最新浦东新区初三数学一模试卷加答案(精准校对完整版)

合集下载

上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)

上海市浦东新区华东师范大学第二附属中学2024-2025学年九年级上学期中考一模数学试题(含答案)

2024~2025学年上海市华东师范大学第二附属中学中考一模模拟卷数学试卷(考试时间100分钟满分150分)考生注意:1.带2B铅笔、黑色签字笔、橡皮擦等参加考试,考试中途不得传借文具2.不携带具有传送功能的通讯设备,一经发现视为作弊。

与考试无关的所有物品放置在考场外。

3.考试期间严格遵守考试纪律,听从监考员指挥,杜绝作弊,违者由教导处进行处分。

一.选择题(共6题,每题4分,满分24分)1.航天科技集团所研制的天问一号探测器由长征五号运载火箭发射,并成功着陆于火星,距离地球约192000000千米.其中192000000用科学记数法表示为()A.1.92×108B.0.192×109C.1.92×109D.1,92×1072.中华文化博大精深,以下是古汉字“雷”的四种写法,可以看作轴对称图形的是()A.B.C.D.3.生物学研究表明,在一定的温度范围内,酶的活性会随温度的升高逐渐增强,在最适宜温度时,酶的活性最强,超过一定温度范围时,酶的活性又随温度的升高逐渐减弱,甚至会失去活性.现已知某种酶的活性值y(单位:IU)与温度x(单位:℃)的关系可以近似用二次函数y=―12x2+14x+142来表示,则当温度最适宜时,该种酶的活性值为()A.14B.240C.3.5D.444.已知a、b、c是△ABC的三边,且满足a2-b2+ac-bc=0,则△ABC的形状是()A.直角三角形B.等边三角形C.等腰三角形D.等腰直角三角形5.若AB =―4CD,且|AD|=|BC|,则顺次链接四边形ABCD中点得到的四边形一定是()A.等腰梯形B.矩形C.菱形D.正方形6.下列网格中各个小正方形的边长均为1,阴影部分图形分别记作甲、乙、丙、丁,其中是相似形的为()A.甲和乙B.乙和丁C.甲和丙D.甲和丁二.填空题(共12题,每题4分,满分48分)12.如图,AB与CD交于点O,且AC∥__________.13.从“等腰直角三角形”,“等腰梯形”,“平行四边形”,“菱形”中随机抽取一个,是中心对称图形的概率为_________14.等腰梯形ABCD 中,AB ∥CD ,E 、F 分别是AD,BC 的中点,DC=2,AB=4,设AB =a ,则EF 用向量a 表示可得EF =________15.小华探究“幻方”时,提出了一个问题:如图,将0,-4,-2,2,4这五个数分别填在五个小正方形内,使横向三个数之和与纵向三个数之和相等,则填入中间位置的小正方形内的数可以是________.(写出一个符合题意的数即可)(14题图)(15题图)(12题图)(11题图)16.如图,在△ABC 中,AB=4,AC=6,E 为BC 中点,AD 为△ABC 的角平分线,△ABC 的面积记为S 1,△ADE 的面积记为S 2,则S 2:S 1=_____.17.在平面直角坐标系中,过点A (m,0),且垂直于x 轴的直线l 与反比例函数y=B ,将直线l 绕(16题图)三.解答题(满分78分)19.计算: 3tan30°-tan60°+13―2―(2024)020.在菱形ABCD 中,E ,F 为线段BC 上的点,且CD=2BE=4BF ,连接AE ,DF 交于点G .(1)如图(1)所示,若∠BAE=∠ADF ,求:∠B 的余弦值的值;(2)连接CG ,在图(2)上求作CG 在AB 与AG 方向上的分向量(保留作图痕迹即可)21.如图1是古代数学家杨辉在《详解九章算法》中对“邑的计算”的相关研究.数学兴趣小组也类比进行了如下探究:如图2,正八边形游乐城A1A2A3A4A5A6A7A设立在A6A7边的正中央,游乐城南侧有23.如图,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,联结AE,CF.求证:(1)四边形AFCE是平行四边形:(2)FG·BE=CE·AE25.新定义1:将宽与长的比等于黄金分割比的矩形称为黄金矩形 新定义2:将顶角为36°的等腰三角形称为黄金三角形①在一张矩形纸片的一端,利用图个正方形,然后把纸片展平②如图把纸片展平③折出内侧矩形的对角线中所示的④展平纸片,按照所得到的点(1)根据以上折纸法,求证:矩形BCDE 为黄金矩形(2)如图5,已知∠A=36°,△ABC 为黄金三角形,BC=1,求:AB 的长(3)在(2)的条件下,截取BD=BC 交AC 于D ,截取CE=CD 交线段BD 于E ,过E 作任意直线与边AB,BC 交于P,Q 两点,试判断:1BP +1BQ 是否为定值,若是,请求出定值,若不是,请说明理由(图5)参考答案及部分评分标准选择题(1~6题)ADBCCD填空题(7~18题)7.(3x+1)(3x―1)8.x≥19.a<410.111.2012131415.016.1:1017.-2<m<0或m>218.103解答题(19~25题)19.原式=0(10分)20.(1)58(5分)(2)图对即给分(5分)21.(1)90°76°(4分)(2)2km(3分)(3)24km(3分)22.任务1:y=―13+703任务2:w=-2x2+72x+3360(x≥10)(6分)任务3:雅19 风17 正34 最大利润(4分)23.(1)提示:△ADF≌△EDC(6分)(2)提示:△AFG∽△BEA(6分)24.(1)(0,0),y=ax2,(1,-1),-1,y=-x2(5分合理即可)(2)y=-(x-2)2(4分)(3)y=-(x-2-1)2+1或y=-(x+2-1)2+1(4分)25. (1)证明:CDBC =5―12即可(4分)(2)AB=5+1(5分)2(5分)(3)是定值,3+52。

