放射性同位素示踪法
高中生物学中常见同位素示踪法实验精编版

高中生物学中常见同位素示踪法实验精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】同位素示踪法在高中生物学实验中的应用同位素示踪法是利用放射性核素作为示踪剂对研究对象进行标记的微量分析方法,即把放射性同位素的原子参到其他物质中去,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径,运动到哪里了,是怎样分布的。
同位素示踪法是生物学实验中经常应用的一项重要方法,它可以研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
总之,同位素示踪法正在更大规模地应用于生物研究领域。
用于示踪技术的放射性同位素一般是用于构成细胞化合物的重要元素,如3H、14C、15N、18O、32P、35S、131I等。
在高中生物学教材中有多处涉及到放射性同位素的应用,下面笔者对教材中的相关知识进行归纳如下:1 研究蛋白质或核酸合成的原料及过程把具有反射性的原子参到合成蛋白质或核酸的原料(氨基酸或核苷酸)中,让它们一起运动、迁移,再用放射性探测仪器进行追踪,就可知道放射性原子通过什么路径、运动到哪里以及分布如何。
?2 研究分泌蛋白的合成和运输?用3H标记亮氨酸,探究分泌性蛋白质在细胞中的合成、运输与分泌途径。
在一次性给予放射性标记的氨基酸的前提下,通过观察细胞中放射性物质在不同时间出现的位置,就可以明确地看出细胞器在分泌蛋白合成和运输中的作用。
例如,通过实验说明分泌蛋白在附着于内质网上的核糖体中合成之后,是按照内质网→高尔基体→细胞膜的方向运输的,从而证明了细胞内的各种生物膜在功能上是紧密联系的。
?3 研究细胞的结构和功能?用同位素标记氨基酸或核苷酸并引入细胞内,探测这些放射性标记出现在哪些结构中,从而推断该细胞的结构和功能。
?4 探究光合作用中元素的转移?利用放射性同位素18O、14C、3H作为示踪原子来研究光合作用过程中某些物质的变化过程,从而揭示光合作用的机理。
同位素示踪与荧光标记技术

同位素示踪与荧光标记技术[热考解读]1.同位素示踪法(1)同位素示踪法:用示踪元素标记的化合物,可以根据这种化合物的放射性,对有关的一系列化学反应进行追踪。
这种科学的研究方法叫做同位素示踪法,也叫同位素标记法。
(2)应用:可用于研究细胞内的元素或化合物的来源、组成、分布和去向等,进而了解细胞的结构和功能、化学物质的变化、反应机理等。
还可用于疾病的诊断和治疗,如碘的放射性同位素可以用来治疗甲状腺肿大。
(3)使用注意事项:一次只能使用一种同位素标记2.荧光标记法荧光标记法(Fluorescent Labeling)是利用荧光蛋白或荧光蛋白基因作为标志物对研究对象进行标记的分析方法。
(1)常用的荧光蛋白为绿色和红色两种①绿色荧光蛋白(GFP)常用的是来源于发光水母的一种功能独特的蛋白质,分子量为27 kD,具有238个氨基酸,蓝光或近紫外光照射,发射绿色荧光。
②红色荧光蛋白来源于珊瑚虫,是一种与绿色荧光蛋白同源的荧光蛋白,在紫外光的照射下可发射红色荧光,有着广泛的应用前景。
(2)人教版教材中用到荧光标记法的地方①《必修1》P66“细胞融合实验”:这一实验很有力地证明了细胞膜的结构特点是具有一定的流动性。
②《必修2》P30“基因在染色体上的实验证据”:通过现代分子生物学技术,运用荧光标记的手段,可以很直观地观察到某一基因在染色体上的位置。
(3)荧光标记法特别是在免疫学研究中也有重要的作用,例如免疫荧光抗体标记法。
将已知的抗体或抗原分子标记上荧光素,当与其相对应的抗原或抗体起反应时,在形成的复合物上就带有一定量的荧光素,在荧光显微镜下就可以看见发出荧光的抗原抗体结合部位,检测出抗原或抗体。
