Removed_大连理工大学工科数学分析上机作业
大连理工线代上机实验

基本操作
四则运算、转置、求逆、求秩、求行列式、组合、 化为行最简形、求特征值
常见任务
① 矩阵的赋值和其加、减、乘、除(求逆)命令; ② 矩阵化为最简行阶梯型的计算命令;[U0,ip]=rref(A) ③ 多元线性方程组MATLAB求解的几种方法;x=inv(A)*b, U=rref(A) ④ 行列式的几种计算机求解方法; D=det(A),[L,U]=lu(A);D=prod(diag(L)) ⑤ n个m维向量组的相关性及其秩的计算方法和命令; r=rank(A),U=rref(A) ⑥ 求欠定线性方程组的基础解系及超定方程解的MATLAB 命令;xb=null(A) ⑦ 矩阵的特征方程、特征根和特征向量的计算命令; f=poly(A);[P,D]=eig(A) ⑧ 化二次型为标准型的MATLAB命令;yTDy=xTAx; 其中 y=P-1x,
• • • •
-66.5556 25.6667 -18.7778 26.5556
• >>
例三、求秩
• • • • • • • • • • • • >> A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; >> r=rank(A); >> r= % = 计算机不显示r的值 ??? r= | Error: Expression or statement is incomplete or incorrect. >> rank(A) ans = 4 >> r r= 4 %不打;则计算机将显示rank(A)的值
例1 用直接解法求解下列线性方程组. 命令如下: A=[2,1,-5,1;1,-5,0,7;0,2,1,-1;1,6,-1,-4]; b=[13,-9,6,0]'; x=A\b
工科数学分析教程上册最新版习题解答4.85

1、 lim x0
tgx x3
x
lim
x0
sec2 x 3x 2
1
lim
x 0
2sec2 xtgx 6x
lim
x0
2 sec 2
xtgx 3
sec 4
x
1 3
2、
lim
x0
tgx sin x
x x
2
lim
x0
sec2 cos x
x 1 2x
0
3、 lim
xx
lim eln xx
x
lim x sin
1 x cos
x
(
2
x 1) 2
e
2 x1 2 x1
lim
e x cos 2xx1(2 x1)2
lim (2 x1)2
x cos x
e
2 x1
e e e 1 lim x
sin
2 (2 x1)3 2
2xx1
(
2 x1)2x (2 x1)2
lim 4 x 2 x1
x
所以 lim(ex x2 ) x
18、 lim x 2 e2x x
lim x
x2 e2x
lim
x
2x 2e 2x
lim
x
1 2e 2x
0
1
19、
lim ln
x10
x ln(x
1)
lim
x10
ln(x 1) 1 ln x
lim
x10
x 1 1 ln 2 x
1 x
lim
x10
x ln 2 x 1 x
x)
cos2
x cos(sin 24x
大连理工大学《高等数学》在线作业答卷附标准答案 (2)

9.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:D
10.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
二、 判断题 (共 10 道试题,共 40 分)
1.
题目见图片
A. 错误
大连理工大学《高等数学》在线作业答卷附标准答案
试卷总分:100 得分:100
一、 单选题 (共 10 道试题,共 60 分)
1.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
2.
题目见图片
A.
B.
C.
D.
满分:6 分
8.
题目见图片
A. 错误
B. 正确
满分:4 分
正确答案:B
9.
题目见图片
A. 错误
B. 正确
满分:4 分
正确答案:B
10.
题目见图片
A. 错误
B. 正确
满分:4 分
正确答案:B
正确答案:C
6.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
7.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:D
8.
题目见图片
A.
B.
C.
D.
