2020体育单招数学模拟及答案
全国普通高校运动训练、民族传统体育单独招生模拟测试题(含答案)

2020届体育单招数学模考试题一、选择题(本大题共10小题,每小题6分,共60分) 1. 已知集合{}2≥=x x A ,{}12>=xx B ,则=B A I ( ){}2.≥x x A {}1.>x x B {}1.->x x C {}21.≤<-x x D2. 已知等差数列{}n a 首项为1-,前n 项和为n S ,若16913-=S ,则公差=d ( )4.3.2.1.----D C B A3. 已知)(122Z k k ∈-=ππα,则=α2tan ( ) 33.3.33.3.--±±D C B A 4. 从1、2、3、4、5中任取两个数,其积为奇数的概率( ) 51.52.53.103.D C B A 5. 已知圆柱的母线长为2,表面积为π16,则圆柱体积为( ) ππππ32.16.8.4.D C B A6. 过椭圆1422=+y x 焦点作长轴垂线,交椭圆于B A ,,则=AB ( ) 4.3.2.1.D C B A7. 已知向量)3,1(-=,),2(x =,且b a //,那么=a 2( )104.103.102.10.D C B A8. 在ABC ∆中,AB=3,AC=4,BC=37,则AB 边上的高为( ) 3.32.22.2.D C B A9. 方程)1)(2()2()1(22-+=++-a a y a x a 表示的是双曲线,则a 的取值范围是( ))1,2(.-A )2,1(.-B ),1(.∞+C ),1()2,(.∞+--∞Y D 10. 函数x x y 2cos sin -=的最小值是( ) 2.89.2.45.----D C B A班级 姓名 考场 考号密封 线 内 不 要 答 题二、填空题(本大题共6小题,每小题6分,共36分) 11. 若抛物线px y 22-=的准线方程为1=x ,则=p .12. 62⎪⎭⎫ ⎝⎛-x x 的展开式中2x 的系数为 .13. 曲线32x x y +=在点)3,1(处的切线方程为 . 14. 已知等比数列ΛΛ,22,4,则数列的第9项为 .15. 4名运动员和2名教练排成一排照相,两位教练不在两端且不相邻的排法有 种.(用数字作答)16. 已知点P 是椭圆15922=+y x 上一点,21,F F 是椭圆的左右焦点,若021=⋅PF ,则21F PF ∆的面积为 .选择题答案填写处三、解答题(本大题共3小题,每小题18分,共54分)17. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,a 、b 、c 成递增的等差数列,且AbB a cos cos =. (1)证明:△ABC 是直角三角形;(2)求.sin B18. 已知椭圆C 的中心在坐标原点O 处,焦点在x 轴上,离心率为23,且C 过点)23,1(-. (1)求C 的方程;(2)若直线l :0=+-t y x 与C 交于B A ,两点,且54=∆AOB S ,求l 的方程.19.如图,在正三棱柱ABC-A1B1C1中,AB=BB1=1,D,E分别是A1C1,AB1中点.(1)证明:DE∥平面BB1C1C;(2)求点B到平面AB1C1的距离.A1参考答案选择题ABDAB ADCDC填空题11. 2;12. 60;13. 5x-y-2=0;14.41;15. 144;16. 5. 解答题17. (1)证明:由正弦定理得a=2RsinA,b=2RsinB (2R 为△ABC 外接圆半径) 于是由已知可得AbB a cos cos =,进而得B A 2sin 2sin =,因为a,b,c 成递增的等差数列,所以b a ≠,要使得B A 2sin 2sin =,只有π=+B A 22,所以2π=C ,所以△ABC 是直角三角形.(2)由已知得c a b +=2,进而得C A B sin sin sin 2+=,在AB C Rt ∆中,B AC cos sin ,1sin ==,所以1cos sin 2+=B B ,解得54sin =B . 18. (1)解:依题意可设)0(,2,3>==t t a t c ,所以22t b =,于是椭圆C 方程为142222=+t y t x 代入)23,1(-,得12=t ,所以C 的方程为1422=+y x . (2) 依题意设),(),,(2211y x B y x A ,联立⎪⎪⎩⎪⎪⎨⎧=+=+-14022y x t y x 得0448522=-++t tx x ,此时21680t -=∆,l 与C 交于两点,只需5t 2<. 于是544,5822121-=-=+t x x t x x ,进而得222552451616256411t t t AB -=--+=,原点O 到直线AB 的距离为2t d =,5421=⋅=∆d AB S AOB ,解得1±=t ,所以直线l 方程为01=+-y x ,或01=--y x . 19. (1)证明:取A 1B 1中点为F ,连接DF ,EF.于是DF ,EF 分别为△A 1B 1C 1,△AA 1B 1中位线. 所以1111//21//,21//BB A A EF C B DF ,所以平面DEF ∥平面BB 1C 1C. 又DE 在平面DEF 内,所以DE ∥平面BB 1C 1C.(2)如图,1111C AB B C V V ABB -=-,,47sin ,43cos 1111=∠=∠AB C AB C 于是d ⋅⨯⨯⨯⨯=⨯⨯⨯⨯4722213123112131,解得721=d 即为所求距离.。
2020届全国普通高校运动训练、民族传统体育单独招生模拟测数学试题