[命题设计]1.(2018·山东青岛一模)同位素标记法常用于追踪物质运行和变化规律的研究,下列相关叙述不正确的是()A.给小鼠供应18O2,其呼出气体中可能含有C18O2B.用含3H标记的尿嘧啶核糖核苷酸的营养液培养洋葱根尖,只能在分生区细胞中检测到放射性C.用15N标记DNA分子,可用于研究DNA分子的半保留复制D.用32P标记的噬菌体侵染大肠杆菌,保温、搅拌、离心后可检测到沉淀物中放射性很高解析:选B。
同位素示踪法在生物学中的应用

用 放 射 性 同位 素 标 记 尿 嘧 啶 核 糖 核 苷 酸 ( R N A 的特 征 碱 基 为 U) 、 氨基酸 , 则在基因转录 、 翻 译 的 产 物 中就会 含有 放 射 性 同位 素 , 还 可 以 用 来确 定 转 录 、 翻译 的场 所 。
五 探究D N A分子 半泌 蛋 白 的 合
通 过放射性标记来 “ 区别 ” 亲代 与子代的D N A, 如放射性标记 J 5 N, 因为放射性物质 N的原子量和 N 的原 子量 不 同 , 因此 D N A的相 对 分子 质 量 不 同 。 如 果 D N A 分子 的两条链都 是 N , 则离 心时 为重带 ; 如果 D N A 分 子 的一 条链 是 ” N, 一 条链 是 “ N, 则 离 心 时 为 中带 ; 如果D N A 分子 的两条链都 是1 4 N , 则 离 心 时 为 轻 带 。因此 可 以根 据 重 带 、 中带 、 轻带D N A 出 现 的 比 例, 判断D N A 复 制 是全 保 留复 制 还 是半 保 留复 制 。
要 方 法 ,它 可 以研 究 细 胞 内 的元 素或 化合 物 的来 源 、 组 成、 分布 和去向等 , 进 而 了解 细胞 的 结 构 和 功 能 、化 学 物 质 的变 化 、 反应机理等 。 用 于 示踪 技术 的放射性 同位素一 般 是 用 于 构 成 细胞 化 合 物 的 重要 元素 , 如 H、 1 4 C、 N、 I s 0、 P 、 S 、 1 3 1 1 等 。在 高 中生物学 教材 中有 多 处 涉 及 放 射 性 同 位 素 的应 用 ,下 面 对 教 材 中 的相 关 知 识 进 行 归 纳 如下 :
七 在 生物 诱 变 育 种 方 面 的应 用
同位素示踪法在高中生物中的应用归纳

同位素示踪法在高中生物中的应用归纳1同位素示踪法,是利用放射性核素作为示踪剂对研究对象进行标记的微量分析的方法。
常用的标记元素有:(1)14C:常用于标记CO2,葡萄糖,生长素等物质中的C,也可用与标记生长素的运输方向(2)18O:常用于标记光合作用和呼吸作用过程中的H2O,CO2,O2,葡萄糖等,(3)3H:经常用于标记核苷酸示踪DNA,RNA的分布(4)15N:常用于标记无机盐,示踪在自然界中的N循环,也可用来标记氨基酸等(5)32P:常用于标记核酸,标记含P的无机盐可示踪无机盐在植物体内的利用状况,也可用来标记DNA的复制情况(6)35S:标记蛋白质,在研究遗传的物质基础实验中标记噬菌体例11.陆生植物光合作用所需要的碳源,主要是空气中的C02,CO2主要是通过叶片气孔进入叶内。
陆生植物能不能通过根部获得碳源,且用于光合作用?请做出假设,且根据提供的实验材料,完成相关实验问题。
(1)假设为:。
(2)利用实验器材,补充相关实验步骤。
(3)方法和步骤:①;②;③对菜豆幼苗的光合作用产物进行检查。
结果预测和结论:。
该实验最可能的结果是,原因是。
答案 (1)陆生植物能通过根部获得碳源 (2)①把适量含有NaH14CO3,的营养液置于锥形瓶中,并选取生长正常的菜豆幼苗放入锥形瓶中②将上述装置放在温暖、阳光充足的地方培养③结果预测和结论:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。