满分:6 分
正确答案:B
大连理工大学概率上机作业

大连理工大学概率上机作业第一次上机作业1.利用Matlab自带命令产生1000个均匀随机变量服从U(0,1)。
>> unifrnd(0,1,20,50)ans =Columns 1 through 100.8147 0.6557 0.4387 0.7513 0.3517 0.1622 0.1067 0.8530 0.7803 0.54700.9058 0.0357 0.3816 0.2551 0.8308 0.7943 0.9619 0.6221 0.3897 0.29630.1270 0.8491 0.7655 0.5060 0.5853 0.3112 0.0046 0.3510 0.2417 0.74470.9134 0.9340 0.7952 0.6991 0.5497 0.5285 0.7749 0.5132 0.4039 0.18900.6324 0.6787 0.1869 0.8909 0.9172 0.1656 0.8173 0.4018 0.0965 0.68680.0975 0.7577 0.4898 0.9593 0.2858 0.6020 0.8687 0.0760 0.1320 0.18350.2785 0.7431 0.4456 0.5472 0.7572 0.2630 0.0844 0.2399 0.9421 0.36850.5469 0.3922 0.6463 0.1386 0.7537 0.6541 0.3998 0.1233 0.9561 0.62560.9575 0.6555 0.7094 0.1493 0.3804 0.6892 0.2599 0.1839 0.5752 0.78020.9649 0.1712 0.7547 0.2575 0.5678 0.7482 0.8001 0.2400 0.0598 0.08110.1576 0.7060 0.2760 0.8407 0.0759 0.4505 0.4314 0.4173 0.2348 0.92940.9706 0.0318 0.6797 0.2543 0.0540 0.0838 0.9106 0.0497 0.3532 0.77570.9572 0.2769 0.6551 0.8143 0.5308 0.2290 0.1818 0.9027 0.8212 0.48680.4854 0.0462 0.1626 0.2435 0.7792 0.9133 0.2638 0.9448 0.0154 0.43590.8003 0.0971 0.1190 0.9293 0.9340 0.1524 0.1455 0.4909 0.0430 0.44680.1419 0.8235 0.4984 0.3500 0.1299 0.8258 0.1361 0.4893 0.1690 0.30630.4218 0.6948 0.9597 0.1966 0.5688 0.5383 0.8693 0.3377 0.6491 0.50850.9157 0.3171 0.3404 0.2511 0.4694 0.9961 0.5797 0.9001 0.7317 0.51080.7922 0.9502 0.5853 0.6160 0.0119 0.0782 0.5499 0.3692 0.6477 0.81760.9595 0.0344 0.2238 0.4733 0.3371 0.4427 0.1450 0.1112 0.4509 0.7948Columns 11 through 200.6443 0.3111 0.0855 0.0377 0.0305 0.0596 0.1734 0.9516 0.0326 0.25180.3786 0.9234 0.2625 0.8852 0.7441 0.6820 0.3909 0.9203 0.5612 0.29040.8116 0.4302 0.8010 0.9133 0.5000 0.0424 0.8314 0.0527 0.8819 0.61710.5328 0.1848 0.0292 0.7962 0.4799 0.0714 0.8034 0.7379 0.6692 0.26530.3507 0.9049 0.9289 0.0987 0.9047 0.5216 0.0605 0.2691 0.1904 0.82440.9390 0.9797 0.7303 0.2619 0.6099 0.0967 0.3993 0.42280.3689 0.98270.8759 0.4389 0.4886 0.3354 0.6177 0.8181 0.5269 0.5479 0.4607 0.73020.5502 0.1111 0.5785 0.6797 0.8594 0.8175 0.4168 0.9427 0.9816 0.3439 0.6225 0.2581 0.2373 0.1366 0.8055 0.7224 0.6569 0.4177 0.1564 0.5841 0.5870 0.4087 0.4588 0.7212 0.5767 0.1499 0.6280 0.9831 0.8555 0.1078 0.2077 0.5949 0.9631 0.1068 0.1829 0.6596 0.2920 0.3015 0.6448 0.9063 0.3012 0.2622 0.5468 0.6538 0.2399 0.5186 0.4317 0.7011 0.3763 0.8797 0.4709 0.6028 0.5211 0.4942 0.8865 0.9730 0.0155 0.6663 0.1909 0.8178 0.2305 0.7112 0.2316 0.7791 0.0287 0.6490 0.9841 0.5391 0.4283 0.2607 0.8443 0.2217 0.4889 0.7150 0.4899 0.8003 0.1672 0.6981 0.4820 0.5944 0.1948 0.1174 0.6241 0.9037 0.1679 0.4538 0.1062 0.6665 0.1206 0.0225 0.2259 0.2967 0.6791 0.8909 0.9787 0.4324 0.3724 0.1781 0.5895 0.4253 0.1707 0.3188 0.3955 0.3342 0.7127 0.8253 0.1981 0.1280 0.2262 0.3127 0.2277 0.4242 0.3674 0.6987 0.5005 0.0835 0.4897 0.9991 0.3846 0.1615 0.4357 0.5079 0.9880 0.1978 0.4711 0.1332 