BP神经网络总结
关于BP网络的优缺点总结

关于BP网络的优缺点总结 [转]多层前向BP网络是目前应用最多的一种神经网络形式, 但它也不是非常完美的, 为了更好的理解应用神经网络进行问题求解, 这里对它的优缺点展开讨论:多层前向BP网络的优点:①网络实质上实现了一个从输入到输出的映射功能,而数学理论已证明它具有实现任何复杂非线性映射的功能。
这使得它特别适合于求解内部机制复杂的问题;②网络能通过学习带正确答案的实例集自动提取“合理的”求解规则,即具有自学习能力;③网络具有一定的推广、概括能力。
多层前向BP网络的问题:①BP算法的学习速度很慢,其原因主要有:a、由于BP算法本质上为梯度下降法,而它所要优化的目标函数又非常复杂,因此,必然会出现“锯齿形现象”,这使得BP算法低效;b、存在麻痹现象,由于优化的目标函数很复杂,它必然会在神经元输出接近0或1的情况下,出现一些平坦区,在这些区域内,权值误差改变很小,使训练过程几乎停顿;c、为了使网络执行BP算法,不能用传统的一维搜索法求每次迭代的步长,而必须把步长的更新规则预先赋予网络,这种方法将引起算法低效。
②网络训练失败的可能性较大,其原因有:a、从数学角度看,BP算法为一种局部搜索的优化方法,但它要解决的问题为求解复杂非线性函数的全局极值,因此,算法很有可能陷入局部极值,使训练失败;b、网络的逼近、推广能力同学习样本的典型性密切相关,而从问题中选取典型样本实例组成训练集是一个很困难的问题。
③难以解决应用问题的实例规模和网络规模间的矛盾。
这涉及到网络容量的可能性与可行性的关系问题,即学习复杂性问题;④网络结构的选择尚无一种统一而完整的理论指导,一般只能由经验选定。
为此,有人称神经网络的结构选择为一种艺术。
而网络的结构直接影响网络的逼近能力及推广性质。
因此,应用中如何选择合适的网络结构是一个重要的问题;⑤新加入的样本要影响已学习成功的网络,而且刻画每个输入样本的特征的数目也必须相同;⑥ 网络的预测能力(也称泛化能力、推广能力)与训练能力(也称逼近能力、学习能力)的矛盾。
关于BP网络的总结

关于BP网络的总结1.辨识模型的建立目前,在人工神经网络的实际应用中,绝大部分的神经网络模型是采用BP网络和它的变化形式。
BP网络就是按照误差逆传播(error back propagation)学习算法(BP算法)进行训练的多层前向神经网络,亦称为误差逆传播神经网络。
它的优点有:23第三章基于肌电信号的人手肘关节运动轨迹的预测播,得到输出响应。
如果网络输出与需要输出的误差大于标定值,将进行第二步,即输出误差反向传播过程,输出的误差值由输出层开始反向传播到输入层,传播到每一层的误差大小决定该层权值的改变。
网络的训练实质上是一个最优化的过程,即找到使输出误差最小的网络权值。
训练结束后的网络权值,代表了神经网络输入输出的映射关系。
在该网络中,输入层和隐层采用非线性的Sigmoid 函数(图3-7 所示)作为神经元激励函数,输出层采用线性函数。
图3-7 Sigmiod函数下面介绍此算法的具体过程:首先,我们定义误差函数为:(3-5)上式中,为期望输出值,即手臂实际运动角度,为网络输出值,即神经网络预测的手臂运动角度。
本文所定误差需小于0.001,在大于这个限定值以前,需要由输出层开始反向推导网络权系数的修正值。
(1).输出层神经元输出值及权值修正:25第三章基于肌电信号的人手肘关节运动轨迹的预测式中f (• )为线性函数,为隐层2 中第j 个神经元与输出层的权系数,为隐层2 的神经元输出值,=(3),=-1,即把神经元偏置的调整归入权系数的学习中,下面各隐层的情况也与之相同。
(2).隐层2 神经元输出值及权值修正:式中f (• )为sigmoid 函数,为隐层1 中第i 个神经元与隐层2 中第j 个神经元的权系数,为隐层1 中第i 个神经元输出值。
(2)(3).隐层1 神经元输出值及权值修正:为sigmoid 函数,为输入层中第m 个神经元与隐层 1 中第i 个神经元的权系数,为输入层中第m 个神经元输入值。
BP神经网络概述

