matlab30个案例分析案例14-SVM神经网络的回归预测分析
在Matlab中实现神经网络的方法与实例

在Matlab中实现神经网络的方法与实例神经网络是一种模拟人类大脑神经系统的计算模型,它能够通过学习数据的模式和关联性来解决各种问题。
在计算机科学和人工智能领域,神经网络被广泛应用于图像识别、自然语言处理、预测等任务。
而Matlab作为一种功能强大的科学计算软件,提供了一套完善的工具箱,可以方便地实现神经网络的建模和训练。
本文将介绍在Matlab中实现神经网络的方法与实例。
首先,我们会简要介绍神经网络的基本原理和结构,然后详细讲解在Matlab中如何创建并训练神经网络模型,最后通过几个实例展示神经网络在不同领域的应用。
一、神经网络的原理和结构神经网络模型由神经元和它们之间的连接构成。
每个神经元接收输入信号,并通过权重和偏置进行加权计算,然后使用激活函数对结果进行非线性变换。
这样,神经网络就能够模拟复杂的非线性关系。
常见的神经网络结构包括前馈神经网络(Feedforward Neural Network)和循环神经网络(Recurrent Neural Network)。
前馈神经网络是最基本的结构,信号只能向前传递,输出不对网络进行反馈;而循环神经网络具有反馈连接,可以对自身的输出进行再处理,适用于序列数据的建模。
神经网络的训练是通过最小化损失函数来优化模型的参数。
常用的训练算法包括梯度下降法和反向传播算法。
其中,梯度下降法通过计算损失函数对参数的梯度来更新参数;反向传播算法是梯度下降法在神经网络中的具体应用,通过反向计算梯度来更新网络的权重和偏置。
二、在Matlab中创建神经网络模型在Matlab中,可以通过Neural Network Toolbox来创建和训练神经网络模型。
首先,我们需要定义神经网络的结构,包括输入层、隐藏层和输出层的神经元数量,以及每个神经元之间的连接权重。
例如,我们可以创建一个三层的前馈神经网络模型:```matlabnet = feedforwardnet([10 8]);```其中,`[10 8]`表示隐藏层的神经元数量分别为10和8。
MATLAB智能算法30个重点学习的案例解析总结模板计划模板终极版本带目录.doc

MATLAB 智能算法30 个案例分析(终极版)1 基于遗传算法的TSP算法(王辉)基于遗传算法和非线性规划的函数寻优算法(史峰)基于遗传算法的 BP神经网络优化算法(王辉)设菲尔德大学的 MATLAB遗传算法工具箱(王辉)基于遗传算法的 LQR控制优化算法(胡斐)遗传算法工具箱详解及应用(胡斐)多种群遗传算法的函数优化算法(王辉)基于量子遗传算法的函数寻优算法(王辉)多目标 Pareto 最优解搜索算法(胡斐)基于多目标 Pareto 的二维背包搜索算法(史峰)基于免疫算法的柔性车间调度算法(史峰)基于免疫算法的运输中心规划算法(史峰)基于粒子群算法的函数寻优算法(史峰)基于粒子群算法的 PID 控制优化算法(史峰)基于混合粒子群算法的 TSP寻优算法(史峰)基于动态粒子群算法的动态环境寻优算法(史峰)粒子群算法工具箱(史峰)基于鱼群算法的函数寻优算法(王辉)基于模拟退火算法的 TSP算法(王辉)基于遗传模拟退火算法的聚类算法(王辉)基于模拟退火算法的 HEV能量管理策略参数优化(胡斐)22 蚁群算法的优化计算——旅行商问题(TSP)优化(郁磊)基于蚁群算法的二维路径规划算法(史峰)基于蚁群算法的三维路径规划算法(史峰)有导师学习神经网络的回归拟合——基于近红外光谱的汽油辛烷值预测(郁磊)有导师学习神经网络的分类——鸢尾花种类识别(郁磊)无导师学习神经网络的分类——矿井突水水源判别(郁磊)支持向量机的分类——基于乳腺组织电阻抗特性的乳腺癌诊断(郁磊)支持向量机的回归拟合——混凝土抗压强度预测(郁磊)极限学习机的回归拟合及分类——对比实验研究(郁磊)智能算法是我们在学习中经常遇到的算法,主要包括遗传算法,免疫算法,粒子群算法,神经网络等,智能算法对于很多人来说,既爱又恨,爱是因为熟练的掌握几种智能算法,能够很方便的解决我们的论坛问题,恨是因为智能算法感觉比较“玄乎” ,很难理解,更难用它来解决问题。
用MATLAB求解回归分析讲解共28页文档

谢谢你的阅读
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭ห้องสมุดไป่ตู้为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
用MATLAB求解回归分析讲 解
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐 。注定 要融化 的,也 许是用 眼泪的 方式。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
Matlab技术神经网络优化应用案例

Mat1ab技术神经网络优化应用案例随着人工智能和机器学习的快速发展,神经网络成为了解决复杂问题的重要工具。
