高一数学集合复习题3

合集下载

高一数学集合试题及答案

高一数学集合试题及答案

高一数学集合试题及答案一、单选题1.已知集合ππ,42k M x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,ππ,24k N x x k ⎧⎫==+∈⎨⎬⎩⎭Z ,则( ) A .N M ⊆ B .M N ⊆ C .M ND .M N ⋂=∅2.已知集合{}0,1,2,3A =,集合{}11B x x =-≤,则A B 等于( ) A .{}3B .{}0,1,2C .{}1,2D .{}0,1,2,33.已知集合{}1,2A =,{}2,3,4B =,则A B =( ) A .{}2B .{}3C .{}1,3D .{}1,24.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.已知集合{A x y ==,{}2B x x =<,则A B =( ) A .RB .∅C .[]1,2D .[)1,26.已知集合2cos ,3n A x x n N π*⎧⎫==∈⎨⎬⎩⎭,{}2230B x x x =--<,则A B =( ) A .{}2,1-- B .{}2,1,1--C .{}1,2D .{}1,1,2-7.已知集合{}22A x x =-≤,{}1,2,3,4,5B =,则A B =( ) A .{}1,2,3,4B .{}2,3,4,5C .{}1,2,3D .{}2,3,48.已知集合{}1,0,1,2,|sin 02k A B k π⎧⎫=-==⎨⎬⎩⎭,则A ∩B =( ) A .{-1,1} B .{1,2}C .{0,2}D .{0,1,2}9.设集合{}A x y x ==,(){}2,B x y y x ==,则AB =( )A .{}0B .(){}1,1C .{}0,1D .∅10.设全集U =R ,已知集合2|4A x x x >={},|B x y =={,则()UA B ⋂=( )A .[0,4]B .(,4]-∞C .(,0)-∞D .[0,)+∞11.已知:2{|560}A x x x =-+>,{|24}xB x =<,记{|,}A B x x A x B -=∈∉,则A B -=( ) A .(3,)+∞ B .(,2](3,)-∞+∞ C .(,2)(3,)-∞⋃+∞D .[3,)+∞12.设集合{A x y ==,(){}ln 2B y y x ==-,(){}2,C x y y x ==,则下列集合不为空集的是( )A .A CB .BC ⋂ C .B A ⋂RD .A B C ⋂⋂13.已知集合{}{}{}21,2,20,1A B xx mx A B ==+-=⋂=∣,则B =( ) A .{}1,1-B .{}2,1-C .{}1,2D .{}1,1,2-14.设全集U =R ,集合{1,0,1,2,3}M =-,{R |1}N x x =∈>,则下面Venn 图中阴影部分表示的集合是( )A .(,1)-∞B .(,1]-∞C .{1,0}-D .{1,0,1}-15.下面五个式子中:①{}a a ⊆;②{}a ∅⊆;③{a }∈{a ,b };④{}{}a a ⊆;⑤a ∈{b ,c ,a };正确的有( )A .②④⑤B .②③④⑤C .②④D .①⑤二、填空题16.若{}}{1020x ax x x +=⊆-=,则=a __________.17.已知集合{}21A x x =-<<,{}0B x x =<,则A B ⋃= ____________.18.已知集合 {}N 24x x A =∈<,{}220x x x B -<=则集合A B 的子集个数为___________.19.设α:()124R m x m m +≤≤+∈;β:13x ≤≤.若β是α的充分条件,则实数m 的取值范围为______.20.(1)已知集合{}2230A x x x =--=,{}20B x ax =-=,且B A ⊆,则实数a 的值为______.(2)若不等式23208kx kx +-<对一切实数x 都成立,则k 的取值范围为______.21.已知函数()51f x a x=-+-M ,集合{}9N x x =≥,若M N ⋂=∅,则实数a 的取值范围是_________.22.