2024届上海市浦东新区初三一模数学试题及答案

2024届上海市浦东新区初三一模数学试题及答案

上海市浦东新区2024届初三一模数学试卷(考试时间100分钟,满分150分)一、选择题:(本大题共6题,每题4分,满分24分)1.下列函数中,是二次函数的是().A 21y x ;.B 21y x ;.C 221y x x ;.D 21y x.2.已知在Rt ABC 中,90C ,3AC ,4BC ,那么下列等式正确的是().A 3sin 3333.已知a .A a4..A 1:45..A .C 6..A .B .C .D 7.如果34x y ,那么x y y.8.计算:43a a b.9.已知线段2MN cm ,P 是线段MN 的黄金分割点,MP NP ,那么线段MP 的长度等于cm .10.如果点G 是ABC 的重心,且6AG ,那么边BC 上的中线长为.11.已知在Rt ABC 中,90C ,6BC ,3sin 4A,那么AB 的长为.12.如图,ABC 是边长为3的等边三角形,D 、E 分别是边BC 、AC 上的点,60ADE ,如果1BD ,那么CE.13.小明沿着坡度1:2.4i 的斜坡向上行走了130米,那么他距离地面的垂直高度升高了米.14.在一个边长为3的正方形中挖去一个边长为x (03x )的小正方形,如果设剩余部分的面积为y ,那么y 关于x 的函数解析式是.15.已知点 2,A m , 3,B n 都在二次函数 21y x 的图像上,那么m 、n的大小关系是:mn .(填“ ”“ ”或“ ”)16.如图,正方形CDEF 的边CD 在Rt ABC 的直角边BC 上,顶点E 、F 分别在边AB 、AC 上.已知两条直角边BC 、AC 的长分别为5和12,那么正方形CDEF 的边长为.17.平行于梯形两底的直线与梯形的两腰相交,当两交点之间的线段长度是两底的比例中项时,我们称这条线段是梯形的“比例中线”.在梯形ABCD 中,//AD BC ,AD 18.在菱形落在点19.计算:20.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在ABC 中,点D 、E 分别在边AB 、AC 上,且2AD ,4DB ,3AE ,6EC .(1)求DEBC的值;(2)联结DC ,如果DE a ,DA b ,试用a 、b 表示向量CD.21.(本题满分10分,第(1)小题5分,第(2)小题5分)如图,已知在四边形ABCD 中,//AD BC ,90ABC ,对角线AC 、BD 相交于点O ,2AD ,3AB ,4BC .(1)求BOC 的面积;(2)求ACD 的正弦值.第20题图第21题图221第22题图322.(本题满分10分)上海教育出版社九年级第一学期《练习部分》第48页复习题B 组第2题及参考答案.的代数式表示,以下同),2BD t ;某数学兴趣小组在完成了以上解答后,决定对该问题进一步探究:如图1然后延长(1)(2)(3)如图2然后延长【拓展应用】如图3,在Rt ABC 中,90C ,18AC ,25BC ,点D 、E 分别在边AC 、BC 上,且5DC ,12EC ,联结AE 、BD 交于点P .求证:tan 1BPE .第23题图第24题图23.(本题满分12分,第(1)小题6分,第(2)小题6分)已知:如图,在梯形ABCD 中,//AD BC ,对角线AC 、BD 相交于点E ,且DEC DCB .(1)求证:AD ACCE CB;(2)点F 在DB 的延长线上,联结AF ,2AF AE AC .求证:EC AF BC AE .24.(本题满分12分,第(1)小题4分,第(2)题4分,第(3)题4分)如图,在平面直角坐标系xOy 中,抛物线2:M y x bx c 过点 2,2A 、点 0,2B ,顶点为点C ,抛物线M 的对称轴交x 轴于点D .(1)求抛物线M 的表达式和点C 的坐标;(2)点P 在x 轴上,当AOP 与ACD 相似时,求点P 坐标;(3)将抛物线M 向下平移t (0t )个单位,得到抛物线N ,抛物线N 的顶点为点E ,再把点C 绕点E 顺时针旋转135 得到点F .当点F 在抛物线N 上时,求t 的值.第25题图备用图备用图25.(本题满分14分,第(1)小题5分,第(2)小题5分,第(2)小题4分)如图,已知正方形ABCD 的边长为6,点E 是射线BC 上一点(点E 不与点B 、C 重合),过点A 作AF AE ,交边CD 的延长线于点F ,直线EF 分别交射线AC 、射线AD 于点M 、N .(1)当点E 在边BC 上时,如果15ND AN ,求BAE 的余切值;(2)当点E 在边BC 延长线上时,设线段BE x ,y EN MF ,求y 关于x 的函数解析式,并写出函数定义域;(3)当3CE 时,求EMC 的面积.浦东新区2023学年度第一学期期末练习卷初三数学参考答案及评分说明一、选择题:(本大题共6题,每题4分,满分24分)1.B ;2.D ;3.D ;4.A ;5.C ;6.B .二、填空题:(本大题共12题,每题4分,满分48分)7.74;8.3a b ;91 ;10.9;11.8;12.23;13.50;14.29y x ;15.<;16.6017;17.23;18.34.三、解答题:(本大题共7题,满分78分)1922+121222……………………(5分)(每个三角比的值各1分)112…………………………………(3分)(后3个数据,各1分)=12.………………………………………(2分)(每个数据,各1分)20.解:(1)∵AD =2,DB =4,AE =3,EC =6,∴12 AD DB ,12 AE EC .∴ AD AEDB EC.……………………………………(1分)∴DE//BC .……………………………………………………………………(1分)∴ DE ADBC AB .………………………………………………………………(1分)∵12 AD DB ,∴13 AD AB .……………………………………………………(1分)∴13DE BC .…………………………………………………………………(1分)(2)∵13 DE BC ,∴BC =3DE .∵ BC 和 DE 方向相同,∴3 BC DE .(1分)∵ DE a ,∴3BC a .…………………………………………………(1分)∵12 AD DB ,∴DB =2AD .∵ BD 和 DA 方向相同,∴2 BD DA .……(1分)∵ DA b ,∴2BD b .…………………………………………………(1分)∵ CD BD BC ,∴23CD b a .………………………………………(1分)21.解:(1)∵AD//BC ,∴AD AOBC OC.…………………………………………(1分)∵AD =2,BC =4,∴1=2AO OC .∴23OC AC .………………………………(1分)∵△BOC 和△ABC 同高,∴2=3BOC ABC S OC S AC .……………………………(1分)在Rt △ABC 中,∠ABC=90°,AB=3,BC =4,∴1=34=62ABC S .…(1分)∴=4 OBC S .……………………………………………………………………(1分)(2)过点D 作DM ⊥BC ,垂足为点M ,过点D 作DH ⊥AC ,垂足为点H .在Rt △ABC 中,∠ABC=90°,AB=3,BC =4,∴AC =5.∵AD ∥BC ,AB ⊥BC ,DM ⊥BC ,∴AB =DM .∴△ADC 和△ABC 等高.∴1==2ADC ABC S AD S BC .∴=3 ACD S .……………(1分)∴1=32 AC DH .∴6=5DH .………………………………………………(1分)∵DM ⊥BC ,∴∠DMC=90°.