0.3395 0.1711 0.5830 0.1788Columns 21 through 300.4229 0.7788 0.2548 0.1759 0.6476 0.5822 0.4046 0.3477 0.8217 0.5144 0.0942 0.4235 0.2240 0.7218 0.6790 0.5407 0.4484 0.1500 0.4299 0.8843 0.5985 0.0908 0.6678 0.4735 0.6358 0.8699 0.3658 0.5861 0.8878 0.5880 0.4709 0.2665 0.8444 0.1527 0.9452 0.2648 0.7635 0.2621 0.3912 0.1548 0.6959 0.1537 0.3445 0.3411 0.2089 0.3181 0.6279 0.0445 0.7691 0.1999 0.6999 0.2810 0.7805 0.6074 0.7093 0.1192 0.7720 0.7549 0.3968 0.4070 0.6385 0.4401 0.6753 0.1917 0.2362 0.9398 0.9329 0.2428 0.8085 0.7487 0.0336 0.5271 0.0067 0.7384 0.1194 0.6456 0.9727 0.4424 0.7551 0.8256 0.0688 0.4574 0.6022 0.2428 0.6073 0.4795 0.1920 0.6878 0.3774 0.7900 0.3196 0.8754 0.3868 0.9174 0.4501 0.6393 0.1389 0.35920.2160 0.3185 0.5309 0.5181 0.9160 0.2691 0.4587 0.5447 0.6963 0.7363 0.7904 0.5341 0.6544 0.9436 0.0012 0.7655 0.6619 0.6473 0.0938 0.3947 0.9493 0.0900 0.4076 0.6377 0.4624 0.1887 0.7703 0.5439 0.5254 0.6834 0.3276 0.1117 0.8200 0.9577 0.4243 0.2875 0.3502 0.7210 0.5303 0.7040 0.6713 0.1363 0.7184 0.2407 0.4609 0.0911 0.6620 0.5225 0.8611 0.4423 0.4386 0.6787 0.9686 0.6761 0.7702 0.5762 0.4162 0.9937 0.4849 0.0196 0.8335 0.4952 0.5313 0.2891 0.3225 0.6834 0.8419 0.2187 0.3935 0.3309 0.7689 0.1897 0.3251 0.6718 0.7847 0.5466 0.8329 0.1058 0.6714 0.4243 0.1673 0.4950 0.1056 0.6951 0.4714 0.4257 0.2564 0.1097 0.7413 0.2703 0.8620 0.1476 0.6110 0.0680 0.0358 0.6444 0.6135 0.0636 0.5201 0.1971 0.9899 0.0550Columns 31 through 400.8507 0.7386 0.5523 0.1239 0.7378 0.5590 0.1781 0.8949 0.6311 0.6925 0.5606 0.5860 0.6299 0.4904 0.0634 0.8541 0.3596 0.0715 0.0899 0.5567 0.9296 0.2467 0.0320 0.8530 0.8604 0.3479 0.0567 0.2425 0.0809 0.3965 0.6967 0.6664 0.6147 0.8739 0.9344 0.4460 0.5219 0.0538 0.7772 0.0616 0.5828 0.0835 0.3624 0.2703 0.9844 0.0542 0.3358 0.4417 0.9051 0.78020.8154 0.6260 0.0495 0.2085 0.8589 0.1771 0.1757 0.0133 0.5338 0.33760.8790 0.6609 0.4896 0.5650 0.7856 0.6628 0.2089 0.8972 0.1092 0.60790.9889 0.7298 0.1925 0.6403 0.5134 0.3308 0.9052 0.1967 0.8258 0.74130.0005 0.8908 0.1231 0.4170 0.1776 0.8985 0.6754 0.0934 0.3381 0.10480.8654 0.9823 0.2055 0.2060 0.3986 0.1182 0.4685 0.3074 0.2940 0.12790.6126 0.7690 0.1465 0.9479 0.1339 0.9884 0.9121 0.45610.7463 0.54950.9900 0.5814 0.1891 0.0821 0.0309 0.5400 0.1040 0.1017 0.0103 0.48520.5277 0.9283 0.0427 0.1057 0.9391 0.7069 0.7455 0.9954 0.0484 0.89050.4795 0.5801 0.6352 0.1420 0.3013 0.9995 0.7363 0.3321 0.6679 0.79900.8013 0.0170 0.2819 0.1665 0.2955 0.2878 0.5619 0.2973 0.6035 0.73430.2278 0.1209 0.5386 0.6210 0.3329 0.4145 0.1842 0.0620 0.5261 0.05130.4981 0.8627 0.6952 0.5737 0.4671 0.4648 0.5972 0.2982 0.7297 0.07290.9009 0.4843 0.4991 0.0521 0.6482 0.7640 0.2999 0.0464 0.7073 0.08850.5747 0.8449 0.5358 0.9312 0.0252 0.8182 0.1341 0.5054 0.7814 0.79840.8452 0.2094 0.4452 0.7287 0.8422 0.1002 0.2126 0.7614 0.2880 0.9430Columns 41 through 500.6837 0.7894 0.1123 