BP神经网络概述BP神经网络由输入层、隐藏层和输出层组成。
输入层接收外界输入的数据,隐藏层对输入层的信息进行处理和转化,输出层输出最终的结果。
网络的每一个节点称为神经元,神经元之间的连接具有不同的权值,通过权值的调整和激活函数的作用,网络可以学习到输入和输出之间的关系。
BP神经网络的学习过程主要包括前向传播和反向传播两个阶段。
前向传播时,输入数据通过输入层向前传递到隐藏层和输出层,计算出网络的输出结果;然后通过与实际结果比较,计算误差函数。
反向传播时,根据误差函数,从输出层开始逆向调整权值和偏置,通过梯度下降算法更新权值,使得误差最小化,从而实现网络的学习和调整。
BP神经网络通过多次迭代学习,不断调整权值和偏置,逐渐提高网络的性能。
学习率是调整权值和偏置的重要参数,过大或过小的学习率都会导致学习过程不稳定。
此外,网络的结构、激活函数的选择、错误函数的定义等也会影响网络的学习效果。
BP神经网络在各个领域都有广泛的应用。
在模式识别中,BP神经网络可以从大量的样本中学习特征,实现目标检测、人脸识别、手写识别等任务。
在数据挖掘中,BP神经网络可以通过对历史数据的学习,预测未来的趋势和模式,用于市场预测、股票分析等。
在预测分析中,BP神经网络可以根据历史数据,预测未来的房价、气温、销售额等。
综上所述,BP神经网络是一种强大的人工神经网络模型,具有非线性逼近能力和学习能力,广泛应用于模式识别、数据挖掘、预测分析等领域。
尽管有一些缺点,但随着技术的发展,BP神经网络仍然是一种非常有潜力和应用价值的模型。
BP神经网络实验报告

BP神经网络实验报告一、引言BP神经网络是一种常见的人工神经网络模型,其基本原理是通过将输入数据通过多层神经元进行加权计算并经过非线性激活函数的作用,输出结果达到预测或分类的目标。
本实验旨在探究BP神经网络的基本原理和应用,以及对其进行实验验证。
二、实验方法1.数据集准备本次实验选取了一个包含1000个样本的分类数据集,每个样本有12个特征。
将数据集进行标准化处理,以提高神经网络的收敛速度和精度。
2.神经网络的搭建3.参数的初始化对神经网络的权重和偏置进行初始化,常用的初始化方法有随机初始化和Xavier初始化。
本实验采用Xavier初始化方法。
4.前向传播将标准化后的数据输入到神经网络中,在神经网络的每一层进行加权计算和激活函数的作用,传递给下一层进行计算。
5.反向传播根据预测结果与实际结果的差异,通过计算损失函数对神经网络的权重和偏置进行调整。
使用梯度下降算法对参数进行优化,减小损失函数的值。
6.模型评估与验证将训练好的模型应用于测试集,计算准确率、精确率、召回率和F1-score等指标进行模型评估。
三、实验结果与分析将数据集按照7:3的比例划分为训练集和测试集,分别进行模型训练和验证。
经过10次训练迭代后,模型在测试集上的准确率稳定在90%以上,证明了BP神经网络在本实验中的有效性和鲁棒性。
通过调整隐藏层结点个数和迭代次数进行模型性能优化实验,可以发现隐藏层结点个数对模型性能的影响较大。
随着隐藏层结点个数的增加,模型在训练集上的拟合效果逐渐提升,但过多的结点数会导致模型的复杂度过高,容易出现过拟合现象。
因此,选择合适的隐藏层结点个数是模型性能优化的关键。
此外,迭代次数对模型性能也有影响。
随着迭代次数的增加,模型在训练集上的拟合效果逐渐提高,但过多的迭代次数也会导致模型过度拟合。
因此,需要选择合适的迭代次数,使模型在训练集上有好的拟合效果的同时,避免过度拟合。
四、实验总结本实验通过搭建BP神经网络模型,对分类数据集进行预测和分类。
BP神经网络的基本原理_一看就懂