而在神经网络中,优化算法则是提高网络性能和准确性的关键。
本文将以Mauab技术为基础,介绍神经网络优化的应用案例。
一、神经网络与优化算法神经网络是一种模仿人脑神经系统的计算模型,通过模拟神经元之间的连接和信息传递来实现人工智能。
而优化算法则是指通过调整网络中的权重和偏置等参数,使得网络的输出结果尽可能地接近期望值。
在神经网络的训练过程中,优化算法起到了至关重要的作用。
常见的优化算法包括梯度下降法、遗传算法、粒子群算法等。
而Mauab作为一种强大的数学工具和编程语言,为神经网络的优化提供了丰富的支持和工具。
二、基于MatIab的神经网络优化案例1.图像识别在图像识别领域,神经网络具有广泛的应用。
例如,我们可以利用神经网络识别手写数字。
首先,我们需要提供大量的手写数字样本作为训练集,然后使用MaUab中的神经网络工具箱搭建一个适当的神经网络结构。
接下来,我们可以使用优化算法对网络中的权重和偏置进行调优,以提高识别准确率。
通过迭代优化过程,不断调整网络参数,使得网络能够对手写数字进行准确的判断和识别。
2.金融市场预测神经网络在金融市场的预测也有广泛的应用。
以股票市场为例,我们可以利用神经网络来预测股票价格的变化趋势。
首先,我们需要收集一段时间内的历史股票价格数据,作为训练集。
然后,利用Mat1ab中的神经网络工具箱搭建一个能够接受历史数据并输出价格预测的神经网络结构。
接着,我们可以使用优化算法对网络参数进行调整,使得网络能够更好地拟合历史数据,并对未来的价格变化作出准确的预测。
3.机器人控制在机器人控制领域,神经网络可以用来优化机器人的运动过程。
例如,我们可以利用神经网络来控制机器人的路径规划和运动轨迹。
首先,我们需要将机器人的运动环境建模,并将其转化为输入-输出映射的训练数据。
接着,利用Mauab中的神经网络工具箱搭建一个能够接受环境输入并输出机器人运动指令的神经网络结构。
matlab神经网络43个案例分析

MATLAB神经网络43个案例分析简介神经网络(Neural Network)是一种模拟人类神经元行为的计算模型,它通过对大量输入数据进行训练,学习到输入和输出之间的复杂关系。
MATLAB是一个强大的数学计算工具,具有丰富的神经网络函数和工具箱,可以用于神经网络的设计、训练和应用。
本文将介绍43个使用MATLAB进行神经网络分析的案例,主要包括神经网络的基本概念、神经网络模型的建立、参数的调整和优化等方面。
二级标题1: 基本概念在开始具体的案例分析之前,首先理解神经网络的基本概念是非常重要的。
三级标题1: 神经元神经网络的基本单元是神经元(Neuron),它模拟了生物神经元的工作原理。
神经元接收多个输入信号,并通过一个激活函数产生输出信号。
常用的激活函数包括Sigmoid函数、ReLU函数等。
三级标题2: 神经网络的结构神经网络由多层神经元组成,通常包括输入层、隐藏层和输出层。
输入层接收外部输入,隐藏层用于处理中间信息,输出层产生最终的输出。
三级标题3: 前向传播和反向传播神经网络的训练过程主要包括前向传播和反向传播两个步骤。
前向传播是通过输入数据按照网络结构进行计算,得到输出结果。
反向传播是根据输出结果与真实结果之间的误差,通过调整网络参数来提高模型性能。
二级标题2: 案例分析三级标题4: 案例1: 图像分类本案例通过使用神经网络和MATLAB工具箱,对手写数字图像进行分类。
首先,将图像数据转化为向量形式,并通过网络进行训练。
然后,将训练好的网络用于分类未知图像,并评估分类性能。
三级标题5: 案例2: 时序预测本案例使用神经网络来预测时间序列数据。
通过对历史数据进行训练,建立时序模型,并利用该模型来预测未来的数据。
通过调整网络结构和参数,提高预测准确性。
三级标题6: 案例3: 异常检测本案例利用神经网络进行异常检测。
通过对正常数据进行训练,建立正常模型,并使用该模型检测异常数据。
通过调整网络的灵敏度和阈值,提高异常检测的性能。
matlab智能算法30个案例分析

matlab智能算法30个案例分析Matlab智能算法30个案例分析。
Matlab作为一种强大的数学软件,拥有丰富的算法库和强大的编程能力,能够实现各种复杂的智能算法。
本文将针对Matlab智能算法进行30个案例分析,帮助读者深入了解Matlab在智能算法领域的应用和实践。
1. 遗传算法。
遗传算法是一种模拟自然选择和遗传机制的优化算法,能够有效解决复杂的优化问题。
在Matlab中,可以利用遗传算法工具箱快速实现各种优化问题的求解,例如函数最小化、参数优化等。
2. 神经网络。
神经网络是一种模拟人脑神经元网络的计算模型,能够实现复杂的非线性映射和模式识别。
Matlab提供了丰富的神经网络工具箱,可以用于神经网络的建模、训练和应用,例如分类、回归、聚类等任务。
3. 模糊逻辑。
模糊逻辑是一种处理不确定性和模糊信息的逻辑推理方法,能够有效处理模糊规则和模糊数据。
Matlab中的模糊逻辑工具箱提供了丰富的模糊推理方法和工具,可以用于模糊控制、模糊识别等领域。
4. 粒子群算法。