已知集合{}()216,xA xB a ∞=≤=-,,若A B ⊆则实数a 的取值范围是____.23.写出集合{1,1}-的所有子集______.24.若全集{}22,4,1U a a =-+,且{}1,2A a =+,7A =,则实数=a ______.25.若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______. 三、解答题26.已知集合{}13A x x =<≤,{}3e e B y y =≤≤,{}21C x m x m =<<-.(1)求A B .(2)若A C ⋂=∅,求m 的取值范围.27.设全集U =R ,集合{}|32A x a x a =≤≤+,1|284xB x ⎧⎫=<<⎨⎬⎩⎭.(1)当1a =-时,求()U A B ⋃; (2)若A ∩B =A ,求实数a 的取值范围.28.集合{}{}3621A x x B x m x m =<≤=≤≤+,. (1)若2m =,求,A B A B ;(2)若x B ∈是x A ∈的必要条件,求实数m 的取值范围.29.已知集合{}2560A xx x =--≤∣,集合{}26510B x x x =-+>∣,集合09x m C x x m -⎧⎫=≤⎨⎬--⎩⎭∣.(1)求A B ;(2)若A C C =,求实数m 的值取范围.30.已知全集为U ,集合A ,B ,C 都是U 的子集,用集合U ,A ,B ,C 表示图中的阴影部分.【参考答案】一、单选题 1.A 【解析】 【分析】利用集合的基本关系求解 【详解】解:因为()2πππ,,424k k M x x k x x k ⎧⎫+⎧⎫⎪⎪==+∈==∈⎨⎬⎨⎬⎩⎭⎪⎪⎩⎭Z Z ,()21π,4k N x x k ⎧⎫+⎪⎪==∈⎨⎬⎪⎪⎩⎭Z ,当k ∈Z 时,21k +是奇数,2k +是整数,所以N M ⊆. 故选:A . 2.B 【解析】 【分析】由交集运算求解即可. 【详解】{}{}{}1102,0,1,2B x x x x A B =-=≤≤∴⋂=∣故选:B 3.A 【解析】 【分析】根据集合的交集运算,即可求得答案. 【详解】集合{}1,2A =,{}2,3,4B =, 则{2}A B =, 故选:A 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.D 【解析】 【分析】求函数定义域化简集合A ,解不等式化简集合B ,再利用交集的定义求解作答. 【详解】由y =1≥x ,则[1,)A =+∞,由2x <解得22x -<<,即(2,2)B =-, 所以[1,2)A B ⋂=. 故选:D 6.C 【解析】 【分析】结合余弦型函数的周期性可得到{}1,1,2,2A =--,再得到2230x x --<的解集,进而求解. 【详解】因为2cos3y x π=的最小正周期263T ππ==且1cos32π=, 21cos cos cos 3332ππππ⎛⎫=-=-=- ⎪⎝⎭,3cos 13π=-, 41cos cos cos 3332ππππ⎛⎫=+=-=- ⎪⎝⎭,51cos cos 2cos 3332ππππ⎛⎫=-== ⎪⎝⎭, 6cos13π=,71cos cos 2cos 3332ππππ⎛⎫=+== ⎪⎝⎭,,所以{}*|2cos ,1,1,2,23n A x x n N π⎧⎫==∈=--⎨⎬⎩⎭, 又{}{}223013B x x x x x =--<=-<<,所以{}1,2A B =, 故选:C 7.A 【解析】 【分析】首先解绝对值不等式求出集合A ,再根据交集的定义计算可得; 【详解】解:由22x -≤,即222x -≤-≤,解得04x ≤≤,所以{}[]220,4A x x =-≤=, 又{}1,2,3,4,5B =,所以{}1,2,3,4A B =. 故选:A 8.C 【解析】 【分析】先求{}2,B k k n n Z ==∈,再求交集即可. 【详解】∵集合{}1,0,1,2A =-,{}sin 0?2,2k B k k k n n Z π⎧⎫====∈⎨⎬⎩⎭, 则{}0,2A B =. 故选:C . 9.D 【解析】 【分析】通过集合中点集与数集的概念,再运用集合的交集运算即可得解. 【详解】由题设可得A 为数集,B 为点集,故A B ⋂=∅. 故选:D【解析】 【分析】化简集合,A B ,先求出A B ,再求出其补集即可得解. 