BP神经网络的基本原理_一看就懂BP神经网络(Back Propagation Neural Network)是一种常用的人工神经网络模型,用于解决分类、回归和模式识别问题。
它的基本原理是通过反向传播算法来训练和调整网络中的权重和偏置,以使网络能够逐渐逼近目标输出。
1.前向传播:在训练之前,需要对网络进行初始化,包括随机初始化权重和偏置。
输入数据通过输入层传递到隐藏层,在隐藏层中进行线性加权和非线性激活运算,然后传递给输出层。
线性加权运算指的是将输入数据与对应的权重相乘,然后将结果进行求和。
非线性激活指的是对线性加权和的结果应用一个激活函数,常见的激活函数有sigmoid函数、ReLU函数等。
激活函数的作用是将线性运算的结果映射到一个非线性的范围内,增加模型的非线性表达能力。
2.计算损失:将网络输出的结果与真实值进行比较,计算损失函数。
常用的损失函数有均方误差(Mean Squared Error)和交叉熵(Cross Entropy)等,用于衡量模型的输出与真实值之间的差异程度。
3.反向传播:通过反向传播算法,将损失函数的梯度从输出层传播回隐藏层和输入层,以便调整网络的权重和偏置。
反向传播算法的核心思想是使用链式法则。
首先计算输出层的梯度,即损失函数对输出层输出的导数。
然后将该梯度传递回隐藏层,更新隐藏层的权重和偏置。
接着继续向输入层传播,直到更新输入层的权重和偏置。
在传播过程中,需要选择一个优化算法来更新网络参数,常用的优化算法有梯度下降(Gradient Descent)和随机梯度下降(Stochastic Gradient Descent)等。
4.权重和偏置更新:根据反向传播计算得到的梯度,使用优化算法更新网络中的权重和偏置,逐步减小损失函数的值。
权重的更新通常按照以下公式进行:新权重=旧权重-学习率×梯度其中,学习率是一个超参数,控制更新的步长大小。
梯度是损失函数对权重的导数,表示了损失函数关于权重的变化率。
bp神经网络原理

bp神经网络原理
BP神经网络,全称为反向传播神经网络,是一种常用的前馈
神经网络,通过反向传播算法来训练网络模型,实现对输入数据的分类、回归等任务。
BP神经网络主要由输入层、隐藏层
和输出层构成。
在BP神经网络中,每个神经元都有自己的权重和偏置值。
数
据从输入层进入神经网络,经过隐藏层的计算后传递到输出层。
神经网络会根据当前的权重和偏置值计算输出值,并与真实值进行比较,得到一个误差值。
然后,误差值会反向传播到隐藏层和输入层,通过调整权重和偏置值来最小化误差值。
这一过程需要多次迭代,直到网络输出与真实值的误差达到可接受的范围。
具体而言,BP神经网络通过梯度下降算法来调整权重和偏置值。
首先,计算输出层神经元的误差值,然后根据链式求导法则,将误差值分配到隐藏层的神经元。
最后,根据误差值和激活函数的导数,更新每个神经元的权重和偏置值。
这个过程反复进行,直到达到停止条件。
BP神经网络的优点是可以处理非线性问题,并且具有较强的
自适应能力。
同时,BP神经网络还可以通过增加隐藏层和神
经元的数量来提高网络的学习能力。
然而,BP神经网络也存
在一些问题,如容易陷入局部最优解,训练速度较慢等。
总结来说,BP神经网络是一种基于反向传播算法的前馈神经
网络,通过多次迭代调整权重和偏置值来实现模型的训练。
它
可以应用于分类、回归等任务,并具有较强的自适应能力。
但同时也有一些问题需要注意。
BP神经网络算法

1
目
录
一、BP神经网络算法概述
二、BP神经网络算法原理
三、BP神经网络算法特点及改进
2
一.BP神经网络算法概述
BP神经网络(Back-Propagation Neural Network),即误差
后向传播神经网络,是一种按误差逆向传播算法训练的多层前馈网
络,是目前应用最广泛的网络模型之一。
11
二.BP神经网络算法原理
图5 Tan-Sigmoid函数在(-4,4)范围内的函数曲线
12
二.BP神经网络算法原理
激活函数性质:
① 非线性
② 可导性:神经网络的优化是基于梯度的,求解梯度需要确保函
数可导。
③ 单调性:激活函数是单调的,否则不能保证神经网络抽象的优
化问题转化为凸优化问题。
④ 输出范围有限:激活函数的输出值范围有限时,基于梯度的方
= 1
=1
7
,
= 1,2,3 … , q
二.BP神经网络算法原理
输出层节点的输出为:
j = 2 ,
= 1,2,3. . . ,
=1
至此,BP网络完成了n维空间向量对m维空间的近似映射。
图2 三层神经网络的拓扑结构
8
二.BP神经网络算法原理
BP神经网络是多层前馈型神经网络中的一种,属于人工神经网
络的一类,理论可以对任何一种非线性输入输出关系进行模仿,因
此 被 广 泛 应 用 在 分 类 识 别 ( classification ) 、 回 归
(regression)、压缩(compression)、逼近(fitting)等领域。
在工程应用中,大约80%的神经网络模型都选择采用BP神经网
BP神经网络的简要介绍及应用