0.6733 0.0986 0.9879 0.5975 0.7593 0.8092 0.75190.1321 0.3677 0.7844 0.4296 0.1420 0.1704 0.3353 0.7406 0.7486 0.22870.7227 0.2060 0.2916 0.4517 0.1683 0.2578 0.2992 0.7437 0.1202 0.06420.1104 0.0867 0.6035 0.6099 0.1962 0.3968 0.4526 0.1059 0.5250 0.76730.1175 0.7719 0.9644 0.0594 0.3175 0.0740 0.4226 0.6816 0.3258 0.67120.6407 0.2057 0.4325 0.3158 0.3164 0.6841 0.3596 0.4633 0.5464 0.71520.3288 0.3883 0.6948 0.7727 0.2176 0.4024 0.5583 0.2122 0.3989 0.64210.6538 0.5518 0.7581 0.6964 0.2510 0.9828 0.7425 0.0985 0.4151 0.41900.7491 0.2290 0.4326 0.1253 0.8929 0.4022 0.4243 0.8236 0.1807 0.39080.5832 0.6419 0.6555 0.1302 0.7032 0.6207 0.4294 0.1750 0.2554 0.81610.7400 0.4845 0.1098 0.0924 0.5557 0.1544 0.1249 0.1636 0.0205 0.31740.2348 0.1518 0.9338 0.0078 0.1844 0.3813 0.0244 0.6660 0.9237 0.81450.7350 0.7819 0.1875 0.4231 0.2120 0.1611 0.2902 0.8944 0.6537 0.78910.9706 0.1006 0.2662 0.6556 0.0773 0.7581 0.3175 0.5166 0.9326 0.85230.8669 0.2941 0.7978 0.7229 0.9138 0.8711 0.6537 0.7027 0.1635 0.50560.0862 0.2374 0.4876 0.5312 0.7067 0.3508 0.9569 0.1536 0.9211 0.63570.3664 0.5309 0.7690 0.1088 0.5578 0.6855 0.9357 0.9535 0.7947 0.95090.3692 0.0915 0.3960 0.6318 0.3134 0.2941 0.4579 0.5409 0.5774 0.44400.6850 0.4053 0.2729 0.1265 0.1662 0.5306 0.2405 0.6797 0.4400 0.06000.5979 0.1048 0.0372 0.1343 0.6225 0.8324 0.7639 0.0366 0.2576 0.8667 2.参考课本综合例题2.5.4和2.5.5中的方法,模拟产生1000个随机变量,使其服从参数为2的指数分布,进而计算这1000个随机数的均值和方差。
大连理工数学分析试题及解答Word版

大连理工数学分析试题及解答Word版2000年大连理工大学硕士生入学考试试题——数学分析一、从以下的第一到第八题中选取6题解答,每题10分1.证明:1()f x x=于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一致连续证明:01212(1)0,()[1]2(2)1||()|()()|f x x x f x f x δδδδεδδε<=<-<而由于在,内连续,从而一致连续,第一个命题成立利用定义,取,不存在为定值使得从而不难利用反证法得到第二个命题成立2.证明:若()[,]f x a b 于单调,则()[,]f x a b Riemann 于内可积证明:1101111111111()...[,],max 0(max {()}min {()})(()())(max{()()})(max{()()})i ii in i i i i i nnni i i i i i x x x x x x i ni i i i i nf x a x x x b a b x x f x f x f x f x f x f x f x f x λλλλλλ---≤≤--≤≤≤≤≤≤==-≤≤?=<<<==-=→-=-<--∑∑不妨设单调递增,且:是的一个划分,必然存在一个划分,使得11111(max{()()})lim (max {()}min {()})0i ii i i nni x x x x x x i f x f x f x f x λ---≤≤?≤≤≤≤=→--=∑(由于递增,使用二分法的思想,可以使得小于任何数)所以,,所以可积3.证明:Dirichlet 函数:0,()1,()x f x px q q ??=?=??为无理数有理数在所有无理点连续,在有理点间断,证明:0001000000()010[]1min{||}1(,),|()|()0{,{}},()n N i Zi i x f x iN x n x x x f x Nx f x x y y f x εδδεεεε+≤≤∈=?>=+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在当所以,在无理点连续为有理数,。
大连理工大学矩阵与数值分析上机作业代码

T
方程组,并比较计算结果。
1.1 程序
(1)高斯消元法 n=10 时, >> [A,b]=CreateMatrix(10) A= 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6 8 0 0 0 0 0 0 0 0 1 6
1.3 M 文件
.m 1.3.1 CreateMatrix CreateMatrix.m function [A,b]=CreateMatrix(n) %用于存放习题1的题目信息,并建立构造题目中矩阵的函数 %对矩阵A赋值 A1=6*ones(1,n); A2=ones(1,n-1); A3=8*ones(1,n-1); A=diag(A1)+diag(A2,1)+diag(A3,-1); %对向量b赋值 b=15*ones(n,1); b(1)=7; b(n)=14;
10
,迭代次数上限取默认值