2020届体育单招数学模考试题一、选择题(本大题共10小题,每小题6分,共60分) 1. 已知集合{}2≥=x x A ,{}12>=xx B ,则=B A I ( ){}2.≥x x A {}1.>x x B {}1.->x x C {}21.≤<-x x D2. 已知等差数列{}n a 首项为1-,前n 项和为n S ,若16913-=S ,则公差=d ( )4.3.2.1.----D C B A3. 已知)(122Z k k ∈-=ππα,则=α2tan ( ) 33.3.33.3.--±±D C B A 4. 从1、2、3、4、5中任取两个数,其积为奇数的概率( ) 51.52.53.103.D C B A 5. 已知圆柱的母线长为2,表面积为π16,则圆柱体积为( ) ππππ32.16.8.4.D C B A6. 过椭圆1422=+y x 焦点作长轴垂线,交椭圆于B A ,,则=AB ( ) 4.3.2.1.D C B A7. 已知向量)3,1(-=,),2(x =,且//,那么=a 2( )104.103.102.10.D C B A8. 在ABC ∆中,AB=3,AC=4,BC=37,则AB 边上的高为( ) 3.32.22.2.D C B A9. 方程)1)(2()2()1(22-+=++-a a y a x a 表示的是双曲线,则a 的取值范围是( ) )1,2(.-A )2,1(.-B ),1(.∞+C ),1()2,(.∞+--∞Y D 10. 函数x x y 2cos sin -=的最小值是( ) 2.89.2.45.----D C B A二、填空题(本大题共6小题,每小题6分,共36分)班级 姓名 考场 考号密封 线 内 不 要 答 题11. 若抛物线px y 22-=的准线方程为1=x ,则=p .12. 62⎪⎭⎫ ⎝⎛-x x 的展开式中2x 的系数为 .13. 曲线32x x y +=在点)3,1(处的切线方程为 . 14. 已知等比数列ΛΛ,22,4,则数列的第9项为 .15. 已知正三棱锥ABC P -,2=AB ,3=PA ,侧棱PA 与底面ABC 所成角的余弦值为 .16. 已知点P 是椭圆15922=+y x 上一点,21,F F 是椭圆的左右焦点,若021=⋅PF ,则21F PF ∆的面积为 .选择题答案填写处三、解答题(本大题共3小题,每小题18分,共54分)17. 在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边,a 、b 、c 成递增的等差数列,且AbB a cos cos =. (1)证明:△ABC 是直角三角形;(2)求.sin B18. 已知椭圆C 的中心在坐标原点O 处,焦点在x 轴上,离心率为23,且C 过点)23,1(-. (1)求C 的方程;(2)若直线l :0=+-t y x 与C 交于B A ,两点,且54=∆AOB S ,求l 的方程.19. 如图,在正三棱柱ABC-A 1B 1C 1中,AB=BB 1=1,D ,E 分别是A 1C 1,AB 1中点.(1)证明:DE ∥平面BB 1C 1C ;(2)求点B 到平面AB 1C 1的距离.A 1参考答案选择题ABDAB ADCDC填空题11. 2;12. 60;13. 5x-y-2=0;14.41;15. 932;16. 5.解答题17. (1)证明:由正弦定理得a=2RsinA,b=2RsinB (2R 为△ABC 外接圆半径) 于是由已知可得AbB a cos cos =,进而得B A 2sin 2sin =,因为a,b,c 成递增的等差数列,所以b a ≠,要使得B A 2sin 2sin =,只有π=+B A 22,所以2π=C ,所以△ABC 是直角三角形.(2)由已知得c a b +=2,进而得C A B sin sin sin 2+=,在AB C Rt ∆中,B A C cos sin ,1sin ==,所以1cos sin 2+=B B ,解得54sin =B . 18. (1)解:依题意可设)0(,2,3>==t t a t c ,所以22t b =,于是椭圆C 方程为142222=+t y t x 代入)23,1(-,得12=t ,所以C 的方程为1422=+y x .(2) 依题意设),(),,(2211y x B y x A ,联立⎪⎪⎩⎪⎪⎨⎧=+=+-14022y x t y x 得0448522=-++t tx x ,此时21680t -=∆,l 与C交于两点,只需5t 2<.于是544,5822121-=-=+t x x t x x ,进而得222552451616256411t t t AB -=--+=,原点O 到直线AB 的距离为2t d =,5421=⋅=∆d AB S AOB ,解得1±=t ,或2±=t . 所以直线l 方程为01=+-y x ,或01=--y x ,或02=--y x ,或02=+-y x .19. (1)证明:取A 1B 1中点为F ,连接DF ,EF.于是DF ,EF 分别为△A 1B 1C 1,△AA 1B 1中位线. 所以1111//21//,21//BB A A EF C B DF ,所以平面DEF ∥平面BB 1C 1C. 又DE 在平面DEF 内,所以DE ∥平面BB 1C 1C. (2)如图,1111C AB B C V V ABB -=-,,47sin ,43cos 1111=∠=∠AB C AB C 于是d ⋅⨯⨯⨯⨯=⨯⨯⨯⨯4722213123112131,解得721=d 即为所求距离.。
体育单招测试题数学及答案

体育单招测试题数学及答案一、选择题(每题2分,共20分)1. 下列哪个数是整数?A. 3.14B. -2C. 0.5D. π2. 已知函数 f(x) = 2x - 1,求 f(3) 的值。