∵∠ABC =90°,∴∠ABC=∠DMC .∴AB ∥DM .∵AD ∥BC ,∴四边形ABMD 是平行四边形.∴BM=AD=2,DM=AB=3.∵BC =4,∴MC=2.…………………………(1分)在Rt △DMC 中,∠DMC=90°,DM=3,MC =2,∴ DC .………(1分)在Rt △DHC 中,∵∠DHC=90°,6=5DH, DC,∴sin 65DH ACD CD .…(1分)22.解:【问题探究】∠D=22.5°,BD,tan 22.51 .……………(各1分)【知识迁移】∵BD=AB ,∴∠D =∠BAD .∵∠ABC =∠D+∠BAD ,∴1=2D ABC .………………………………(1分)在Rt △ABC 中,2tan 3ABC ,设AC=2k ,BC=3k,则 AB BD .(1分)∴13tan tan 22AC ABC D DC .……………………(1分)【拓展应用】联结DE .………………………………………………………(1分)在Rt △EDC 中,∠ECD=90°,CD=5,CE =12,∴DE =13.∵CE =12,BC=25,∴BE =13.∴BE =DE .∴∠EBD =∠EDB .∵∠DEC =∠EBD+∠EDB ,∴1=2 DBE DEC .∵CD =5,AC=18,∴AD =13.∴AD =DE .∴∠DAE =∠DEA .∵∠EDC =∠DAE+∠DEA ,∴1=2DAE EDC .…………………………(1分)在Rt △EDC 中,∠ECD=90°,∴∠DEC +∠EDC=90°.∴∠DBE +∠DAE=45°.……………………………………………………(1分)在Rt △ABC 中,∠ACB=90°,∴∠ABC +∠BAC=90°.∴∠ABP +∠BAP=45°.∴∠BPE =∠ABP +∠BAP=45°.………………(1分)∴tan 1BPE .23.证明:(1)∵AD ∥BC ,∴∠ADC +∠DCB=180°.……………………………(1分)又∵∠CEB +∠DEC=180°,∠DEC =∠DCB ,∴∠ADC =∠CEB .……(1分)∵AD ∥BC ,∴∠DAC =∠ECB .……………………………………………(1分)∴△ADC ∽△CEB .…………………………………………………………(2分)∴ AD AC CE CB.……………………………………………………………(1分)(2)∵∠AED =∠CEB ,∠ADC =∠CEB ,∴∠AED =∠ADC .…………(1分)∵∠EAD =∠DAC ,∴△AED ∽△ADC .……………………………………(1分)∴ AE AD AD AC.即2 AD AE AC .…………………………………………(1分)∵2 AF AE AC ,∴22 AD AF .∴AD =AF .…………………………(1分)∵AD ∥BC ,∴AE ADEC BC.……………………………………………(1分)∴ AE AF EC BC.即 EC AF BC AE .………………………………………………………(1分)24.解:(1)抛物线M :2y x bx c 过点A (2,2)、点B (0,2),∴4222.,b c c ………………………………………………………(2分)∴2 b ,2 c .∴抛物线M 的表达式是222 y x x .………………………………(1分)∴点C 的坐标为(1,3).…………………………………………………(1分)(2)由(1)得抛物线的对称轴是直线1 x .……………………………(1分)过点A 作AH 垂直直线1 x ,垂足为点H .∴点H 的坐标为(1,2).过点A 作AG 垂直x 轴,垂足为点G .∴点G 的坐标为(2,0).在Rt △ACH 与Rt △AOG 中,根据题意可得tan 1 AH ACH CH ,tan 1 AGAOG OG.∴tan tan ACH AOP ,∴∠ACH =∠AOP .……………………………(1分)∴当△AOP 与△ACD 相似时,有 CA CD OA OP 或CA CDOP OA.○1 CA CDOA OP 3 OP,OP =6.点P 的坐标是(6,0).……………(1分)○2CA CDOP OA , OP 43 OP .点P 的坐标是(43,0).………(1分)∴综上所述,点P 的坐标是(6,0)或(43,0).(3)过点F 作FQ 垂直直线1 x ,垂足为点Q .根据题意可得∠FEQ =45°,FE =CE =t .……………………………………(1分)在Rt △EFQ 中,∵∠EQF=90°,∠FEQ =45°,FE =t ,∴EQ=FQ =2t .∴点F 的坐标是(1+2t ,32t ).………………………………(1分)∵当点F 在平移后的抛物线N :21)3(y x t 上时,可得231)322(1+t t t .……………………………(1分)解得10 t (舍),2 t 1分)25.解:(1)根据题意可得∠ABC =∠BAD=∠ADC=90°,AB =BC =CD =AD =6,AD ∥BC .∴∠BAE +∠EAD=90°,∠ADF=∠ABC =90°.∵AF ⊥AE ,∴∠DAF +∠EAD=90°.∴∠BAE=∠DAF .∴△BAE ≌△DAF .∴DF =BE .……………………………………………(1分)设BE=x ,则DF =BE =x ,EC =6-x ,FC =6+x .∵正方形ABCD 的边长为6,15ND AN ,∴ND=1,AN =5.………………(1分)∵AD ∥BC ,∴ ND FD EC FC .即166xx x.……………………………(1分)整理得2560 x x .解得12 x ,23 x .……………………………(1分)当2 x 时,6cot 32 BE BAE AB ;当3 x 时,6cot 23BE BAE AB .∴∠BAE 的余切值为2或3.………………………………………………(1分)(2)当点E 在边BC 延长线上时,根据条件可证△BAE ≌△DAF .∴AE =AF .∴∠AEF =∠AFE .∵AF ⊥AE ,∴∠EAF=90°.∵∠EAF +∠AEF +∠AFE =180°,∴∠AEF =∠AFE=45°.∴∠ANE =∠AFE +∠FAD =45°+∠FAD .∵四边形ABCD 是正方形,∴∠DAC=45°.∴∠MAF =∠DAC +∠FAD =45°+∠FAD .∴∠ANE =∠MAF .∴△ANE ∽△MAF .…………………………………………………………(2分)∴ EN AE FA MF.∴2== y EN MF AE FA AE .…………………………(1分)在Rt △ABE 中,∠ABE=90°,AB =6,BE=x ,∴22=36 AE x .即2=36 y x .(x >6)…………………………………………………(2分)(3)有两种情况:点E 在边BC 上,点E 在边BC 延长线上.(i )当点E 在边BC 上时.易证△EMC ∽△AMF ,△AMF ∽△AFC .∴△EMC ∽△AFC .∴2= (EMC AFC S EC S AC.…………………………………………………………(1分)∵EC =3,AC=1=96=272 AFC S ,∴27=8EMC S .……………(1分)(ii )当点E 在边BC 延长线上时.易证△EMC ∽△AMF ,△AMF ∽△AFC .∴△EMC ∽△AFC .∴2= (EMC AFC S EC S AC.…………………………………………………………(1分)∵EC =3,AC=1=156=452AFC S ,∴45=8EMC S .……………(1分)综上所述,△EMC 的面积为278或458.。