粒子群算法是一种模拟鸟群觅食行为的优化算法,能够有效处理多维优化问题。
在Matlab中,可以利用粒子群算法工具箱快速实现各种优化问题的求解,例如函数最小化、参数优化等。
5. 蚁群算法。
蚁群算法是一种模拟蚂蚁觅食行为的优化算法,能够有效处理离散优化问题和组合优化问题。
Matlab中的蚁群算法工具箱提供了丰富的蚁群优化方法和工具,可以用于解决各种组合优化问题。
6. 遗传规划算法。
遗传规划算法是一种结合遗传算法和规划算法的优化方法,能够有效处理复杂的规划问题。
在Matlab中,可以利用遗传规划算法工具箱快速实现各种规划问题的求解,例如路径规划、资源分配等。
7. 人工免疫算法。
人工免疫算法是一种模拟免疫系统的优化算法,能够有效处理多峰优化问题和动态优化问题。
在Matlab中,可以利用人工免疫算法工具箱快速实现各种复杂的优化问题的求解。
8. 蜂群算法。
MATLAB_智能算法30个案例分析

MATLAB_智能算法30个案例分析1.线性回归:使用MATLAB的回归工具箱,对给定的数据集进行线性回归分析,获取拟合的直线方程。
2.逻辑回归:使用MATLAB的分类工具箱,对给定的数据集进行逻辑回归分析,建立分类模型。
3.K均值聚类:使用MATLAB的聚类工具箱,对给定的数据集进行K 均值聚类算法,将数据集分为多个簇。
4.支持向量机:使用MATLAB的SVM工具箱,对给定的数据集进行支持向量机算法,建立分类或回归模型。
5.决策树:使用MATLAB的分类工具箱,对给定的数据集进行决策树分析,建立决策模型。
6.随机森林:使用MATLAB的分类和回归工具箱,对给定的数据集进行随机森林算法,集成多个决策树模型。
7. AdaBoost:使用MATLAB的分类工具箱,对给定的数据集进行AdaBoost算法,提升分类性能。
8.遗传算法:使用MATLAB的全局优化工具箱,利用遗传算法进行优化问题的求解。
9.粒子群优化:使用MATLAB的全局优化工具箱,利用粒子群优化算法进行优化问题的求解。
10.模拟退火算法:使用MATLAB的全局优化工具箱,利用模拟退火算法进行优化问题的求解。
11.神经网络:使用MATLAB的神经网络工具箱,构建和训练多层感知机模型。
12.卷积神经网络:使用MATLAB的深度学习工具箱,构建和训练卷积神经网络模型。
13.循环神经网络:使用MATLAB的深度学习工具箱,构建和训练循环神经网络模型。
14.长短期记忆网络:使用MATLAB的深度学习工具箱,构建和训练长短期记忆网络模型。
15.GAN(生成对抗网络):使用MATLAB的深度学习工具箱,构建和训练生成对抗网络模型。
16.自编码器:使用MATLAB的深度学习工具箱,构建和训练自编码器模型。
17.强化学习:使用MATLAB的强化学习工具箱,构建和训练强化学习模型。
18.关联规则挖掘:使用MATLAB的数据挖掘工具箱,发现数据中的关联规则。
MATLAB_智能算法30个案例分析

MATLAB_智能算法30个案例分析MATLAB是一种强大的数值计算和编程工具,教育和科研领域中广泛应用于数据分析、机器学习和智能算法的研究。
在本文中,我们将介绍30个MATLAB智能算法的案例分析,并探讨其用途和优势。
分析的案例包括分类、回归、聚类、神经网络和遗传算法等不同类型的智能算法。
1. K均值聚类:利用MATLAB中的kmeans函数对一组数据进行聚类分析,得到不同的簇。
2. 随机森林:利用MATLAB中的TreeBagger函数构建一个随机森林分类器,并通过测试数据进行分类预测。
3. 人工神经网络:使用MATLAB中的feedforwardnet函数构建一个人工神经网络,并通过训练集进行预测。
4. 遗传算法:利用MATLAB中的ga函数对一个优化问题进行求解,找到最优解。
5. 支持向量机:使用MATLAB中的svmtrain和svmclassify函数构建一个支持向量机分类器,并进行分类预测。
6. 极限学习机:使用MATLAB中的elmtrain和elmpredict函数构建一个极限学习机分类器,并进行分类预测。
7. 逻辑回归:使用MATLAB中的mnrfit和mnrval函数构建一个逻辑回归模型,并进行预测。
8. 隐马尔可夫模型:使用MATLAB中的hmmtrain和hmmdecode函数构建一个隐马尔可夫模型,对一系列观测数据进行预测。
9. 神经进化算法:利用MATLAB中的ne_train函数构建一个基于神经进化算法的神经网络分类器,并进行分类预测。
10. 朴素贝叶斯分类器:使用MATLAB中的NaiveBayes对象构建一个朴素贝叶斯分类器,并进行分类预测。
11. 高斯过程回归:使用MATLAB中的fitrgp函数构建一个高斯过程回归模型,并进行回归预测。
12. 最小二乘支持向量机:使用MATLAB中的fitcsvm函数构建一个最小二乘支持向量机分类器,并进行分类预测。
13. 遗传网络:利用MATLAB中的ngenetic函数构建一个基于遗传算法和人工神经网络的分类器,并进行分类预测。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