A. 5B. 4C. 3D. 23. 一个圆的半径是 5 厘米,它的面积是多少平方厘米?A. 25πB. 50πC. 75πD. 100π4. 如果一个三角形的两边长分别是 3 和 4,且这两边夹角为 60 度,那么这个三角形的面积是多少?A. 3√3B. 4√3C. 6√3D. 8√35. 等差数列 3, 7, 11, ... 的第 10 项是多少?B. 41C. 47D. 516. 一个直角三角形的两条直角边分别为 6 厘米和 8 厘米,斜边的长度是多少?A. 10 厘米B. 12 厘米C. 14 厘米D. 16 厘米7. 已知集合 A = {1, 2, 3},B = {2, 3, 4},求A ∪ B。
A. {1, 2, 3}B. {1, 2, 3, 4}C. {2, 3}D. {1, 2, 3, 4, 5}8. 一个数的平方根是 2,这个数是多少?A. 4B. -4C. 8D. -89. 一个数的立方根是 2,这个数是多少?A. 2B. 4C. 8D. 1610. 已知等比数列 2, 6, 18, ... 的公比是 3,求第 5 项。
B. 108C. 162D. 324二、填空题(每题2分,共10分)11. 一个数的相反数是 -5,这个数是 _______。
12. 若 a + b = 10,且 a - b = 2,则a × b = _______。
13. 一个数的绝对值是 7,这个数可以是 _______ 或 _______。
14. 已知一个等差数列的首项是 5,公差是 3,求第 6 项。
15. 已知一个等比数列的首项是 2,公比是 2,求第 4 项。
三、解答题(每题10分,共20分)16. 求函数 y = x^2 - 4x + 4 的顶点坐标。
2020年全国体育单招数学测试题(十二)含答案

2020年全国体育单招数学测试题(十二)考试时间:90分钟 满分150分第I 卷(选择题)一、单选题(6×10=60分)1.设集合()(){}|410?A x Z x x =∈-+<,集合B={}2,3,4,则A B =( )A .(2,4)B .{2.4}C .{3}D .{2,3}2.函数22cos 1y x =-的最小正周期为( ) A .2πB .πC .2πD .4π3.下列函数中,既是偶函数又在区间(0,)+∞上单调递增的是( ) A .y x =- B .21y x =- C .cos y x = D .12y x =4.22cossin 88ππ-=( )A B . C .12D .12-5.设向量()111022a b ⎛⎫== ⎪⎝⎭,,,,则下列结论正确的是( )A .a b =B .22a b ⋅=C .()a b b -⊥D .//a b6.已知数列{}n a 为等比数列,则“{}n a 为递减数列”是“12a a >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.圆222210x y x y +--+=上的点到直线2x y -=的距离最大值是( )A .2B .1+C .12+D .1+8.已知302x ≤≤,则函数2()1f x x x =++( ) A .有最小值34-,无最大值 B .有最小值34,最大值1C .有最小值1,最大值194D .无最小值和最大值9.设m ,n 是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题: ①若m α⊥,//n α,则m n ⊥②若//αβ,//βγ,m α⊥,则m γ⊥ ③若//m α,//n α,则//m n ④若αγ⊥,βγ⊥,则//αβ 其中正确命题的序号是( ) A .①和② B .②和③C .③和④D .①和④10.不等式22x x+≥的解集为( ) A .[]0,2 B .(]0,2 C .(][),02,-∞+∞ D .()[),02,-∞+∞第II 卷(非选择题)二、填空题(6×6=36分)11.甲、乙等5人排一排照相,要求甲、乙2人相邻但不排在两端,那么不同的排法共有_______种.12.若双曲线22154x y -=的左焦点在抛物线22y px =的准线上,则p 的值为________.13.()10x a +的展开式中,7x 的系数为15,则a=________.(用数字填写答案) 14.曲线324y x x =-+在点(1,3)处的切线的倾斜角为__________.15.已知A ,B ,C 是球O 球面上的三点,AC =BC =6,AB =OABC 的体积为24.则球O 的表面积为_____.16.甲、乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23,没有平局,若采用三局两胜制比赛,即先胜两局者获胜且比赛结束,则甲队获胜的概率等于__________.三、解答题(3×18=54分)()1求数列{}n a 的通项公式;()2记数列{}2log n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和n T .18.已知椭圆C :()222210x y a b a b+=>>的上顶点与椭圆左、右顶点连线的斜率之积为14-. (1)求椭圆C 的离心率; (2)若直线()112y x =+与椭圆C 相交于A 、B 两点,若AOB 的面积为4O 为坐标原点),求椭圆C 的标准方程.……线…………○………线…………○…19.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,底面ABCD 是边长为2的正方形.(1)证明:A 1C 1//平面ACD 1;(2)求异面直线CD 与AD 1所成角的大小;(3)已知三棱锥D 1﹣ACD 的体积为23,求AA 1的长.参考答案1.D 【解析】 【分析】利用题意首先求得集合A ,然后进行交集运算即可求得最终结果. 