50,使用 Jacobi 法进行迭代。 >> test2 >> b=ones(20,1) >> x0=zeros(20,1) >> [x,n]=JacobiMethod(A,b,x0) x= 0.2766 0.2327 0.2159 0.2223 0.2227 0.2221 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2222 0.2221 0.2227 0.2223 0.2159 0.2327 0.2766
大连理工大学线代上机
软1414 叶秀云201492015 上机报告上机作业一Trial>> A=round(5*rand(5))B=round(5*rand(5))C=round(5*rand(5))b=round(5*rand(5,1))A+BA-BA*B+B*Ainv(A)*binv(A)rank(A)det(B)inv(B)rank(B)inv(A*B)rank(A*B)(B')*(A')inv(A*B)inv(B)*inv(A)inv(A)*C*inv(B)A =4 0 1 1 35 1 5 2 01 3 5 5 45 5 2 4 53 545 3B =4 4 4 2 24 0 3 2 22 1 2 4 33 0 54 41 0 0 1 4C =1 2 4 5 43 5 1 3 13 2 3 1 41 3 3 1 11 1 4 1 5b =21132ans =8 4 5 3 59 1 8 4 23 4 7 9 78 5 7 8 94 5 4 6 7 ans =0 -4 -3 -1 11 12 0 -2-1 2 3 1 12 5 -3 0 12 5 4 4 -1 ans =80 53 79 69 7175 54 74 77 7589 51 85 97 102110 77 111 113 12379 41 79 80 80ans =0.4754-0.3197-0.59840.9672-0.0902ans =0.3197 -0.0164 -0.2541 -0.2049 0.3607-0.8443 0.2869 0.1967 0.8361 -0.8115 -0.7213 0.4344 0.4836 0.6803 -1.05741.4262 -0.6885 -0.6721 -1.60662.1475-0.3279 0.1066 0.4016 0.5820 -0.8443 ans =5ans =418.0000ans =-0.0144 0.4354 0.0574 -0.2727 0.01910.2321 -0.2057 0.0718 -0.0909 0.02390.0718 -0.1770 -0.2871 0.3636 -0.0957-0.1100 0.0048 0.4402 -0.0909 -0.18660.0311 -0.1100 -0.1244 0.0909 0.2919 ans =5ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =5ans =24 40 45 61 5817 25 9 22 1623 43 48 59 6019 40 52 49 5527 35 59 62 60ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =-0.8088 0.3399 0.3081 0.8553 -1.02110.0586 0.0335 0.0060 -0.0108 -0.04070.9295 -0.4372 -0.4747 -0.9979 1.3348-0.4252 0.2371 0.2279 0.3635 -0.54670.2265 -0.1176 -0.0336 -0.1592 0.1809 ans =-0.0497 -0.5353 -0.0060 0.6289 0.12910.3583 1.0632 0.4029 -1.7332 -0.66080.4518 1.2872 0.8731 -2.1207 -0.6844-0.7394 -2.4091 -1.6491 4.0507 1.62510.2658 0.7208 0.5187 -1.1788 -0.5129 Trial>>上机作业二Trial>> A=rand(4)B=rand(4)C=rand(4)D=rand(4)Z=[A,B;C,D]det(Z)det(A*D-C*B)A=diag([rand rand rand rand])C=diag([rand rand rand rand])Z=[A,B;C,D]det(Z)det(A*D-C*B)A =0.9027 0.3377 0.7803 0.09650.9448 0.9001 0.3897 0.13200.4909 0.3692 0.2417 0.94210.4893 0.1112 0.4039 0.9561B =0.5752 0.8212 0.6491 0.54700.0598 0.0154 0.7317 0.29630.2348 0.0430 0.6477 0.74470.3532 0.1690 0.4509 0.1890C =0.6868 0.7802 0.4868 0.50850.1835 0.0811 0.4359 0.51080.3685 0.9294 0.4468 0.81760.6256 0.7757 0.3063 0.7948D =0.6443 0.3507 0.6225 0.47090.3786 0.9390 0.5870 0.23050.8116 0.8759 0.2077 0.84430.5328 0.5502 0.3012 0.1948Z =0.9027 0.3377 0.7803 0.0965 0.5752 0.8212 0.6491 0.54700.9448 0.9001 0.3897 0.1320 0.0598 0.0154 0.7317 0.29630.4909 0.3692 0.2417 0.9421 0.2348 0.0430 0.6477 0.74470.4893 0.1112 0.4039 0.9561 0.3532 0.1690 0.4509 0.18900.6868 0.7802 0.4868 0.5085 0.6443 0.3507 0.6225 0.47090.1835 0.0811 0.4359 0.5108 0.3786 0.9390 0.5870 0.23050.3685 0.9294 0.4468 0.8176 0.8116 0.8759 0.2077 0.84430.6256 0.7757 0.3063 0.7948 0.5328 0.5502 0.3012 0.1948 ans =-0.0232ans =0.0161A =0.2259 0 0 00 0.1707 0 00 0 0.2277 00 0 0 0.4357C =0.3111 0 0 00 0.9234 0 