【详解】2|4A x x x >={}{|0x x =<或4}x >,|B x y ={{|4}x x =≤,所以{|0}A B x x =<, 所以()UA B ⋂={|0}x x ≥,即()UA B ⋂[0,)=+∞.故选:D 11.A 【解析】 【分析】先求出集合,A B ,再按照给的定义计算A B -即可. 【详解】由题意知:|2{A x x =<或3}x >,{|2}B x x =<,故A B -={|3}x x >. 故选:A. 12.C 【解析】 【分析】先化简集合A ,B ,C ,再利用集合的类型和运算求解. 【详解】解:因为集合{{}2A x y x x ===≥,(){}ln 2B y y x R ==-=,且(){}2,C x y y x ==为点集,所以A C ⋂=∅,B C =∅,{}|2=<A x x R,{}|2⋂=<B A x x R ,A B C =∅,故选:C 13.B 【解析】 【分析】根据交集性质求解即可. 【详解】因为{}1A B ⋂=,所以1B ∈, 所以120m +-=,解得1m =.所以{}{}2|202,1B x x x =+-==-,满足{}1A B ⋂=.故选:B 14.D 【解析】根据Venn 图,明确阴影部分表示的集合的含义,即可求得答案. 【详解】由题意,可知Venn 图中阴影部分表示的集合是(){1,0,1}U M N =- ,故选:D 15.A 【解析】 【分析】根据元素与集合,集合与集合之间的关系逐个分析即可得出答案. 【详解】①中,a 是集合{a }中的一个元素,{}a a ∈,所以①错误;空集是任一集合的子集,所以②正确;{}a 是{},a b 的子集,所以③错误;任何集合是其本身的子集,所以④正确; a 是{},,b c a 的元素,所以⑤正确. 故选:A.二、填空题16.0或12-##12-或0【解析】 【分析】由题,先求出}{20x x -=所代表集合,再分别讨论{}10x ax +=作为子集的可能情况即可. 【详解】由}{20x x -=得集合为{}2,故{}10x ax +=为空集或{}2,当{}10x ax +=为{}2时,可得12a =-;当{}10x ax +=为空集时,可得0a =, 故答案为:0或12-17.{}1x x <【解析】 【分析】利用并集概念及运算法则进行计算. 【详解】在数轴上画出两集合,如图:{}{}{}2101A B x x x x x x ⋃=-<<⋃<=<.故答案为:{}1x x < 18.2 【解析】 【分析】先求出A B 然后直接写出子集即可. 【详解】{}{}N 240,1x x A ∈<==,{}{}22002x x x B x x -<=<<={}1A B =,所以集合A B 的子集有∅,{}1.子集个数有2个. 故答案为:2.19.102m -≤≤【解析】 【分析】根据给定条件可得β所对集合包含于α所对集合,再利用集合的包含关系列式作答. 【详解】令α所对集合为:{|124(R)}x m x m m +≤≤+∈,β所对集合为:{|13}x x ≤≤, 因β是α的充分条件,则必有{|13}{|124(R)}x x x m x m m ≤≤⊆+≤≤+∈,于是得11243m m +≤⎧⎨+≥⎩,解得102m -≤≤,所以实数m 的取值范围为102m -≤≤.故答案为:102m -≤≤20. 2a =-或23a =或0 30k -<≤ 【解析】 【分析】(1)分情况讨论,0,a B ==∅满足题意;当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a=,解出即可;(2)分情况讨论,当0k =时,满足题意;当0k ≠时,只需要满足23Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解不等式组即可.【详解】已知集合{}{}22301,3A x x x =--==-,{}20B x ax =-=当0,a B ==∅,满足B A ⊆; 当0a ≠时,{}220B x ax a ⎧⎫=-==⎨⎬⎩⎭,因为B A ⊆,故得到21a =-或23a= 解得2a =-或23a =; 不等式23208kx kx +-<对一切实数x 都成立,当0k =时,满足题意;当0k ≠时,只需要满足203Δ808k k k <⎧⎪⎨⎛⎫=-⨯-< ⎪⎪⎝⎭⎩解得30k -<< 综上结果为:30k -<≤. 