【详解】集合A={x ∈Z|(x ﹣4)(x+1)<0}={x ∈Z|﹣1<x <4}={0,1,2,3}, B={2,3,4}, 则A∩B={2,3}, 故选:D . 【点睛】本题考查了交集运算,二次不等式的解法等,重点考查学生对基础概念的理解和计算能力,属于基础题. 2.B 【解析】 【分析】根据二倍角的余弦公式,可得cos 2y x =,然后利用2T ωπ=,可得结果.【详解】由题可知:22cos 1cos 2y x x =-= 所以最小正周期为222T πππω=== 故选:B 【点睛】本题考查二倍角的余弦公式以及三角函数最小正周期的求法,重在识记公式,属基础题. 3.B 【解析】 【分析】先考虑函数的定义域是否关于原点对称,再利用基本初等函数性质判断各选项中的函数是否为偶函数、是否为增函数.【详解】对于D ,因为函数的定义域为[)0,+∞,故函数12y x =不是偶函数,故D 错误.对于A ,y x =-的定义域为R 且它是奇函数,故A 错误.对于C ,cos y x =的定义域为R ,它是偶函数,但在(0,)+∞有增有减,故C 错误. 对于B ,21y x =-的定义域为R ,它是偶函数,在(0,)+∞为偶函数,故B 正确. 故选:B. 【点睛】本题考查基本初等函数的奇偶性和单调性,解题的关键是熟悉基本初等函数的性质,本题属于基础题. 4.A 【解析】 【分析】利用二倍角公式以及特殊角的三角函数求值即可. 【详解】解:22cos sin cos8842πππ-==. 故选:A . 【点睛】本题考查二倍角公式的应用,三角函数求值,考查计算能力,属于基础题. 5.C 【解析】 【分析】根据向量运算的坐标表示求解模长,数量积关系,平行关系的判断,分别讨论四个选项即可得解. 【详解】由题:()111022a b ⎛⎫== ⎪⎝⎭,,,,111,2a b ==+=, 12a b ⋅=,()1111,,02222a b b ⎛⎫⎛⎫-⋅=-⋅= ⎪ ⎪⎝⎭⎝⎭,所以()a b b -⊥,111022⨯≠⨯所以两个向量()111022a b ⎛⎫== ⎪⎝⎭,,,不平行. 故选:C 【点睛】此题考查平面向量的基本运算的坐标表示,涉及求模长,数量积,根据数量积判断垂直关系,判断向量是否共线,关键在于熟练掌握运算法则. 6.A 【解析】 【分析】利用充分条件、必要条件的定义,由数列的单调性即可求解. 【详解】充分性:若“{}n a 为递减数列”,则1n n a a +>,从而可得“12a a >”,充分性满足; 必要性:若“12a a >”,不妨取11a =,2q =-,可得22a =-,但{}n a 不单调性, 故必要性不满足,所以“{}n a 为递减数列”是“12a a >”的充分不必要条件. 故选:A 【点睛】本题考查了充分条件、必要条件的定义、数列的单调性,属于基础题. 7.B 【解析】 【分析】先求得圆心到直线2x y -=的距离为d =再结合圆的性质,即可得到最大距离为1d +,即可求解,得到答案. 【详解】由题意,圆222210x y x y +--+=,可得圆心坐标(1,1)O ,半径为1r =,则圆心(1,1)O 到直线2x y -=的距离为d ==所以圆222210x y x y +--+=上的点到直线2x y -=的距离最大值是11d +=.故选:B . 【点睛】本题主要考查了直线与圆的位置关系及其应用,其中解答中熟记直线与圆的位置关系,合理利用圆的性质求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题. 8.C 【解析】 【分析】根据对称轴判断f (x )在[0,32]上的单调性,根据单调性判断最值. 【详解】f (x )=x 2+x +1=(x 12+)234+, ∴f (x )在区间[0,32]上是增函数, ∴f (x )min =f (0)=1,f (x )max =f (32)194=. 故选:C . 【点睛】本题考查了二次函数的最值,涉及到函数的单调性,属于基础题. 9.A 【解析】 【分析】根据线面平行性质定理,结合线面垂直的定义,可得①是真命题;根据面面平行的性质结合线面垂直的性质,可得②是真命题;在正方体中举出反例,可得平行于同一个平面的两条直线不一定平行,垂直于同一个平面和两个平面也不一定平行,可得③④不正确.由此可得本题的答案. 【详解】解:对于①,因为//n α,所以经过n 作平面β,使l βα⋂=,可得//n l , 又因为m α⊥,l α⊂,所以m l ⊥,结合//n l 得m n ⊥.由此可得①是真命题; 对于②,因为//αβ且//βγ,所以//αγ,结合m α⊥,可得m γ⊥,故②是真命题; 对于③,设直线m 、n 是位于正方体上底面所在平面内的相交直线, 而平面α是正方体下底面所在的平面,则有//m α且//n α成立,但不能推出//m n ,故③不正确; 对于④,设平面α、β、γ是位于正方体经过同一个顶点的三个面, 则有αγ⊥且βγ⊥,但是αβ⊥,推不出//αβ,故④不正确. 综上所述,其中正确命题的序号是①和② 故选:A 【点睛】本题给出关于空间线面位置关系的命题,要我们找出其中的真命题,着重考查了线面平行、面面平行的性质和线面垂直、面面垂直的判定与性质等知识,属于中档题. 10.B 【解析】 【分析】根据分式不等式的解法,即可求出不等式的解集. 【详解】由22x x +≥得20x x -≥,即20x x -≤,所以(2)00x x x -≤⎧⎨≠⎩,解得02x <≤,所以不等式22x x+≥的解集为(0,2]. 故选:B 【点睛】本题主要考查分式不等式的解法,关键是将所解得分式不等式等价转化为整式不等式. 11.24 【解析】 【分析】将甲、乙2人捆绑,先从其他3人中选2人放两端,再考虑甲、乙2人这个“大元素”与另外一个人的排列,利用分步乘法计数原理可求得结果. 