正侧同高正府同长府侧同宽或长对正、高平齐、宽相等 三、常见几何体的直观图与三视图 常见几何体的直观图与三视图如表 8-3 所示.
2020届高考数学理一轮复习空间几何体及其三视图、直观图文科

文数
课标版
第一节 空间几何体及其三视图、直观图
教材研读
栏目索引
1.空间几何体的结构特征
多 (1)棱柱:侧棱都① 平行且相等 ,上、下底面平行且是② 全等 的多边形. 面 (2)棱锥:底面是多边形,侧面是有一个公共顶点的三角形. 体 (3)棱台:可以由平行于棱锥底面的平面截棱锥得到,其上、下底面是③ 相似 多边形
旋 (1)圆柱:可以由④ 矩形 绕其任一边所在直线旋转得到. 转 (2)圆锥:可以由直角三角形绕其⑤ 直角边 所在直线旋转得到. 体 (3)圆台:可以由直角梯形绕其⑥ 垂直于底边的腰 所在直线或等腰梯形绕其上、下
底边中点的连线所在直线旋转得到,也可由平行于圆锥底面的平面截圆锥得到. (4)球:可以由半圆或圆绕其⑦ 直径 所在直线旋转得到
栏目索引
2.三视图与直观图
三视图 画三视图的规则:长对正,高平齐,宽相等 空间几何体的直观图常用⑧ 斜二测 画法来画,规则如下: (1)原图形中x轴、y轴、z轴两两垂直(原点为O),直观图中相应x'轴,y'轴满足∠x'O'y'=
直观图 ⑨ 45°(或135°) (O'为原点),z'轴与x'轴和y'轴所在平面垂直. (2)原图形中平行于坐标轴的线段在直观图中仍 平行于相应坐标轴 ,平行于x轴 和z轴的线段长度在直观图中保持原长度 不变 ,平行于y轴的线段长度在直观 图中长度为 原来的一半
栏目索引
2-1 (2014课标Ⅰ,8,5分)如图,网格纸的各小格都是正方形,粗实线画出 的是一个几何体的三视图,则这个几何体是 ( )
A.三棱锥 B.三棱柱 C.四棱锥 D.四棱柱 答案 B 由题中三视图可知该几何体的直观图如图所示,则这个几何 体是三棱柱,故选B.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
A. 20 5 3
【答案】A
B. 20 3
C. 25
D. 25 5
【变式 3:改编问法】如图,一个简单几何体的正视图和侧视图都是边长为 2 的等边三角形, 若该简单几何体的体积是 ,则其底面周长为( )
A.
B.
C.
D.
【答案】C
【解析】由题意,几何体为锥体,高为正三角形的高 ,因此底面积为
相互垂直的半径.若该几何体的体积是 28 ,则它的表面积是( ) 3
(A)17 (B)18 (C) 20 (D) 28
【命题意图探究】本题主要考查简单几何体的三视图及球的表面面积与体积计算,是容易题. 【答案】A
【解题能力要求】空间想象能力、运算求解能力 【方法技巧归纳】根据“长对正、宽相等、高平齐”的直观图画法规则,画出对应几何体的 直观图,确定几何体中个元素的量,再计算几何体的表面积. 2.2【典型考题变式】 【变式 1:改编条件】一个空间几何体的正视图、侧视图为两个边长是 1 的正方形,俯视图 是直角边长为 1 的等腰直角三角形,则这个几何体的表面积等于( )
三视图识别、由三视图画出对应的几何体的直观图并计算其体积与表面积、由三视 图画出对应的几何体的直观图并其外接球或内切球的体积或表面积,题型为选择题 或填空题,难度为容易题或中档题,分值为 5 分. 二、题型与相关高考题解读 1.空间几何体的三视图 1.1 考题展示与解读
例 1 【2014 高考湖北卷理第 5 题】在如图所示的空间直角坐标系 O xyz 中,一个四面体
1.3 棱锥、棱台的结构
名称
棱锥
正棱锥
棱台
正棱台
图形
定义
有一个面是多 底面是正多边 用一个平行于 由正棱锥截得
边形,其余各面 形,且顶点在底 棱锥底面的平 的棱台
是有一个公共 面的射影是底 面去截棱锥,底
顶点的三角形 面的射影是底 面和截面之间
的多面体
面和截面之间 的部分
的部分
侧棱
相交于一点但 不一定相等
V 1 3 ( 12 1 2 1) 1,选 A.