BP神经网络的简要介绍及应用BP神经网络(Backpropagation Neural Network,简称BP网络)是一种基于误差反向传播算法进行训练的多层前馈神经网络模型。
它由输入层、隐藏层和输出层组成,每层都由多个神经元(节点)组成,并且每个神经元都与下一层的神经元相连。
BP网络的训练过程可以分为两个阶段:前向传播和反向传播。
前向传播时,输入数据从输入层向隐藏层和输出层依次传递,每个神经元计算其输入信号的加权和,再通过一个激活函数得到输出值。
反向传播时,根据输出结果与期望结果的误差,通过链式法则将误差逐层反向传播至隐藏层和输入层,并通过调整权值和偏置来减小误差,以提高网络的性能。
BP网络的应用非常广泛,以下是一些典型的应用领域:1.模式识别:BP网络可以用于手写字符识别、人脸识别、语音识别等模式识别任务。
通过训练网络,将输入样本与正确的输出进行匹配,从而实现对未知样本的识别。
2.数据挖掘:BP网络可以用于分类、聚类和回归分析等数据挖掘任务。
例如,可以用于对大量的文本数据进行情感分类、对客户数据进行聚类分析等。
3.金融领域:BP网络可以用于预测股票价格、外汇汇率等金融市场的变动趋势。
通过训练网络,提取出对市场变动有影响的因素,从而预测未来的市场走势。
4.医学诊断:BP网络可以用于医学图像分析、疾病预测和诊断等医学领域的任务。
例如,可以通过训练网络,从医学图像中提取特征,帮助医生进行疾病的诊断。
5.机器人控制:BP网络可以用于机器人的自主导航、路径规划等控制任务。
通过训练网络,机器人可以通过感知环境的数据,进行决策和规划,从而实现特定任务的执行。
总之,BP神经网络是一种强大的人工神经网络模型,具有较强的非线性建模能力和适应能力。
它在模式识别、数据挖掘、金融预测、医学诊断和机器人控制等领域有广泛的应用,为解决复杂问题提供了一种有效的方法。
然而,BP网络也存在一些问题,如容易陷入局部最优解、训练时间较长等,因此在实际应用中需要结合具体问题选择适当的神经网络模型和训练算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
BP算法的学习过程由正向传播和反向传播组成。
在正向传播过程中,输入信息从输入层经隐层逐层处理,并传向输出层,每层神经元(节点)的状态只影响下一层神经元的状态。
如果输出层得到了期望的输出,则学习算法结束;如果在输出层不能得到期望的输出,则转至反向传播,将误差信号(理想输出与实际输出之差)按联接通路反向计算,由梯度下降法调整各层神经元的权值,使误差信号减小。
BP(Back Propagation)算法(又称为误差反向传播算法),它是一个迭代算法,其的基本思想为:
第一层是输入层,包含两个神经元i1,i2,和截距项b1;第二层是隐含层,包含两个神经元h1,h2和截距项b2,第三层是输出o1,o2,每条线上标的wi是层与层之间连接的权重,激活函数我们默认为sigmoid函数。
其中,输入数据 i1=0.05,i2=0.10;
输出数据o1=0.01,o2=0.99;
初始权重 w1=0.15,w2=0.20,w3=0.25,w4=0.30;
w5=0.40,w6=0.45,w7=0.50,w8=0.88
目标:给出输入数据i1,i2(0.05和0.10),使输出尽可能与原始输出o1,o2(0.01和0.99)接近。
1、前向传播:将训练集数据输入到神经网络的输入层,经过隐藏层,最后达到输出层并输
出结果。
输入层到隐含层:
神经元h1的输入加权和
神经元h1的输出
隐含层到输出层:
输出神经元o1和o2的值:
2、反向传播:由于神经网络的输出结果与期望结果有误差,则计算期望输出值与实际输出
值之间的误差,并将该误差从输出层向隐藏层反向传播,直至传播到输入层;同时在反向传播的过程中,根据误差调整各种参数的值(相连神经元的权重),使得总损失函数减小。
计算损失函数:
分别计算o1和o2的损失值,总误差为两者之和:
隐含层到输出层的权值更新:
以权值参数w5为例,如果我们想知道w5对整体损失产生了多少影响,可以用整体损失对w5求偏导:
最后更新w5的值:
隐藏层到输入层的权值更新:
最后更新w1的权值:
迭代上述三个步骤(即对数据进行反复训练),直到满足停止准则。