如果是在光合作用产物中没有发现14C,说明陆生植物不能通过根部获得碳源,用于光合作用。
最可能的结果和结论是:在光合作用产物中发现有14C,说明陆生植物能通过根部获得碳源,用于光合作用。
原因是陆生植物的根部可以吸收土壤中的CO2和碳酸盐,用于光合作用。
例2将植物细胞放在有3H标记的胸腺嘧啶脱氧核糖核苷酸存在的环境中,温育数小时。
然后收集细胞,粉碎并轻摇匀浆,进行分级离心以获得各种细胞结构。
放射性3H将主存在于()A.核仁、质体和高尔基体 B.细胞核、核仁和溶酶体C.细胞核、核糖体和液泡 D.细胞核、线粒体和叶绿体例3 从某腺体的细胞中提取一些细胞器,放入含有14C氨基酸的培养液中,培养液中有这些细胞器完成其功能所需的物质和条件,连续取样测定标记的氨基酸在这些细胞器中的数量,下图中能正确描述的曲线是()例4.用32P标记了水稻体细胞(含24条染色体)的DNA分子双链,再次这些细胞转入不含32P的培养基中培养,在第二次细胞分裂的中期、后期,一个细胞中的染色体总条数和被32P标记的染色体条数分别是()A.中期24和12、后期48和12 B.中期24和12、后期48和24C.中期24和24、后期48和12 D.中期24和24、后期48和24 例5.用32P和35S分别标记噬菌体的DNA分子和蛋白质外壳,然后去侵染含31P与32S的细菌,待细菌解体后,子代噬菌体的DNA分子和蛋白质外壳()A.少数含32P、大多数含31P和全部含32SB.只含31P和少数含32SC.少数含32P、大多数含31P和少数含35S、大多数含32SD.只含32P和大多数含35S。
地球化学研究中的放射性同位素示踪技术

地球化学研究中的放射性同位素示踪技术放射性同位素具有放射性衰变的性质,可以通过其衰变特性对其存在时间和空间位置进行潜在记录。
因此,放射性同位素在地球化学研究中是一项非常有用的示踪技术。
放射性同位素的种类繁多,包括三种自然界存在的放射性同位素:铀系列中的^238U、钍系列中的^232Th和钾系列中的^40K,以及人工合成的同位素。
利用不同的放射性同位素及其衰变产物的测定,可以用于追踪不同类型的地球化学过程,如岩浆活动、沉积作用、地壳物质循环等。
岩浆活动是地球化学研究的重要内容之一,而利用放射性同位素示踪技术可以更全面地研究岩浆演化过程。
例如,锆石(ZrSiO_4)是一种常见的矿物,在岩浆岩中存在着大量锆石。
由于锆石在形成过程中会通过吸收不同元素形成其晶格,因此可以通过不同锆石晶体中同位素的比值演化来了解不同代岩浆的演化历程。
同样,稀土元素也存在着类似的示踪意义。
通过稀土元素的同位素比较,可以揭示成因不同的岩石对稀土元素的早期富集和后期再富集的过程。
在沉积作用中,放射性同位素同样可以作为一种重要的示踪剂。
沉积物的源区及其沉积环境类型、沉积深度都可以通过对同位素的测定来加以分析。
例如,放射性同位素碳14(^14C)被广泛应用于古气候和古环境的研究中。
碳可以进入到有机物和无机物中,在生物运动中不断地相互转换,当生物体死亡后,碳的摄取行为将被停止。
^14C的衰变速率很快,其半衰期约为5,700年,因此可以用它来确定化石年代,通过同位素比值的变化,可以推测出古代气候、环境等变化后果。
另外,在地球化学循环过程中,放射性同位素同样扮演着重要的角色。
例如,放射性同位素铀(U)和钍(Th)在地壳并非均匀存在,而是与岩石中的钙、钠、钾、铝等元素进行结晶或交换,从而形成了各种性质的矿物。
在矿物形成结束后,随着时间的推移,U和Th会发生衰变,产生一系列较为稳定的同位素,并释放出能量,影响化学反应和地球化学过程的发生。
综上所述,放射性同位素示踪技术在地球化学研究中起到了非常重要的作用。
第九章 同位素示踪技术.