【详解】将甲、乙2人捆绑,先从其他3人中选2人放两端,再考虑甲、乙2人这个“大元素”与另外一个人的排列,由分步乘法计数原理可知,不同的排法共有22232224A A A =种.故答案为:24. 【点睛】本题考查人员安排问题,在处理相邻问题时,一般利用捆绑法来处理,考查计算能力,属于中等题. 12.6 【解析】 【分析】计算双曲线22154x y -=的左焦点为()3,0-,再利用准线方程计算得到答案.【详解】双曲线22154x y -=的左焦点为()3,0-,即32p ,故6p.故答案为:6. 【点睛】本题考查了双曲线的焦点和抛物线的准线,意在考查学生的综合应用能力. 13.12【解析】因为10110r r rr T C x a -+=,所以令107r -=,解得3r =,所以373410T C x a ==157x ,解得12a =. 考点:本小题主要考查二项式定理的通项公式,求特定项的系数,题目难度不大,属于中低档. 14.45° 【解析】 【分析】欲求在点(1,3)处的切线倾斜角,先根据导数的几何意义可知k =y ′|x =1,再结合正切函数的值求出角α的值即可. 【详解】y ′=3x 2﹣2,切线的斜率k =3×12﹣2=1.故倾斜角为45°. 故答案为45°. 【点睛】本题考查了导数的几何意义,以及利用斜率求倾斜角,本题属于基础题.15.136π【解析】【分析】求出底面三角形的面积,利用三棱锥的体积求出O 到底面的距离,求出底面三角形的所在平面圆的半径,通过勾股定理求出球的半径,即可求解球的表面积.【详解】三棱锥O ﹣ABC ,A 、B 、C 三点均在球心O 的表面上,且AC =BC =6,AB =, ∴AB 2=AC 2+BC 2,∴△ABC 外接圆的半径为:r 12=AB =, △ABC 的外接圆的圆心为G ,则OG ⊥⊙G ,∵S △ABC 12=AC ⋅CB =18,三棱锥O ﹣ABC 的体积为24, ∴13S △ABC ⋅OG =24,即13⨯18⋅OG =24, ∴OG =4,球的半径为:R ==球的表面积:4π×R 2=136π. 故答案为:136π.【点睛】本题考查球的表面积的求法,球的内含体与三棱锥的关系,考查空间想象能力以及计算能力.16.2027【解析】甲队获胜分2种情况①第1、2两局中连胜2场,概率为1224339P =⨯=; ②第1、2两局中甲队失败1场,而第3局获胜,概率为1222228133327P C ⎛⎫=-⨯= ⎪⎝⎭ 因此,甲队获胜的概率为122027P P P =+=.17.()12n n a =; ()221n n T n =+. 【解析】【分析】()1等比数列{}n a 各项都是正数,设公比为q ,0q >,运用等比数列通项公式和等差数列中项性质,解方程可得首项和公比,即可得到所求通项;()2()212221log log log 2n n n n S a a a +=+++=,即()1211211nS n n n n ⎛⎫==- ⎪++⎝⎭,再利用裂项相消法求解即可.【详解】 解:()1设等比数列{}n a 的公比为q ,由已知得()23345232a a a a a ⎧+=+⎨=⎩,即2311141232a q a q a q a q ⎧+=⎨=⎩. 0n a >,∴0q >,解得122q a =⎧⎨=⎩. ∴2n n a =.()2由已知得,()212221log log log 2n n n n S a a a +=+++=, ∴()1211211n S n n n n ⎛⎫==- ⎪++⎝⎭, ∴1n S ⎧⎫⎨⎬⎩⎭的前n 项和11111221()22311n n T n n n ⎡⎤⎛⎫⎛⎫=-+-++-= ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦【点睛】本题考查等比数列和等差数列的通项公式的运用,考查方程思想和运算能力,考查数列的求和方法,裂项相消求和法,属于中档题.18.(1)2;(2)2214x y += 【解析】【分析】(1)根据椭圆的标准方程写出上顶点,左、右顶点,再利用斜率之间的关系可得2a b =,再由222a b c =+即可求解.(2)将直线与椭圆方程联立,利用弦长公式求出AB ,再利用点到直线的距离公式求出原点O 到直线的距离d,由124AB d ⋅⋅=即可求解. 【详解】 (1)由题,椭圆上顶点的坐标为()0,b ,左右顶点的坐标分别为(),0a -、(),0a , ∴14b b a a ⎛⎫⋅-=- ⎪⎝⎭,即224a b =,则2a b =, 又222a bc =+,∴=c ,所以椭圆的离心率2c e a ==; (2)设()11,A x y ,()22,B x y , 由()222214112x y b b y x ⎧+=⎪⎪⎨⎪=+⎪⎩得:2222140x x b ++-=,2123280,1b x x ∴∆=->+=-,212142b x x -=, ∴A B ===, 又原点O 到直线的距离d =∴124AB d ⋅⋅== ∴21b =,满足204a ∆>∴=,∴椭圆C 的方程为2214x y +=. 【点睛】本题考查了椭圆的几何性质、直线与椭圆的位置关系、弦长公式,考查了运算求解能力,属于中档题.19.(1)见解析(2)90°(3)AA 1=1.【解析】【分析】(1)先证明A 1C 1//AC ,即得证;(2)由CD ⊥平面ADD 1A 1,可得CD ⊥AD 1,即得解;(3)由11D D A A =,AA 1的长可看作三棱锥D 1﹣ACD 的高,利用体积即得解.【详解】(1)证明:在长方体中,因A 1A =CC 1,A 1A //CC 1,可得A 1C 1//AC ,A 1C 1不在平面ACD 1内,AC ⊂平面ACD 1,则A 1C 1//平面ACD 1;(2)解:因为CD ⊥平面ADD 1A 1,AD 1⊂平面ADD 1A 1,可得CD ⊥AD 1,所以异面直线CD 与AD 1所成角90°(3)解:由三棱锥D 1﹣ACD 的体积为23, 由于1D D ⊥平面ACD ,且11D D A A = 可得111222323AA ⨯⨯⨯⨯=, ∴AA 1=1.【点睛】本题考查了立体几何综合,考查了学生空间想象,逻辑推理,数学运算的能力,属于基础题.。