浦东新区2024年初三数学一模试卷

浦东新区2024年初三数学一模试卷

浦东新区2024年初三数学一模试卷
浦东新区2024年初三数学一模试卷指的是在2024年,浦东新区为初三学生举办的第一次模拟考试中的数学试卷。

模拟考试通常用于评估学生的学习情况和准备程度,以便在正式的中考中取得更好的成绩。

以下是浦东新区2024年初三数学一模试卷题目:
1. 在一个等腰三角形中,已知其中一个底角为70°,则顶角的大小为多少?
A. 30°
B. 40°
C. 50°
D. 60°
2. 下列哪个数不能作为圆的半径?
A. 2
B. 3.5
C. -3
D. √2
3. 下列哪个数是无理数?
A. 1/2
B. π
C. √4
D. √3
4. 一个圆柱的侧面积是31.4厘米²,它的底面直径为4厘米,那么它的高为多少?
A. 2厘米
B. 3厘米
C. 4厘米
D. 5厘米
5. 若a > b,则下列不等式一定成立的是( )
A. a - c > b - c
B. a + c > b + c
C. ac > bc
D. a - c < b - c。

浦东初三数学一模试卷答案

浦东初三数学一模试卷答案

一、选择题1. 下列选项中,绝对值最小的数是()A. -2B. -1C. 0D. 1答案:C解析:绝对值表示一个数与0的距离,0的绝对值最小,故选C。

2. 已知一元二次方程 ax^2 + bx + c = 0(a ≠ 0)的判别式为Δ = b^2 - 4ac,则以下说法正确的是()A. Δ > 0,方程有两个不相等的实数根B. Δ = 0,方程有两个相等的实数根C. Δ < 0,方程无实数根D. Δ 可以是任意实数答案:A解析:当Δ > 0 时,方程有两个不相等的实数根;当Δ = 0 时,方程有两个相等的实数根;当Δ < 0 时,方程无实数根。

故选A。

3. 在等腰三角形ABC中,AB = AC,∠BAC = 40°,则∠ABC的度数是()A. 40°B. 50°C. 60°D. 70°答案:B解析:等腰三角形的底角相等,所以∠ABC = ∠ACB = (180° - ∠BAC) / 2 = (180° - 40°) / 2 = 70°。

故选B。

4. 已知平行四边形ABCD的对角线AC和BD相交于点O,若OA = 4cm,OB = 6cm,则OC的长度是()A. 4cmB. 6cmC. 8cmD. 10cm答案:C解析:平行四边形的对角线互相平分,所以OC = OA = 4cm。

故选C。

5. 下列函数中,y = kx(k ≠ 0)的图象经过第一、二、三象限的是()A. y = 2xB. y = -3xC. y = 0.5xD. y = -0.5x答案:A解析:当k > 0时,函数图象经过第一、二、三象限;当k < 0时,函数图象经过第二、三、四象限。