%% SVM神经网络的回归预测分析---上证指数开盘指数预测%%% 清空环境变量function chapter14tic;close all;clear;clc;format compact;%% 数据的提取和预处理% 载入测试数据上证指数(1990.12.19-2009.08.19)% 数据是一个4579*6的double型的矩阵,每一行表示每一天的上证指数% 6列分别表示当天上证指数的开盘指数,指数最高值,指数最低值,收盘指数,当日交易量,当日交易额.load chapter14_sh.mat;% 提取数据[m,n] = size(sh);ts = sh(2:m,1);tsx = sh(1:m-1,:);% 画出原始上证指数的每日开盘数figure;plot(ts,'LineWidth',2);title('上证指数的每日开盘数(1990.12.20-2009.08.19)','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('开盘数','FontSize',12);grid on;% 数据预处理,将原始数据进行归一化ts = ts';tsx = tsx';% mapminmax为matlab自带的映射函数% 对ts进行归一化[TS,TSps] = mapminmax(ts,1,2);% 画出原始上证指数的每日开盘数归一化后的图像figure;plot(TS,'LineWidth',2);title('原始上证指数的每日开盘数归一化后的图像','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('归一化后的开盘数','FontSize',12);grid on;% 对TS进行转置,以符合libsvm工具箱的数据格式要求TS = TS';% mapminmax为matlab自带的映射函数% 对tsx进行归一化[TSX,TSXps] = mapminmax(tsx,1,2);% 对TSX进行转置,以符合libsvm工具箱的数据格式要求TSX = TSX';%% 选择回归预测分析最佳的SVM参数c&g% 首先进行粗略选择:[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-8,8,-8,8);% 打印粗略选择结果disp('打印粗略选择结果');str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg); disp(str);% 根据粗略选择的结果图再进行精细选择:[bestmse,bestc,bestg] = SVMcgForRegress(TS,TSX,-4,4,-4,4,3,0.5,0.5,0.05);% 打印精细选择结果disp('打印精细选择结果');str = sprintf( 'Best Cross Validation MSE = %g Best c = %g Best g = %g',bestmse,bestc,bestg); disp(str);%% 利用回归预测分析最佳的参数进行SVM网络训练cmd = ['-c ', num2str(bestc), ' -g ', num2str(bestg) , ' -s 3 -p 0.01'];model = svmtrain(TS,TSX,cmd);%% SVM网络回归预测[predict,mse] = svmpredict(TS,TSX,model);predict = mapminmax('reverse',predict',TSps);predict = predict';% 打印回归结果str = sprintf( '均方误差MSE = %g 相关系数R = %g%%',mse(2),mse(3)*100);disp(str);%% 结果分析figure;hold on;plot(ts,'-o');plot(predict,'r-^');legend('原始数据','回归预测数据');hold off;title('原始数据和回归预测数据对比','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('开盘数','FontSize',12);grid on;figure;error = predict - ts';plot(error,'rd');title('误差图(predicted data - original data)','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('误差量','FontSize',12);grid on;figure;error = (predict - ts')./ts';plot(error,'rd');title('相对误差图(predicted data - original data)/original