2020年体育单招数学试卷(解析版)

2020年体育单招数学试卷一、选择题:本大题共10小题,每小题6分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项的字母填写在题后的括号内。
1.已知集合A={x|4<x<10},B={x|x=n2,n∈N},则A∩B=_____________A. ∅B.{3}C.{9}D.{4,9}答案:C解析:x=n2,n∈N, N为自然数,故x=0,1,4,9,16...求交集找相同,故A∩B={9},选C.2.1, 3的等差中项是______________A.1B.2C.3D.4答案:B解析:等差中项为:若A、B、C成等差数列,则有A+C=2B。
设1和3的等差中项为x, 则1+3=2x=4,故x=2,选B.3.函数f(x)=sin2x+cos2x的最小正周期是_____________A.2πB.3π2C.π D.π2答案:C解析:f(x)=sin2x+cos2x=sin2x+cos2x−sin2x=cos2x=2cos 2x−12+12=12cos2x−12,T=2πω=2πz=π,故选C.4.函数f(x)=√3−4x+x2的定义域是____________A.RB.[1,3]C.(-oo,1]U[3,+oo)D.[0,1]答案:C解析:函数定义域根号下大于等于0,则3−4x+x2≥0, 解不等式可得解集{x|x≤1或3≤x},故选C.5.函数y=√λ2−2x+2图象的对称轴为_____________A. x=1B. x=12C. x=−12D. x=-1答案:A。
全国普通高等学校运动训练、民族传统体育专业单独统一招生数学模拟检测测试题(含答案)

全国体育单招数学测试题一、 选择题(6×10=60分)1. 已知集合{}5,4,3,2,1=A ,{}023B 2=+-=x x x ,则A ∩B 等于( ) A. {1,3} B. {1,2} C. {1} D. {2,3} 2. 函数x x f πsin )(=的最小正周期是( )A. 1B. 2C. πD.π2 3. 已知平面内单位向量a ,b 的夹角为90°,则=-b a 34( )A. 5B. 4C. 3D.2 4. 函数1log 1)(2-=x x f 的定义域为( ))2,0.(A ]2,0.(B ),2.(+∞C ),2.[+∞D 5. 在ABC ∆中,已知,︒=45A 2,2==a c ,则=C ( )A. ︒30B. ︒60C. ︒120D. ︒150 6. 已知α是第二象限角,且53)(cos =-απ,则=αsin ( ) 53.A -54.B - 53.C 54.D 7. 焦距为8,离心率54=e ,焦点在x 轴上的椭圆标准方程是( ) 12516.22=+y x A 1259.22=+y x B 11625.22=+y x C 1925.22=+y x D 8.︒-︒+15tan 115tan 1的值是( )A .3B .23C .-3D . -239. 2019是等差数列 ,11,7的第( )项A. 503B. 504C. 505D. 50610. 函数)6sin(x y -=π的一个单调减区间是( )A.]32,3[ππ-B.]35,3[ππC.]35,3[ππ-D.]3,32[ππ-二、填空题(6×6=36分)11. 等比数列{}n a 中,0841=+a a ,则公比=q . 12. 双曲线1222=-y x 的离心率为 .13. 已知)53,3(),5,1(B A -,以AB 为直径的圆的方程为 . 14. 函数1)12()(23---=ax x a x f 为偶函数,则=-)2(f .15. 已知正△ABC 边长为1,AB =a ,BC =b ,AC =c ,则|a +2b -c |等于 . 16. 设12=+b a ,且0,0>>b a ,则使得t ba >+11恒成立的t 的取值范围是 .选择题答案填写处三、解答题(18分×3=54分)17.(本小题18分)已知n S 为等差数列{}n a 的前n 项和,且33=a ,14S 7=.(1)求n a 和n S ; (2)若nn a b 2=,求{}n b 的前n 项和n T .18. (本小题18分) 已知直线l :023=-+y x 的倾斜角为角α.(1)求αtan ; (2)求αsin ,α2cos 的值.19. (本小题18分)已知抛物线)0(22>=p px y 的焦点与双曲线1322=-y x 的一个焦点重合.(1)求抛物线方程;(2)若直线l :02=--kx y 与抛物线只有一个交点,求直线l 方程.参考答案一、选择BBACA DDABA 二、填空:11.2- 12. 26 13.9)52()1(22=-+-y x 14. -3 15. 1 16.)223,(+-∞三、17.(1)6-n ;2)11(n n -;(2)n--6264. 18(1)31-;(2)1010;5419.(1)x y 82= ; (2)02,02-=+-=y x y 或。
2020年度全国体育单招数学测试题(十一)含解析

考试时间:90分钟
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
2.请将答案正确填写在答题卡上
第I卷(选择题)
一、单选题
1.已知集合 , ,则 ()