故选A。

二、填空题6. 若方程 2x - 3 = 5 的解为 x = 4,则方程 3x - 7 = 2 的解为 x =__________。

浦东数学一模初三试卷答案

浦东数学一模初三试卷答案

浦东新区初三数学一模试卷答案一、选择题(每题3分,共30分)1. 下列各数中,有理数是()A. √2B. πC. 0.1010010001...D. -3答案:D2. 若a,b是方程x² - 5x + 6 = 0的两根,则a² + b²的值为()A. 10B. 11C. 12D. 13答案:B3. 在直角坐标系中,点P(2, -3)关于y轴的对称点坐标是()A. (2, 3)B. (-2, 3)C. (-2, -3)D. (2, -3)答案:C4. 下列函数中,单调递增的是()A. y = 2x - 1B. y = -x² + 1C. y = x³D. y = 1/x答案:C5. 若一个等腰三角形的底边长为6cm,腰长为8cm,则这个三角形的面积是()A. 24cm²B. 28cm²C. 32cm²D. 36cm²答案:C二、填空题(每题3分,共30分)6. 若sinα = 1/2,且α在第二象限,则cosα = _______。

答案:-√3/27. 二项式(2x - 3)³的展开式中,x²的系数是 _______。

答案:-98. 若等差数列{an}的前三项分别为2,5,8,则该数列的公差是 _______。

答案:39. 圆的半径增加1单位,其面积增加 _______单位。

答案:π10. 若函数f(x) = ax² + bx + c的图像开口向上,且顶点坐标为(-1, 4),则a = _______,b = _______。

答案:a > 0,b = -2a三、解答题(每题15分,共60分)11. (15分)已知函数f(x) = x² - 2x + 1,求f(x)的最小值。

解答:f(x) = (x - 1)²,当x = 1时,f(x)取得最小值,即f(1) = 0。

2024届上海初三一模数学各区填选题(相似三角形)

2024届上海初三一模数学各区填选题(相似三角形)

上海市2024届初三一模数学分类汇编—填选题(相似三角形)【2024届·宝山区·初三一模·第6题】(本题满分4分)1.如图3,在正方形网格中,A 、B 、C 、D 、M 、N 都是格点,从A 、B 、C 、D 四个格点中选取三个构成一个与AMN 相似的三角形,某同学得到两个三角形:①ABC ;②ABD .关于这两个三角形,下列判断正确..的是().A 只有①是;.B 只有②是;.C ①和②都是;.D ①和②都不是.【20242.如图56BC ,ABC 【2024届·崇明区·初三一模·第1题】(本题满分4分)3.如果两个相似三角形的周长之比为1:4,那么它们对应边之比为().A 1:2;.B 1:4;.C 1:8;.D 1:16.第14题图(本题满分4分)4.如图,在平行四边形ABCD 中,点E 在边AD 上,联结BE ,交对角线AC 于点F ,如果19AEF BFC S S ,15AD ,那么AE.【20245.3AP,BP 【20246.如图2E ,边DE 交BC .A 与DEB .图2(本题满分4分)7.如图4,已知ABC 的周长为15,点E 、F 是边BC 的三等分点,//DE AB ,//DF AC ,那么DEF 的周长是.【20248.如图7EF 把【20249.如图4).A .B .C .D 图4(本题满分4分)10.一个三角形框架模型的边长分别为3分米、4分米和5分米,木工要以一根长6分米的木条为一边,做与模型相似的三角形,那么做出的三角形中,面积最大的是平方分米.【2024届·黄浦区·初三一模·第1题】(本题满分4分)11.下列命题中,真命题是().A 如果一个直角三角形的一个锐角等于另一个直角三角形的锐角,那么这两个三角形相似;.B 如果一个等腰三角形的一个内角等于另一个等腰三角形的内角,那么这两个三角形相似;.C 如果一个直角梯形的一个锐角等于另一个直角梯形的锐角,那么这两个梯形相似;.D 如果一个等腰梯形的一个内角等于另一个等腰梯形的内角,那么这两个梯形相似.【2024届·黄浦区·初三一模·第2题】(本题满分4分)12.已知:111222333A B C A B C A B C ∽∽,如果111A B C 与222A B C 的相似比为2,222A B C 与333A B C 相似比为4,那么111A B C 与333A B C 的相似比为().A 2;.B 4;.C 6;.D 8.第12题图第14题图(本题满分4分)13.如图,在ABC 中,90ACB ,3AC ,6BC ,CO 是边AB 上的中线,G 为ABC 的重心,过点G 作//GN BC 交AB 于点N ,那么OGN 的面积是.【2024届·黄浦区·初三一模·第14题】(本题满分4分)14.如图,N 是线段AB 上一点,AC AB ,BD AB ,NM AB ,联结CM 并延长交AB 于点P ,联结DM 并延长交AB 于点Q .已知4AB ,3AC ,2BD ,1MN , 1.2PN ,那么QN.【2024届·嘉定区·初三一模·第6题】(本题满分4分)15.