3
22
2
【解题能力要求】空间想象力、运算求解能力
【方法技巧归纳】根据“长对正、宽相等、高平齐”的直观图画法规则,画出对应几何体的
直观图,确定几何体中个元素的量,再计算几何体的体积.
3.2【典型考题变式】
【变式 1:改编条件】某几何体的三视图如图所示(单位: ),则该几何体的体积等于( )
,即
底面为等腰直角三角形,直角边长为 2,周长为
,选 C.
4.与三视图有关的最值问题
4.1 考题展示与解读
例 5【2014 课标Ⅰ,理 12】如图,网格纸上小正方形的边长为 1,粗实线画出的是某多面体
的三视图,则该多面体的各条棱中,最长的棱的长度为( )
(A) 6 2
(B) 6
(C) 6 2
(D) 4
的顶点坐标分别是(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出编号①、②、③、④的四 个图,则该四面体的正视图和俯视图分别为( )
A.①和②
B.③和①
C. ④和③
D.④和②
【命题意图探究】本题主要考查简单几何体的三视图及空间想象能, B(2,2,0),C(1,2,1), D(2,2,2) ,在坐标系中标出已知的四个点,根据三
平行四边形
矩形
矩形
平行于底面的截面 与底面全等的多 与底面全等的多 与底面全等的正多
的形状
边形
边形
边形
1.2 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做
圆柱;旋转轴叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什
么位置,不垂直于轴的边都叫做圆柱侧面的母线.
.
A.
B.
C.
D.
【答案】D
【解析】解:根据几何体的三视图知,该几何体是三棱柱与半圆柱体的组合体,
结合图中数据,计算它的体积为:V=V 三棱柱+V = 半圆柱 ×2×2×3+•π•12×3=(6+1.5π)cm3. 故答案为:6+1.5π.
【变式 2:改编结论】一个直三棱柱的三视图如图所示,其中俯视图是一个顶角为 2 的等 3
1.11 几何体中计算问题的方法与技巧: ①在正棱锥中,正棱锥的高、侧面等腰三角形的斜高与侧棱构成两个直角三角形,有关计算 往往与两者相关; ②正四棱台中要掌握对角面与侧面两个等腰梯形中关于上底、下底及梯形高的计算,另外, 要能将正三棱台、正四棱台的高与其斜高,侧棱在合适的平面图形中联系起来; ③研究圆柱、圆锥、圆台等问题,主要方法是研究其轴截面,各元素之间的关系,数量都可 以在轴截面中得到; ④多面体及旋转体的侧面展开图是将立体几何问题转化为平面几何问题处理的重要手段. 2.命题规律展望:空间几何体的三视图与直观图是高考的重点和热点,主要考查简单几何体
【变式 3:改编问法】一几何体的直观图如右图,下列给出的四个俯视图中正确的是( )
【答案】B 【解析】俯视图为几何体在底面上的投影,应为 B 中图形. 2.由三视图求对应空间几何体的表面积 2.1 考题展示与解读 例 2【2016 高考新课标 1 卷】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条
(主)视图、侧(左)视图、俯视图依次为( )
A. ①③④ 【答案】D
B. ②④③
C. ①②③
D. ②③④
【变式 2:改编结论】在下列水平放置的几何体中,正视图是如图的是 ( )
A.
B.
C.
D.
【答案】C
【解析】观察四个选择支的四个几何体,A、B、D 对应三个几何体的正视图都为矩形,C 对
应的几何体的正视图为等腰三角形,故选 C.
半径 r ,球心到截面圆的距离为 d ,则 R2 r 2 d 2 .
1.7.长方体性质:长方体的一条对角线的平方等于一个顶点上三条棱长的平方和.
1.8 正四面体:侧棱与底面边长相等的正三棱锥叫做正四面体.
设正四面体的棱长为 a ,则高为 6 a ,斜高 3 a 为,对棱间的距离为 2 a ,体积为
即高;侧棱与底 面、侧面与底 面、相邻两侧面
都相等
所成角都相等
1.4 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围
成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜
边旋转形成的曲面叫做圆锥的侧面.
1.5.圆台:用一个平行于底面的平面去截圆锥,底面和截面之间的部分叫做圆台;原圆锥的
为: 3 和 1,左视图的面积为 3 3 1 3 ,故选 C.