A. B. C. D.
2.函数 的定义域是()
A. B.
C. D.
3.下列函数中,既是奇函数又在区间 上单调递减的是()
8.A
【解析】
由余弦定理可得: ,即: ,
整理可得: ,结合 可得: .
本题选择A选项.
9.C
【解析】
【分析】
由 , , 成等比数列,可得 ,解得 或 ,再结合等比数列求和公式,即可求解.
【详解】
由题意,因为 , , 成等比数列,可得 ,
所以 ,整理可得 ,解得 或 ,
当 时,则 ,
当 时,可得 ,则 .
【详解】
设底面半径为r,则 ,所以 .
所以圆锥的高 .
所以体积 .
故选:C.
【点睛】
本题考查圆锥的性质及体积,圆锥问题抓住两个关键点:(1)圆锥侧面展开图的扇形弧长等于底面周长;(2)圆锥底面半径r、高h、母线l组成直角三角形,满足勾股定理,本题考查这两种关系的应用,属于简单题.
6.A
【解析】
点 的中点为(0,2),
试题解析:
(1)设等差数列{an}的公差为d.因为a4-a3=2,所以d=2.
又因为a1+a2=10,所以2a1+d=10,故a1=4.
所以an=4+2(n-1)=2n+2(n=1,2,…).
(2)设等比数列{bn}的公比为q.因为b2=a3=8,b3=a7=16,
所以q=2,b1=4.所以b6=4×26-1=128.
【全国体育单招】2020年全国普通高等学校运动训练、民族传统体育专业单独统一招生数学模拟检测含答案

2020年全国普通高等学校运动训练、民族传统体育专业单招统一招生考试模拟检测(三)本卷共19小题,满分:150分,测试时长:90分钟.一、选择题:(本大题共10小题,每小题6分,共60分)65.43.4.3.)(011ππππD C B A y x ,其倾斜角为)直线方程为(=+-3.23.25.2.)(22152D C B A x x =+==共线,则与),若,(),,()已知向量(23.013.053.053.013113=++=+-=+-=--=+--y x D y x C y x B y x A y x )垂直的直线方程是()与直线,)过点(()(14422的离心率是)双曲线(=-y x3.23.25.5.D C B A(5)的定义域为函数xy 2811--=( ) A.),4∞+( B.)4,(-∞ C.]4,(-∞ D.),4[∞+)(22D.)(2C.)(24B.)(4A.cos sin 6Z x k x Z x k x Z x k x Z x k x x x y ∈+=∈+=∈+=∈+=+=ππππππππ)的对称轴是()函数( )的系数是(的展开式中))二项式((27217x x +280.560.420.210.D C B A4.3.2.1.q ,5121}{a 8432n D C B A a a a )(则数列的公比,若的首项为)等比数列(==条条条条)异面的棱有(的所有棱中与对角线)正方体(8.6.C 5.4.'AC 'D C'B'A'ABCD 9D B A -36.26.33.32.1ABC -O 10D C B A ),则该三棱锥的高为(各棱长均为)已知三棱锥(二、填空题(本大题共6小题,每小题6分,共36分){}.,09A 112个元素中有且集合)(Z x x x ∈>-=(12)某射击队员单次射击中靶的概率为0.8,每次射击击中与否互不影响,则该队员连续射击三次恰有两次中靶的概率是 ..}{a 6,2,1}{a 13n 631n =n a a a a 的通项则成等比数列,,且满足,其首项为差数列)已知公差大于零的等(.3)(143的极小值为函数)(x x x f -=.2cos ,31cos sin 15==-αααα则为锐角,且)已知角(.16接球的体积之比为)正方体的内切球和外(三、解答题(本大题共3小题,每小题18分,共54分).AD BC 2ABC C 1.13,3,4,,,,,17的长边上的中线)求(面积;和△)求角(且所对的边依次为的内角)已知(===∆c b a c b a C B A ABC.32,0,32;1.2212:18222的方程求直线时,中点横坐标为两点,当弦交于与的直线))过点((的方程)求椭圆(的离心率为)已知椭圆(l AB B A C l C b y x C --=+(19)如图,在四棱锥P-ABCD中,∠BAP=∠CDP=90°,且AB∥CD.(1)证明:平面PDC⊥平面PAD;(2)若PA=PD=AB=DC,∠APD=90°,且四棱锥P-ABCD的体积为83,求PB与底面ABCD所成角的正切值.参考答案选择题 BBDAB ACBCD 填空题11. 5; 12. 384.0; 13. n ; 142-; 15. 917- ; 16. 33:1. 解答题17. (1)由余弦定理求得C=60°,33absinC 21S ==;(2)在△ADC 中利用余弦定理,求得AD 为7.18. 12x 22=+y ; (2)联立方程组化为关于x 的一元二次方程,利用根与系数关系,两根之和恰好是中点横坐标的两倍,进而求得斜率为41±,于是得到直线方程为)3(41+±=x y .19. (1)略;(2)取AD 中点为O,连接PO ,BO ,可得到∠PBO 为所求线面角,进而利用体积求得AD=2,所以tan ∠PBO=55.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
C. 最小正周期为 4 的奇函数
D. 最小正周期为 4 的偶函数
3. 下列函数中,为减函数的是( )
A. y ln x B. y ln(x) C. y ln(x) D . y ln x
4. sin 75 cos 75 ( )
A. 2 2
B. 2 2
C. 6 2
D. 6 2
5. 已知向量 a ( 1 , 1 ) ,单位向量 b满足 (a b) a,则 a与 b的夹角是( )
AD=2BC=2,∠ADC=45°,∠BAD=∠ABC= 90°.