下列命题是真命题的是().A 有一个角是36 的两个等腰三角形相似;.B 有一个角是45 的两个等腰三角形相似;.C 有一个角是60 的两个等腰三角形相似;.D 有一个角是钝角的两个等腰三角形相似.第6题图(本题满分4分)16.如图2,在ABC 中,点D 、E 分别在边BA 、CA 上,//DE BC ,18DEA BCEDS S 四边形,9BC ,那么DE .【202417..A 2:1【202418.如图在ABC 联结成格点三角形,其中与ABC 相似的有().A 1个;.B 2个;.C 3个;.D 4个.(本题满分4分)19.已知两个相似三角形的相似比为2:3,那么这两个三角形的周长比为.【202420.如图,第14题图【202421.在(本题满分4分)22.下列选项中的两个图形一定相似的是().A 两个平行四边形;.B 两个圆;.C 两个菱形;.D 两个等腰三角形.23..A .C 24.如果两个相似三角形对应边上的高之比是4:9,那么它们的周长之比等于.(本题满分4分)25.在ABC 中,5AB AC ,6BC ,将边BC 绕点C 旋转后,点B 落在射线CA 上的点D 处,那么DB的长为.【202426.点D 、那么【202427..A 两个直角三角形一定相似;.B 两个等腰三角形一定相似;.C 两个钝角三角形一定相似;.D 两个等边三角形一定相似.(本题满分4分)28.如图,在ABC 中,点D 在边AC 上,点E 在边BC 上,//DE AB ,:2:3AD AC ,那么DEC ABED S S 四边形的值为.【202429..A 1:4【202430..A .B 如果一个等腰三角形中有两边之比为1:2,那么所有这样的等腰三角形一定相似;.C 如果一个直角三角形中有两个内角的度数之比为1:2,那么所有这样的直角三角形一定相似;.D 如果一个等腰三角形中有两个内角的度数之比为1:2,那么所有这样的等腰三角形一定相似.第12题图第16题图图1(本题满分4分)31.如图,ABC 是边长为3的等边三角形,D 、E 分别是边BC 、AC 上的点,60ADE ,如果1BD ,那么CE .【202432.、AC 上.已知两【202433.如图1().A AC DBC .图4第3题图(本题满分4分)34.如图4,在ABC 中,90ACB ,CD 是AB 边上的高,如果5AC ,4CD ,那么ACD 与CBD的相似比k .【2024届·青浦区·初三一模·第1题】(本题满分4分)35.下列图形中,一定相似的是().A 两个等腰三角形;.B 两个菱形;.C 两个正方形;.D 两个等腰梯形.【2024届·青浦区·初三一模·第3题】(本题满分4分)36.如图,在ABC 中,点D 、E 分别在边AB 、AC 上,ADE C ,则下列判断错误..的是().A AED B ;.B DE AC BC AE ;.C AD AB AE AC ;.D 2AED ABC S DE S BC.第5(本题满分4分)37.如果两个相似三角形的周长比为1:3,那么它们的面积比为.【2024届·松江区·初三一模·第5题】(本题满分4分)38.上,顶点G 、).A 4;.C 1625【202439.与点1A 、点B 的和之比等于k .对于结论①和②,下列说法正确的是().A ①正确,②错误;.B ①错误,②正确;.C ①和②都错误;.D ①和②都正确.第16题图第6题图(本题满分4分)40.如图,在梯形ABCD 中,//AD BC ,点E 是AD 的中点,BE 、CD 的延长线交于点F ,如果:AD BC2:3,那么:EDF AEB S S.【202441..A .C 【202442.AD 、AE 、CE .A CE AE AO BC .第12题图第18题图(本题满分4分)43.已知ABC DEF ∽,如果它们对应高的比:3AM DN,那么ABC 和DEF 的面积比是.【202444.CD 【202445.如图,135 的长是.第17题图(本题满分4分)46.如图,锐角ABC 中,AB AC BC ,现想在边AB 上找一点D ,在边AC 上找一点E ,使得ADE与C 相等,以下是甲、乙两位同学的作法:(甲)分别过点B 、C 作AC 、AB 的垂线,垂足分别是E 、D ,则D 、E 即所求;(乙)取AC 中点F ,作DF AC ,交AB 于点D ,取AB 中点H ,作EH AB ,交AC 于点E ,则D 、E 即所求.对于甲、乙两位同学的作法,下列判断正确的是().A 甲正确乙错误;.B 甲错误乙正确;.C 甲、乙皆正确;.D 甲、乙皆错误.【202447.36,那么S 【202448.如图,CD ,交边AB 于点E ,那么线段AE 的长是.第15题图(本题满分4分)49.已知在ABC 与'''A B C 中,点D 、'D 分别在边BC 、''B C 上(点D 不与点B 、C 重合,点'D 不与点'B 、'C 重合).如果ADC 与'''A D C 相似,点A 、D 分别对应点'A 、'D ,那么添加下列条件可以证明ABC 与'''A B C 相似的是()①AD 、''A D 分别是ABC 与'''A B C 的角平分线;②AD 、''A D 分别是ABC 与'''A B C 的中线;③AD 、''A D 分别是ABC 与'''A B C 的高..A ①②;.B ②③;.C ①③;.D ①②③.【202450.【202451.、G 在边BC 上,顶点E。