【变式 3:改编问法】如图是一个几何体的三视图,在该几何体的各个面中,面积最小的面 的面积为( )
A. 8 B. 4 【答案】C
C. 4 2 D. 4 3
3.由三视图求对应几何体的体积 3.1 考题展示与解读 例 3【2017 浙江,3】某几何体的三视图如图所示(单位:cm),则该几何体的体积(单位: cm3)是
【命题意图探究】本题主要考查简单几何体的三视图及几何体中的最值问题,是中档题. 【答案】B 【解析】由正视图、侧视图、俯视图形状,可判断该几何体为四面体,且四面体的长、宽、 高均为 4 个单位,故可考虑置于棱长为 4 个单位的正方体中研究,如图所示,该四面体为
D ABC ,且 AB BC 4 , AC 4 2 , DB DC 2 5 , DA (4 2)2 4 6 ,故
底面和截面分别叫做圆台的下底面和上底面;圆台也有侧面、母线、轴
1.6.球
(1)定义:以半圆的直径所在的直线为旋转轴,半圆面旋转一周形成的几何体叫做球体,
简称为球;半圆的圆心叫做球的球心,半圆的半径叫做球的半径,半圆的直径叫做球的直径.
(2)球的性质
球被平面截得的图形是圆,球心与截面圆圆心的连线与截面圆垂直,球的半径 R,截面圆的
视图的画图规则判断三棱锥的正视图为④与俯视图为②,故选 D.
【解题能力要求】空间想象能力 【方法技巧归纳】根据点的坐标,画出简单几何体的三视图,然后根据三视图的画法规则判 断几何体的三视图. 1.2【典型考题变式】
【变式 1:改编条件】如图,点 M , N 分别是正方体 ABCD A1B1C1D1 的棱 A1B1, A1D1 的中 点,用过点 A, M , N 和点 D, N ,C1 的两个截面截去正方体的两个角后得到的几何体的正
3
2
2
2 a3 . 12
1.9 空间几何体的直观图 (1)斜二测画法
①建立直角坐标系,在已知水平放置的平面图形中取互相垂直的 OX,OY,建立直角坐标系; ②画出斜坐标系,在画直观图的纸上(平面上)画出对应的 O’X’,O’Y’,使 X 'O'Y ' =450(或 1350),它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于 X 轴的线段,在直观图中画成平行于 X‘轴,且长度保持 不变;在已知图形平行于 Y 轴的线段,在直观图中画成平行于 Y‘轴,且长度变为原来的一 半; ④擦去辅助线,图画好后,要擦去 X 轴、Y 轴及为画图添加的辅助线(虚线). 画水平放置的多边形的直观图的关键是确定多边形顶点的位置,因为多边形顶点的位置一旦 确定,依次连结这些顶点就可画出多边形来,因此平面多边形水平放置时,直观图的画法可 以归结为确定点的位置的画法. (2)平行投影与中心投影:平行投影的投影线是互相平行的,中心投影的投影线相交于一 点. 1.10 简单几何体三视图 (1)三视图 ①正视图:物体前后方向投影所得到的投影图;它能反映物体的高度和长度; ②侧视图:物体左右方向投影所得到的投影图;它能反映物体的高度和宽度; ③俯视图:物体上下方向投影所得到的投影图;它能反映物体的长度和宽度. (2)三视图画法规则 高平齐:主视图与左视图的高要保持平齐 长对正:主视图与俯视图的长应对正 宽相等:俯视图与左视图的宽度应相等 (3).解决三视图问题的技巧:空间几何体的数量关系也体现在三视图中,正视图和侧视图 的“高平齐”,正视图和俯视图的“长对正”,侧视图和俯视图的“宽相等”.也就是说正 视图、侧视图的高就是空间几何体的高,正视图、俯视图中的长就是空间几何体的最大长度, 侧视图、俯视图中的宽就是空间几何体的最大宽度.在绘制三视图时,分界线和可见轮廓线 都用实线画出,被遮挡的部分的轮廓线用虚线表示出来,即“眼见为实、不见为虚”.在三 视图的判断与识别中要特别注意其中的“虚线”. (4)要切实弄清常见几何体(圆柱、圆锥、圆台、棱柱、棱锥、棱台、球)的三视图的特征, 熟练掌握三视图的投影方向及正视图原理,才能迅速破解三视图问题,由三视图画出其直观 图. (5)解答三视图题目时: ①可以从熟知的某一视图出发,想象出直观图,再验证其他视图是否正确; ②视图中标注的长度在直观图中代表什么,要分辨清楚; ③视图之间的数量关系:正俯长对正,正侧高平齐,侧俯宽相等.