第九章 同位素示踪技术在反刍动物营养研究中的应用第一节 同位素示踪技术的原理与方法简介同位素示踪是除能量平衡、物质平衡(C 、N )试验及相关的化学分析技术之外的另一类动物营养学的重要研究方法。
同位素示踪主要应用于营养物质动态代谢过程的观察,这方面的研究用常规技术无法实现。
诸如食糜流通量、营养物质吸收等方面的研究,常规研究手段也可以实现,但应用同位素示踪技术可以提高测定的准确性、减少对动物的外科手术处理、重复利用相同的动物或得到更多的信息。
另外,同位素研究还是矿物质代谢研究的重要手段。
虽然同位素示踪技术的应用受到对仪器设备条件要求较高的限制,但其独特的优越性已使其得到越来越广泛的应用。
一. 同位素示踪技术的原理同位素示踪技术在反刍动物营养研究中的用途广泛。
如营养物质的消化吸收、食糜的流通量测定、菌体蛋白合成、体组织的合成与分解、器官代谢、矿物质代谢乃至能量代谢和体成分估测等均可应用不同的同位素示踪技术实现。
这些同位素示踪技术均利用了同位素原子化学性质相同、物理性质不同的特点,通过示踪原子位置、数量的变化观察物质的代谢。
在方法原理上主要有以下三个方面。
这些原理的组合运用形成了各种技术方法。
⒈ 同位素稀释:如测定某种代谢物在代谢池中的总量,在无法测定代谢池总容量的情况下,向代谢池中注入一定数量的同位素标记代谢物,取得代表性样品后测定同位素富集度(比活度),可以计算出池中代谢物总量。
假设使用稳定性同位素标记的代谢物进行示踪。
注入代谢物的该同位素富集度(某同位素量/代谢物中该元素总量)为Ei ,代谢物注入量为I ;代谢池中代谢物中该同位素的富集度为Ec ,代谢物总量为M ;注入示踪物后代谢池的同位素富集度为Eci 。
其中Ei 、I 为已知量,Ec 、Eci 为可测量,求M 。
()()Eci Ei I Ec M /I M =⨯+⨯+ 则:()()M Ei Eci I /Eci Ec =-⨯-⎡⎤⎣⎦同时测定池中代谢物的浓度C,可以求出代谢池的容积V。
同位素示踪法原理

同位素示踪法原理
同位素示踪法是一种利用放射性同位素的性质追踪化学物质在生物体内或环境中的运动和转化过程的方法。
它基于同位素的特征,即同一元素的同种原子,但质量不同,因而具有不同的放射性衰变速率。
通过将示踪剂中的原子或分子中的特定同位素替换为放射性同位素,可以追踪其在生物体内或环境中的行为和交换。
同位素示踪法的原理是利用放射性同位素的衰变过程来确定化学物质的运动和转化。
放射性同位素不稳定,具有一定的衰变速率,通过测量衰变过程中放射性同位素的衰变产物的浓度变化,可以反推原始化学物质的转化路径和速率。
示踪剂中的放射性同位素在注入或摄入生物体后,会与目标化学物质发生相同的代谢过程,如吸收、分布、代谢和排泄。
测量生物体中放射性同位素或其衰变产物的浓度变化,可以了解目标化学物质在生物体内的转化速率、转化路径和剩余量。
同位素示踪法的应用非常广泛。
在环境科学中,可以利用同位素示踪法研究污染物在土壤、水体和大气中的迁移和转化过程。
在生物医学研究中,可以利用同位素示踪法研究药物的代谢途径和剂量分布,以及了解生物体内的代谢过程和疾病的发展情况。
总之,同位素示踪法通过利用放射性同位素的特性,可以追踪化学物质在生物体内或环境中的运动和转化过程,为环境科学、生物医学等领域的研究提供了强大的工具。
同位素示踪技术的原理及应用阐释

剂$研究各种物理)化学)生物)环境和材料等领域中科
学问题的技术&
原 "4%! 理!自然界中组成每种元素的稳定核素和放
射性核素大体具有相同的物理性质和化学性质& 因