2021年浦东新区初三数学一模试卷加答案(精准校对完整版)

2021年浦东新区初三数学一模试卷加答案(精准校对完整版)

2021年浦东新区初三数学一模试卷加答案(精准校对完整版)浦东新区2021年一模数学试卷(含答案详解)(总分150)2021一、选择题:(本大题共6小题,每题4分,满分24分)1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是()A. 1:2B. 1:4C. 1:8D. 1:162.在Rt△ABC中,∠C=90°,AB=5,BC=4,则sinA的值为()A 3344A. B. C. D. 4553 DE3.如图,点D、E分别在AB、AC上,以下能推得DE//BC的条件是() A. AD:AB=DE:BC; B.AD:DB=DE:BC;CBC. AD:DB=AE:EC; D. AE:AC=AD:DB. y 24.已知二次函数y=ax+bx+c的图像如图所示,那么a、b、c的符号为() A. a<0,b<0,c>0; B. a<0,b<0,c<0;o C. a>0,b>0,c>0; D. a>0,b>0,c<0. x5.如图,Rt△ABC中,∠ACB=90°,CD⊥AB于点D,下列结论中错误的是() A. AC2=AD・AB; B. CD2=CA・CB;CC. CD2=AD・DB; D. BC2=BD・BA.6.下列命题是真命题的是()A. 有一个角相等的两个等腰三角形相似; BADB. 两边对应成比例且有一个角相等的两个三角形相似;C. 四个内角都对应相等的两个四边形相似;D. 斜边和一条直角边对应成比例的两个直角三角形相似.二、填空题(本大题共12小题,每题4分,满分48分)x1x7.已知,那么 . ==y3x+y 18.计算: . 2 a-3(a+b)=39.上海与杭州的实际距离约200千米,在比例尺1:5000 000的地图上,上海与杭州的图上距离约厘米.10.某滑雪运动员沿着坡比为1:3 的斜坡向下滑行了100m,则运动员下降的垂直高度是米.11.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是 .12.二次函数y=ax2+bx+c 的图像如图所示,对称轴为直线x=2,若此抛物线与x轴的一个交点为(6,0),则抛物线与x轴的另一个交点坐标是 .13.如图,已知AD是△ABC的中点,点G是△ABC的重心, AB = a,那么用向量表示向量为. a AG14.如图,在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,那么CD的长是.AB115.如图,直线AA1//BB1//CC1,如果 ,AA1=2,CC1=6,那么线段BB1的长为 . = BC3AABAA1B1GBDCCDBCC1第12题图第13题图第14题图第15题16.如图是小明在建筑物AB上用激光仪测量另一建筑物CD高度的示意图,在地面点P 处水平放置一平面镜.一束激光从点A射出经平面镜上的点P反射后刚好射到建筑物CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=15米,BP=20米,PD=32米,B、P、D在一条直线上,那么建筑物CD的高度是米.17.若抛物线y=ax2+c与x轴交于点A(m,0),B(n,0),与y轴交于点C(0,c),则称△ABC为“抛物三角形”.特别地,当mnc<0时,称△ABC为“倒抛物三角形”时,a、c应分别满足条件 .18.在△ABC中,AB=5,AC=4,BC=3,D是边AB上的一点,E是边AC上的一点(D、E均与端点不重合),如果△CDE与△ABC相似,那么CE= .三、解答题(本大题共7小题,满分78分) 19.(本题满分10分)计算:sin45°+6tan30°-2cos30°. 220.(本题满分10分,第(1)小题6分,第(2)小题4分)二次函数y=ax2+bx+c的变量x与变量y的部分对应值如下表: x ? -3 -2 -1 0 1 5 ? y ? 7 0 -5 -8 -9 7 ? (1)求此二次函数的解析式;(2)写出抛物线顶点坐标和对称轴.21. (本题满分10分,每小题8分)如图,梯形ABCD中,AD//BC,点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.(1)若FD=2,ED:BC=1:3,求线段DC的长;(2)求证:EF・GB=BF・GE.22. (本题满分10分,第(1)小题6分,第(2)小题4分)如图,l为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A、B、C. P是一个观测点,PC⊥l,PC=60米,4,∠BPC=45°,测得该车从点A行驶到点B tan∠APC= 3所用时间为1秒.(1)求A、B两点间的距离;(2)试说明该车是否超过限速.FAEGDBC23. (本题满分12分,每小题6分)如图,在△ABC中,D是BC边的中点,DE⊥BC交AB于点E,AD=AC,EC交AD于点F. (1)求证:△ABC∽△FCD; A(2)求证:FC=3EF.EFBCD24. (本题满分12分,每小题4分)如图,抛物线y=ax2+2ax+c(a>0)与x轴交于A(-3,0)、B两点(A在B的左侧),与y轴交于点 C(0,-3),抛物线的顶点为M. (1)求a、c的值;(2)求tan∠MAC的值;(3)若点P是线段AC上一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.25. (本题满分14分,第(1)(2)小题,每题5分,第(3)小题4分)如图,在边长为6的正方形ABCD中,点E为AD边上的一个动点(与点A、D不重合),∠EBM=45°,BE交对角线AC于点F,BM交对角线AC于点G,交CD于点M.(1)如图1,联结BD,求证:△DEB∽△CGB,并写出DE:CG的值;(2)联结EG,如图2,若设AE=x,EG=y,求y关于x的函数解析式,并写出函数的定义域;(3)当M为边DC的三等分点时,求S△EGF的面积.DMCDMCDCGEFABGEFABAB备用图感谢您的阅读,祝您生活愉快。

浦东新区初三数学试卷答案

浦东新区初三数学试卷答案

一、选择题(每题3分,共30分)1. 下列各数中,无理数是()A. √4B. √9C. √16D. √25答案:A解析:无理数是指不能表示为两个整数比的实数,而√4=2,√9=3,√16=4,√25=5,都是整数,因此选项A是正确的。

2. 如果一个等腰三角形的底边长为8cm,腰长为10cm,那么这个三角形的面积是()A. 40cm²B. 48cm²C. 50cm²D. 60cm²答案:B解析:等腰三角形的面积公式为 S = (底边长× 高) ÷ 2。

首先,利用勾股定理求出高,即h = √(腰长² - (底边长÷ 2)²) = √(10² - 4²) = √(100 - 16) = √84。

所以,面积S = (8 × √84) ÷ 2 = 4√84。

将√84约分后,得到4 × 2 = 8,所以答案是48cm²。

3. 下列函数中,单调递减的是()A. y = 2x + 1B. y = -x² + 3x - 1C. y = x³D. y = log₂x答案:B解析:单调递减的函数是指随着自变量的增加,函数值逐渐减小的函数。

对于选项A,斜率为正,是单调递增的;对于选项C,斜率为正,是单调递增的;对于选项D,对数函数是单调递增的。

只有选项B,函数的导数y' = -2x + 3,当x > 3/2时,导数小于0,因此是单调递减的。

4. 下列不等式中,正确的是()A. 2x > 3xB. 2x < 3xC. -2x > -3xD. -2x < -3x答案:D解析:在不等式中,当两边同时乘以或除以一个负数时,不等号的方向会改变。

所以,选项A和B都是错误的。

对于选项C和D,由于-2和-3都是负数,乘以它们后,不等号的方向不会改变。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