(1)证明: BC ∥ 平面PAD ; (2)证明: AB 面PAD ; (3)求四棱锥 P ABCD 的体积.
选择题 CDCAB ACDBC
填空题 11. x2 8 y ;12. 2x y 2 0 ;13. 16; 14. -160;15. 16 ;16. 0.784 3
18.已知椭圆 C 的两个焦点分别为 F1(2, 0),
F2 (2,
0) ,离心率为 1 . 2
(1)求椭圆 C 的方程;
(2)设 P 是 C 上的点,过 P,F1 的直线 l 交 y 轴于点 Q ,若 PF1 3PQ ,求原点到 l 的
距离.
19. 如 图 , 四 棱 锥 P ABCD 中 , 侧 面 PAD 为 等 边 三 角 形 且 垂 直 于 底 面 ABCD ,
次击中的概率均为 0.7,且各次射击结果互相独立,则该运动员考试成绩为优秀的概率
是.
二、解答题(本大题共 3 小题,每小题 18 分,共 54 分)
17. 已知等差数列 an的前 n 项和为 Sn ,且 a3 4 , S7 21.
(1)求 an的通项公式和前 n 项和 Sn ; (2)求数列 2 an 的前 n 项和 Tn .
D. (, 1] [ 1 , ) 2
一、填空题:(本大题共 6 小题,每小题 6 分,共 36 分)
11.抛物线 x2 2 py 的焦点为 (0, 2) ,则抛物线方程为
.
12.曲线 y x x3 在点(1, 0) 处的切线方程为
.
13.在 6 名运动员中 2 名一及运动员,4 名二级运动员,现从中选择 3 名参加全运会,至少
解答题
17.
(1) an
7 n;Sn
13n n2 2
;(2)128 27n
18. (1) x 2 y2 1 ;BAD=∠ABC=90°
∴BC∥AD,且 AD 在平面 PAD 内。∴BC∥平面 PAD
(2)∵AB⊥AD,AD 是两平面的交线,AB 在平面 ABCD 内,平面 PAD⊥平面 ABCD
)
A. 2x y 1 0
B. y 1 0 C. x 2 0
D. x - 2y 1 0
8. 设 M 与 m 分别是函数 f (x) x2 2x 1 在区间[2, 2] 上的最大值和最小值,则
M-m=( )
A. 2
B. 5
C. 7
D. 9
9. 已知直线 m,n,平面 , ,且 n ,下面四个命题:
2020 年体育单招数学模拟试题
1. 已知集合 P 2, 1, 1, 2, Q 1, 2, 3,则 P Q ( )
A. 1, 1,2 B. 1, 2, 3 C. 2, 1, 1, 2, 3 D. 1, 1, 2, 3
2.
函数
f
(x)
cos
x 是(
)
2
A. 最小正周期为 2 的奇函数
B. 最小正周期为 2 的偶函数
①若 m ∥ ,则 m ∥ n ③若 n ,则
②若 m ,则 m n ④若 n ∥ ,则 ∥
其中正确的命题是( )
A. ①②
B. ②③
C. ③④
D. ①④
10.不等式 x 1 2x
1的解集是(
A. (1, 1 ) 2
C. (, 1] ( 1 , ) 2
)
B.[1, 1 ) 2
一名一级运动员参加的方案共有
种.
14. 二项式 (x 2)6 的展开式中 x3 的系数为
.
15. 球面上三点 A,B,C 构成的三角形恰是一个边长为 2 的正三角形,且△ABC 的中心与
球心重合,则该球的表面积为
.
16. 某射击运动员进行射击考试,共进行 3 次,至少 2 次命中为考试优秀。若该运动员每
∴AB⊥平面 PAD
(3) 3 . 2
22
A. 30
B. 45
C. 60
D.135
6. 已知集合 A,B,设 p: x A B ,q: x A B ,则 p 是 q 的( )
A. 充分不必要条件
B. 必要不充分条件
C. 充要条件
D. 既不充分也不必要条件
7. 已知过圆 x2 y2 2 y 3 0 上一点 (2, 1) 的切线方程为(