00 0 0.4302 00 0 0 0.1848Z =0.2259 0 0 0 0.5752 0.8212 0.6491 0.54700 0.1707 0 0 0.0598 0.0154 0.7317 0.29630 0 0.2277 0 0.2348 0.0430 0.6477 0.74470 0 0 0.4357 0.3532 0.1690 0.4509 0.18900.3111 0 0 0 0.6443 0.3507 0.6225 0.47090 0.9234 0 0 0.3786 0.9390 0.5870 0.23050 0 0.4302 0 0.8116 0.8759 0.2077 0.84430 0 0 0.1848 0.5328 0.5502 0.3012 0.1948 ans =7.3868e-04ans =7.3868e-04Trial>>上机作业三N=201492015;a=15;b=49;c=01;d=41;e=21;f=95;g=45;Trial>> h=90;Trial>> A=[a,b,c,d,3,4;1,2,3,4,4,3;12,15,22,17,5,7;e,f,g,h,8,0]; Trial>> B=rref(A)B =1.0000 0 0 0 0.4130 0.95680 1.0000 0 0 -1.7984 -1.49040 0 1.0000 0 -0.3796 -0.37590 0 0 1.0000 2.0806 1.5380N=201492015;a=15;b=49;c=01;d=41;e=21;f=95;g=45;Trial>> h=90;Trial>> A=[a,b,c,d,3,4;1,2,3,4,4,3;12,15,22,17,5,7;e,f,g,h,8,0]; Trial>> B=rref(A)B =1.0000 0 0 0 0.4130 0.95680 1.0000 0 0 -1.7984 -1.49040 0 1.0000 0 -0.3796 -0.37590 0 0 1.0000 2.0806 1.5380上机作业四Trial>> b1=[1,1.9,f,c];Trial>> b2=[1,1.8,f,c];Trial>> A1=[a,b,c,d;0.5,1,1.5,2;12,15,22,17;e,f,g,h];Trial>> A2=[a,b,c,d;0.3,0.6,0.9,1.2;12,15,22,17;e,f,g,h];Trial>> A3=[a,b,c,d;0.1,0.2,0.3,0.4;12,15,22,17;e,f,g,h];Trial>> A4=[a,b,c,d;0.05,0.1,0.15,0.2;12,15,22,17;e,f,g,h];Trial>> x1=A1/b1 x1 =0.02700.01630.23780.5057 Trial>> x2=A2/b1 x2 =0.02700.00980.23780.5057 Trial>> x3=A4/b1 x3 =0.02700.00160.23780.5057 Trial>> x4=A4/b1 x4 =0.02700.00160.23780.5057 Trial>> x5=A1/b2 x5 =0.02650.01630.23760.5046Trial>> x6=A2/b2x6 =0.02650.00980.23760.5046Trial>> x7=A3/b2x7 =0.02650.00330.23760.5046Trial>> x8=A4/b2x8 =0.02650.00160.23760.5046Trial>>上机作业五a1=rand(5,1)a2=rand(5,1)a3=rand(5,1)a4=rand(5,1)a5=rand(5,1)A=[a1,a2,a3,a4,a5]orth(A)a1 =0.90490.97970.43890.11110.2581 a2 =0.40870.59490.26220.60280.7112 a3 =0.22170.11740.29670.31880.4242 a4 =0.50790.08550.26250.80100.0292 a5 =0.92890.73030.48860.57850.2373A =0.9049 0.4087 0.2217 0.5079 0.92890.9797 0.5949 0.1174 0.0855 0.73030.4389 0.2622 0.2967 0.2625 0.48860.1111 0.6028 0.3188 0.8010 0.57850.2581 0.7112 0.4242 0.0292 0.2373 ans =-0.5932 -0.1881 -0.4330 0.1909 -0.6235 -0.5319 -0.5286 0.1934 -0.5094 0.3752 -0.3288 0.0079 -0.0670 0.7395 0.5835 -0.4137 0.8042 -0.1828 -0.3450 0.1723 -0.2931 0.1960 0.8586 0.1953 -0.3167Trial>>上机作业六Trial>> A=rand(5)eig(A)[d,v]=eig(A)x=rand(5,1)eig(x*x')A =0.4588 0.4889 0.9880 0.0987 0.72120.9631 0.6241 0.0377 0.2619 0.10680.5468 0.6791 0.8852 0.3354 0.65380.5211 0.3955 0.9133 0.6797 0.49420.2316 0.3674 0.7962 0.1366 0.7791 ans =2.6238 + 0.0000i0.0391 + 0.2666i0.0391 - 0.2666i0.2420 + 0.0000i0.4829 + 0.0000id =-0.4582 + 0.0000i -0.4322 + 0.1366i -0.4322 - 0.1366i 0.1428 + 0.0000i 0.2020 + 0.0000i-0.3197 + 0.0000i 0.7401 + 0.0000i 0.7401 + 0.0000i -0.6192 + 0.0000i 0.3539 + 0.0000i-0.5143 + 0.0000i -0.0341 - 0.3116i -0.0341 + 0.3116i -0.2603 + 0.0000i -0.0520 + 0.0000i-0.5266 + 0.0000i 0.0473 + 0.2327i 0.0473 - 0.2327i 0.1237 + 0.0000i -0.9110 + 0.0000i-0.3821 + 0.0000i -0.2604 + 0.1558i -0.2604 - 0.1558i 0.7164 + 0.0000i -0.0373 + 0.0000iv =2.6238 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0391 + 0.2666i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0391 - 0.2666i 0.0000 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.2420 + 0.0000i 0.0000 + 0.0000i0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.0000 + 0.0000i 0.4829 + 0.0000i上机作业七A=[1,3/2,0;3/2,-1,1;0,1,1]rref(A)eig(A)B=[1,0,2;0,-1,-2;2,-2,0]rref(B)eig(B)A =1.0000 1.5000 01.5000 -1.0000 1.00000 1.0000 1.0000ans =1 0 00 1 00 0 1ans =-2.06161.00002.0616B =1 0 20 -1 -22 -2 0ans =1 0 20 1 20 0 0ans =-3.0000-0.00003.0000Trial>>上机作业八Trial>> A=[0.7,0.2,0.1;0.2,0.7,0.1;0.1,0.1,0.8]P0=[15;9;6]A =0.7000 0.2000 0.10000.2000 0.7000 0.10000.1000 0.1000 0.8000 P0 =1596Trial>> A*P0ans =12.90009.90007.2000Trial>> A*A*P0ans =11.730010.23008.0400Trial>> A*A*A*A*A*P0ans =10.429910.24249.3277Trial>>。
大连理工大学《高等数学》(上)在线作业2
题面见图片
A:错误
B:正确
参考选项:B
如果函数y=f(x)满足在闭区间[a,b]上连续,在开区间(a,b)内可导,在区间端点处的函数值相等,那么在(a,b)内至少存在一点,使函数y=(x)在该点的导数等于零。此定理称为拉格朗日中值定理。
A:错误
B:正确
参考选项:A
题面见图片
A:错误
B:பைடு நூலகம்确
参考选项:B
题面见图片
A:错误
B:正确
参考选项:A
题面见图片
A:错误
B:正确
参考选项:A
设y=sin2x,则dy=cos2xdx。
A:错误
B:正确
参考选项:A
题面见图片
A:A
B:B
C:C
D:D
参考选项:C
设函数f(x)=cos2x,则f'(x)=
A:2sin2x
B:-2sin2x
C:sin2x
D:-sin2x
参考选项:B
题面见图片
A:A
B:B
C:C
D:D
参考选项:C
题面见图片
A:A
B:B
C:C
D:D
参考选项:A
题面见图片
A:A
B:B
C:C
D:D
参考选项:D
题面见图片
A:A
B:B
C:C
D:D
参考选项:C
题面见图片
A:错误
B:正确
参考选项:B
如果某函数在某一开区间内的导数恒为零,则该函数在此开区间内是一个常数。
A:错误
B:正确
参考选项:B
题面见图片
A:错误
B:正确
大连理工大学矩阵分析matlab上机作业
x(i)=1/i; %按要求给向量 x 赋值,其值递减 end normx1=norm(x,1); %求解向量 x 的 1 范数 normx1 normx2=norm(x,2); %求解向量 x 的 2 范数 normx2 normxinf=norm(x,inf); %求解向量 x 的无穷范数 normxinf normy1=norm(y,1); %求解向量 y 的 1 范数 normy1 normy2=norm(y,2); %求解向量 y 的 2 范数 normy2 normyinf=norm(y,inf); %求解向量 y 的无穷范数 normyinf z1=[normx1,normx2,normxinf]; z2=[normy1,normy2,normyinf]; end
for i=2:n
for j=i:n U(i,j)=A(i,j)-L(i,1:i-1)*U(1:i-1,j);
式
%Doolittle 分解计算上三角矩阵的公
L(j,i)=(A(j,i)-L(j,1:i-1)*U(1:i-1,i))/U(i,i); %Doolittle 分解计算下三角矩 阵的公式
end
1 1 1 ������ x = (1, 2 , 3 , … , ������) ,
������ = (1,2, … , ������)������.
对n = 10,100,1000甚至更大的n计算其范数,你会发现什么结果?你能否修改
你的程序使得计算结果相对精确呢?
1.1 源代码
function [z1,z2]=norm_vector(n) %向量 z1 的值为向量 x 的是三种范数,向量 z2 的值为向量 y 的三 种范数,n 为输入参数
大连理工大学矩阵与数值分析上机作业
矩阵与数值分析上机作业学校:大连理工大学学院:班级: 姓名:学号:授课老师:注:编程语言Matlab1.琴虑计算给定働量的葩址输入向量広』(巾斑…宀产输出||工||“ ||工|怙㈣心请编制一牛通用程序,并用你編制的程序计算如下询量的范数:对网1加,wm甚至更大的“计算其范数,你会发现什幺结粟?你能否修改你的程序使得计算绪果相时赫■确呢?程序:Norm.m函数fun cti on s=Norm(x,m)%求向量x的范数%mx 1,2,inf 分别表示1,2,无穷范数n=len gth(x);s=0;switch mcase 1 %1-范数for i=1:ns=s+abs(x(i));endcase 2 %2-范数for i=1:ns=s+x(if2;ends=sqrt(s);case inf %无穷- 范数s=max(abs(x));end计算向量 x, y 的范数Test1.mclear all ;clc;n1=10;n2=100;n3=1000;x1=1./[1:n1]';x2=1./[1:n2]';x3=1./[1:n3]'; y1=[1:n1]';y2=[1:n2]';y3=[1:n3]';disp( 'n=10 时' );disp( 'x 的1-范数:' );disp(Norm(x1,1));disp( 'x 的无穷-范数:' );disp(Norm(x1,inf));disp( 'y 的2- 范数:' );disp(Norm(y1,2)); disp( 'y 的无穷- 