此$可利用放射性核素或经富集的稀有稳定核素来示
踪待研究对象的客观状态及其变化过程& 通过放射性
测量方法$可观察由放射性核素标记的物质的分布和
标记的化合物$则称为双标记化合 同位素置换后的化合物$其化学性
物 质
如! " 通常
没^"
%( P"
有明
&
显
用 变
化$可参与同类的化学反应& 但它易于测定$故可用来
研究该化合物的运动和变化的规律&
"4+4%!稳定同位素标记化合物!用经富集的稀有稳
定同位素取代化合物分子中的一种或几种原子& 它与
未标记的相应化合物具有相同的化学及生物学的性
机& 对于教师来说$能及时发现学生的问题$得到相关教 学反馈$有利于教师进行教学方法及教学过程的改进&
-基金项目# 江苏省研究生培养创新工程(高中生
"#%"$&"!"" , )(4
0 + 1 邢丽贞$张向阳$张!波$等4藻菌固定化去除污水中氮磷营养 物质的初步研究0914环境科学与技术$"##$$"&!%", ++ +)4
!"同位素
原子序数相同!即具有相同数目质子"的原子$具有
相同的化学性质$都属于同一种元素& 尽管一种元素的
所有原子都含有同样多的质子$但它们却可能具有不同
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
探究光合作用过程 中O原子的转移途
18O
2
CO2 C18O2 →(CH218O)
探究光合作用过程 中C原子的转移途 径
14C
CO2
14CO
2
→
14C
3
→ (14CH2O)
35S
蛋白质
35S噬菌体侵染细菌,子代噬菌
噬菌体侵染细菌的 实验
32P
体不含35S
32P噬菌体侵染细菌,子代噬菌
8
4
… N
2
4
2
8
2
4
2
8
解决此类问题需关注问题:
1、被标记的链数 2、细胞周期数 3、分裂方式 4、观察的时期 5、区分染色单体和DNA单链
放射性同位素示踪法解题思想:
读题:清楚标记元素和标记化合物 审题:审条件(隐含条件、约束条件、综合条件、 综合条件、开放条件 等) 思考:考查知识点 答题:整理信息准确选择和表达信息
成绩分析
分数 班级 11班 4人 9人 8人 13班 5人 7人 3人
80——90 70——80 60——70
60分以下
平均分
0人
75.9分
3人
73.8分
实验名称 研究分泌蛋白的合 成和运输过程
标记 元素
3H
标记 化合物
标记物转移情况 (反应机理) 核糖体→内质网→高尔基体→ 细胞膜
亮氨酸
知 识 回 顾
一对同源染色体细胞进行有丝分裂示意图
复制 点裂
含32P细胞
细胞分裂后期可能出现的情况
两对同源染色体细胞进行有丝分裂示意图
第一次有丝分裂
两对同源染色体细胞进行有丝分裂示意图
第二次有丝分裂
同源染色 体 对 数 次 数 最 少
2
1对
2对
最 多
2
最 少
2
最 多
2
归 纳 提 升
1
2
3
2
2
4
4
2
2
4
DNA
体含32P 一个亲代DNA分子复制一次后 两个子代DNA分子各有一条链 被标记
DNA的半保留复制 实验
15N
脱氧核苷 酸
得分情况统计
100 90 80 70 60 50 40 30 20 10 0
1
2
3
4
5
6
7
8
9
10 11 12
思考
现将含有一对同源染色体且核DNA 都已用32P标记的一个细胞,放在 不含32P的培养基中培养(不考虑 交叉互换) ,若该细胞进行2次 有丝分裂,则含有32P的子细胞数 量最少和最多分别是多少?若该 细胞进行3次有丝分裂,则含有 32P的子细胞数量最少和最多分别 是多少?
精品课件!
精品课件!
谢谢!!