浦东新区2016年一模数学试卷(含答案详解)
(总分150)
2016
一、选择题:(本大题共6小题,每题4分,满分24分)
1.如果两个相似三角形对应边之比是1:4,那么它们的对应边上的中线之比是( ) A. 1:2 B. 1:4 C. 1:8 D. 1:16
2.在Rt △ABC 中,∠C=90°,AB=5,BC=4,则sinA 的值为( )
A. B. C. D.
3.如图,点D 、E 分别在AB 、AC 上,以下能推得DE//BC 的条件是( ) A. AD:AB=DE:BC ; B. AD:DB=DE:BC ; C. AD:DB=AE:EC ; D. AE:AC=AD:DB.
4.已知二次函数y=ax 2+bx+c 的图像如图所示,那么a 、b 、c 的符号为( ) A. a <0,b <0,c >0; B. a <0,b <0,c <0;
C. a >0,b >0,c >0;
D. a >0,b >0,c <0.
5.如图,Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,下列结论中错误的是( ) A. AC 2=AD ·AB ; B. CD 2=CA ·CB ; C. CD 2=AD ·DB ; D. BC 2=BD ·BA.
6.下列命题是真命题的是( )
A. 有一个角相等的两个等腰三角形相似;
B. 两边对应成比例且有一个角相等的两个三角形相似;
34
35
45
43
B
A
C. 四个内角都对应相等的两个四边形相似;
D. 斜边和一条直角边对应成比例的两个直角三角形相似.
二、填空题(本大题共12小题,每题4分,满分48分)
7.已知,那么 .
8.计算: .
9.上海与杭州的实际距离约200千米,在比例尺1:5000 000的地图上,上海与杭州的图上距离约厘米.
10.某滑雪运动员沿着坡比为1:的斜坡向下滑行了100m,则运动员下降的垂直高度是米.
11.将抛物线y=(x+1)2向下平移2个单位,得到新抛物线的函数解析式是 .
12.二次函数y=ax2+bx+c 的图像如图所示,对称轴为直线x=2,若此抛物线与x轴的一个交点为(6,0),则抛物线与x轴的另一个交点坐标是 .
13.如图,已知AD是△ABC的中点,点G是△ABC的重心,,那么用向量表示向量
为 .
14.如图,在△ABC中,AC=6,BC=9,D是△ABC的边BC上的点,且∠CAD=∠B,那么CD的长是 .
15.如图,直线AA
1//BB
1
//CC
1
,如果 ,AA
1
=2,CC
1
=6,那么线段BB
1
的长为 .
x y =
1
3
x
x+y
=
1
3
3
AB = a a
AB
BC
=
1
3
AG
第12题图 第13题图 第14题图 第15题
16.如图是小明在建筑物AB 上用激光仪测量另一建筑物CD 高度的示意图,在地面点P 处水平放置一平面镜.一束激光从点A 射出经平面镜上的点P 反射后刚好射到建筑物CD 的顶端C 处,已知AB ⊥BD ,CD ⊥BD ,且测得AB=15米,BP=20米,PD=32米,B 、P 、D 在一条直线上,那么建筑物CD 的高度是 米.
17.若抛物线y=ax 2+c 与x 轴交于点A (m ,0),B (n ,0),与y 轴交于点C (0,c ),则称△ABC 为“抛物三角形”.特别地,当mnc <0时,称△ABC 为“倒抛物三角形”时,a 、c 应分别满足条件 .
18.在△ABC 中,AB=5,AC=4,BC=3,D 是边AB 上的一点,E 是边AC 上的一点(D 、E 均与端点不重合),如果△CDE 与△ABC 相似,那么CE= .
三、解答题(本大题共7小题,满分78分) 19.(本题满分10分)
计算: sin45°+6tan30°-2cos30°.
20.(本题满分10分,第(1)小题6分,第(2)小题4分) 二次函数y=ax 2+bx+c 的变量x 与变量y 的部分对应值如下表: x

-3
-2
-1
1
5

G
D
B
A
D
C
B
C1
B1
A1C
B
A 2
(1)求此二次函数的解析式;
(2)写出抛物线顶点坐标和对称轴.
21. (本题满分10分,每小题8分)
如图,梯形ABCD中,AD//BC,点E是边AD的中点,联结BE并延长交CD的延长线于点F,交AC于点G.
(1)若FD=2,ED:BC=1:3,求线段DC的长;
(2)求证:EF·GB=BF·GE.
B
22. (本题满分10分,第(1)小题6分,第(2)小题4分) 如图,l 为一条东西方向的笔直公路,一辆小汽车在这段限速为80千米/小时的公路上由西向东匀速行驶,依次经过点A 、B 、C. P 是一个观测点,PC ⊥l ,PC=60米, tan ∠APC= ,∠BPC=45°,测得该车从点A 行驶到点B
所用时间为1秒.
(1)求A 、B 两点间的距离; (2)试说明该车是否超过限速.
4
3
23. (本题满分12分,每小题6分)
如图,在△ABC 中,D 是BC 边的中点,DE ⊥BC 交AB 于点E ,AD=AC ,EC 交AD 于点F. (1)求证:△ABC ∽△FCD ; (2)求证:FC=3EF.
24. (本题满分12分,每小题4分)
如图,抛物线y=ax 2+2ax+c (a >0)与x 轴交于A (-3,0)、B 两点(A 在B 的左侧),与y 轴交于点
C
B
A
C(0,-3),抛物线的顶点为M.
(1)求a、c的值;
(2)求tan∠MAC的值;
(3)若点P是线段AC上一个动点,联结OP.问:是否存在点P,使得以点O、C、P为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.
25. (本题满分14分,第(1)(2)小题,每题5分,第(3)小题4分)
如图,在边长为6的正方形ABCD 中,点E 为AD 边上的一个动点(与点A 、D 不重合),∠EBM=45°,BE 交对角线AC 于点F ,BM 交对角线AC 于点G ,交CD 于点M. (1)如图1,联结BD ,求证:△DEB ∽△CGB ,并写出DE:CG 的值;
(2)联结EG ,如图2,若设AE=x ,EG=y ,求y 关于x 的函数解析式,并写出函数的定义域; (3)当M 为边DC 的三等分点时,求S △EGF 的面积.
备用图
C
E
浦东新区2016学年一模数学试卷(答案详解)。

相关文档
最新文档