范数:' );disp(Norm(y1,inf)); disp( 'n=100 时' );disp( 'x 的1- 范数:' );disp(Norm(x2,1)); disp( 'x 的2- 范数:' );disp(Norm(x2,2)); disp( 'x 的无穷- 范数:' );disp(Norm(x2,inf)); disp( 'y 的1- 范数:' );disp(Norm(y2,1)); disp( 'y 的2- 范数:' );disp(Norm(y2,2)); disp( 'y 的无穷- 范数:' );disp(Norm(y2,inf)); disp( 'n=1000 时' );disp( 'x 的1- 范数:' );disp(Norm(x3,1)); disp( 'x 的2- 范数:' );disp(Norm(x3,2)); disp( 'x 的无穷- 范数:' );disp(Norm(x3,inf)); disp( 'y 的1- 范数:' );disp(Norm(y3,1)); disp( 'y 的2- 范数:' );disp(Norm(y3,2)); disp( 'y 的无穷- 范数:' );disp(Norm(y3,inf));运行结果:n=10 时x 的1-范数29290 ; x 的2-范数:1.2449 ; x 的无穷-y 的1-范数:55 ; y 的2-范数:19.6214 ; y 的无穷 n=100 时x 的1-范数:5.1874 ; x 的2-范数:1.2787 ; x 的无穷 的 2-范数:581.6786 ; y 的无穷 -范数:100 n=1000 时 x 的1-范数74855 ; x 的2-范数:1.2822 ; x 的无穷-范数:1y 的 1-范数:500500 ; y 的 2-范数:1.8271e+004 ; y 的无穷-范数:10002. 耆虑砂== 呼^其中定51/(0)=此时几期是连绽函戟.用此公式计算 当工“―1旷巾U)-缪时的函数值*風出图像.另一方面*哮虑下面算法:d 1 + j1/(/ = 1 tbfjj1/=1仙y = liid/(d — 1(end if用此算法计% € [-10-0 io_is]时的圉数血 画出图像.比校一下岌生了什么?程序Test2.mclear all ;clc;n=100; %区间h=2*10A (-15)/n; %步长范数:1 -范数:10-范数:1y 的 1- 范数 :5050 ;x=-10A(-15):h:10A(-15);%第一种原函数f1=zeros(1, n+1);for k=1:n+1if x(k)~=0f1(k)=log(1+x(k))/x(k);elsef1(k)=1;end endsubplot(2,1,1);plot(x,f1, '-r' );axis([-10A(-15),10A(-15),-1,2]); legend( ' 原图' );%第二种算法f2=zeros(1,n+1);for k=1:n+1d=1+x(k);if (d~=1) f2(k)=log(d)/(d-1);elsef2(k)=1;endendsubplot(2,1,2);plot(x,f2, '-r' );axis([-10A(-15),10A(-15),-1,2]);legend( ' 第二种算法' );运行结果:農IQ显然第二种算法结果不准确,是因为计算机中的舍入误差造成的,当X [ 1015,1015]时,d 1 x,计算机进行舍入造成d恒等于1,结果函数值恒为1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工科数学分析上机作业
说明:以下两道题均是使用Matlab 语言,且在Matlab 7.0中运行通过。
1.(两个重要极限)计算下列函数的函数值并画出图形,观察两个重要极限值。
(1)y=f(x)=; (2)y=f(x)=.
sin x x (1+x)1x 解:(1)求解过程如下:
>> syms x
>> y=limit(sin(x)/x)
y =
1
>> ezplot(sin(x)/x,[-10*pi,10*pi])
>> ezplot(sin(x)/x,[-1*pi,1*pi])
其图形如下:
(2)求解过程如下:>> syms x
>> y=(1+x)^(1/x)
y =
(1+x)^(1/x)
>> y=limit((1+x)^(1/x))
y =
exp(1)
>> ezplot((1+x)^(1/x),[-1000,1000]) >> ezplot((1+x)^(1/x),[-10,10]) >> ezplot((1+x)^(1/x),[-1,1])
其图像如下:
分析如下:(1)当x 取值为[-30,30]时,由该题的第一个图像可以看到,函数值在不断震荡,一会为正数,一会为负数。
而当x 取值为[-3,3]时,函数值始终大于0。
当x 趋近于0时,由该题的第二个图像可以得到函数值为1。
另外,该结论也可以由夹逼法则证明,结果不变,当x 趋近于0时,函数值仍为1。
(2)由该题的三个图像可以知道,该函数在定义域内为单调递减函数。
且由该题的第一和二个图像知道,当x 在
[0,10]区间内,函数递减趋势非常迅速。
由该题的第三个图像知道,当x 趋于0 时,函数值为自然对数的底数 e ,即约为2.71828.
3.计算f(x)=,
12+1√2π
∫x 0e ‒t 2/2dt 1≪x ≪3的函数值{f (0.1k );k=1,2,…,30}.计算结果取7位有效数字。
解:计算过程为:
>> f1= @(t) exp(-(t).^2/2)
f1 =
@(t) exp(-(t).^2/2)
>> for i=1:30
s(i,1)=1/2+1/sqrt(2*pi)*quad(f1,0,i*0.1); end
>> fprintf('%9.7g\n',s);
0.5398278
0.5792597
0.6179114
0.6554217
0.6914625
0.7257469
0.7580363
0.7881446
0.8159399
0.8413447
0.8643339
0.8849303
0.9031995
0.9192434
0.9331929
0.9452007
0.9554345
0.9640697
0.9712834
0.9772499
0.9821356
0.9860966
0.9892759
0.9918025
0.9937903
0.9953388
0.9965329
0.9974448
0.9981342
0.9986501
>>
分析:本题使用了Matlab 强大的数学计算(微积分计算)功能。
在本题中使用了循环语句,共计算了30次,x 的值从0.1一直变化到3,且每次都增加0.1。
函数值由0.5398278增加到0.9986501。