data','FontSize',12);xlabel('交易日天数(1990.12.19-2009.08.19)','FontSize',12);ylabel('相对误差量','FontSize',12);grid on;snapnow;toc;%% 子函数SVMcgForRegress.mfunction [mse,bestc,bestg] = SVMcgForRegress(train_label,train,cmin,cmax,gmin,gmax,v,cstep,gstep,msestep)%SVMcg cross validation by faruto%% by faruto%Email:*************************:516667408/farutoBNU%last modified 2010.01.17%******************************.cn% 若转载请注明:% faruto and liyang , LIBSVM-farutoUltimateVersion% a toolbox with implements for support vector machines based on libsvm, 2009.% Software available at %% Chih-Chung Chang and Chih-Jen Lin, LIBSVM : a library for% support vector machines, 2001. Software available at% .tw/~cjlin/libsvm% about the parameters of SVMcgif nargin < 10msestep = 0.06;endif nargin < 8cstep = 0.8;gstep = 0.8;endif nargin < 7v = 5;endif nargin < 5gmax = 8;gmin = -8;endif nargin < 3cmax = 8;cmin = -8;end% X:c Y:g cg:acc[X,Y] = meshgrid(cmin:cstep:cmax,gmin:gstep:gmax);[m,n] = size(X);cg = zeros(m,n);eps = 10^(-4);bestc = 0;bestg = 0;mse = Inf;basenum = 2;for i = 1:mfor j = 1:ncmd = ['-v ',num2str(v),' -c ',num2str( basenum^X(i,j) ),' -g ',num2str( basenum^Y(i,j) ),' -s 3 -p 0.1'];cg(i,j) = svmtrain(train_label, train, cmd);if cg(i,j) < msemse = cg(i,j);bestc = basenum^X(i,j);bestg = basenum^Y(i,j);endif abs( cg(i,j)-mse )<=eps && bestc > basenum^X(i,j)mse = cg(i,j);bestc = basenum^X(i,j);bestg = basenum^Y(i,j);endendend% to draw the acc with different c & g[cg,ps] = mapminmax(cg,0,1);figure;[C,h] = contour(X,Y,cg,0:msestep:0.5);clabel(C,h,'FontSize',10,'Color','r');xlabel('log2c','FontSize',12);ylabel('log2g','FontSize',12);firstline = 'SVR参数选择结果图(等高线图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...' CVmse=',num2str(mse)];title({firstline;secondline},'Fontsize',12);grid on;figure;meshc(X,Y,cg);% mesh(X,Y,cg);% surf(X,Y,cg);axis([cmin,cmax,gmin,gmax,0,1]);xlabel('log2c','FontSize',12);ylabel('log2g','FontSize',12);zlabel('MSE','FontSize',12);firstline = 'SVR参数选择结果图(3D视图)[GridSearchMethod]'; secondline = ['Best c=',num2str(bestc),' g=',num2str(bestg), ...' CVmse=',num2str(mse)];title({firstline;secondline},'Fontsize',12);。