故答案为:2a =-或23a =或0;30k -<≤ 21.(,8]-∞【解析】 【分析】根据集合交集的性质,结合子集的性质进行求解即可. 【详解】∵{}9,N x x M N =≥⋂=∅,∵{}9M x x ⊆<,∵{}1M x x a =<+,∴19a +≤,解得8a ≤,∴实数a 的取值范围是(,8]-∞. 故答案为:(,8]-∞22.4a >【解析】 【分析】根据指数函数的单调性求出集合A ,再根据A B ⊆列出不等式,即可的解. 【详解】解:{}(]216,4xA x ∞=≤=-,因为A B ⊆, 所以4a >. 故答案为:4a >.23.∅,{}1-,{1},{1,1}- 【解析】【分析】利用子集的定义写出所有子集即可.【详解】由子集的定义,得集合{1,1}-的所有子集有:∅,{}1-,{1},{1,1}-.故答案为:∅,{}1-,{1},{1,1}-.24.3【解析】【分析】根据题意21a a -+7=,结合7A =,即可求得a .【详解】因为{}22,4,1U a a =-+,且{}1,2A a =+,7A =,故可得217a a -+=,即()()320a a -+=,解得3a =或2a =-. 当2a =-时,{}2,4,7U =,{}1,2A =-,不合题意,故舍去. 当3a =时,满足题意.故答案为:3.25.{}12x x -<<## ()1,2-【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可.【详解】 因为{}2A x x =<{|22}x x =-<<,101B x x ⎧⎫=>⎨⎬+⎩⎭{}1x x =-, 故可得A B ={|12}x x -<<. 故答案为:{}12x x -<<.三、解答题26.(1){}e 3A B x x ⋂=≤≤(2)[0,)+∞【解析】【分析】(1)根据交集的定义直解,(2)分C =∅和C ≠∅两种情况求解(1) 因为{}13A x x =<≤,{}3e e B y y =≤≤, 所以{}e 3A B x x ⋂=≤≤(2)当C =∅时,满足A C ⋂=∅,则21m m ,得13m ≥, 当C ≠∅时,因为A C ⋂=∅,所以2111m m m <-⎧⎨-≤⎩,或2123m m m <-⎧⎨≥⎩, 解得103m ≤<或m ∈∅, 所以103m ≤<, 综上,0m ≥,即m 的取值范围为[0,)+∞27.(1){|1x x ≤或3}x ≥ (2)2(,1)(1,)3-⋃+∞ 【解析】【分析】(1)化简集合B ,根据补集、并集的运算求解;(2)由条件转化为A ⊆B ,分类讨论,建立不等式或不等式组求解即可.(1)当1a =-时,{}3|1A x x =-≤≤,{}1|28|234x B x x x ⎧⎫=<<=-<<⎨⎬⎩⎭, {||2U B x x x ∴=≤-或3}x ≥,(){|1U B x x A =≤∴或3}x ≥.(2)由A ∩B =A ,得A ⊆B ,当A =∅时,则3a >a +2,解得a >1,当A ≠∅时,则32231a a a >-⎧⎪+<⎨⎪≤⎩,解得213a -<<, 综上,实数a 的取值范围是2(,1)(1,)3-⋃+∞. 28.(1){}35A B x x ⋂=<≤,{|26}x x AB ≤≤=; (2)5,32⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)将m 的值代入集合B ,然后根据交集与并集的定义即可求解; (2)由题意,可得A B ⊆,根据集合的包含关系列不等式组求解即可得答案.(1)解:当2m =时,{|25}B x x =≤≤,又{}36A x x =<≤,所以{}35A B x x ⋂=<≤,{|26}x x AB ≤≤=;(2) 解:因为x B ∈是x A ∈的必要条件,所以A B ⊆,即(3,6][,21]m m ⊆+,所以有3216m m ≤⎧⎨+≥⎩,解得532≤≤m , 所以实数m 的取值范围为5,32⎡⎤⎢⎥⎣⎦. 29.(1)1|13x x ⎧-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)(]3,1--.【解析】【分析】(1)根据一元二次不等式的解法求出集合A 、B ,即可求出A B ; (2)由A C C =,可知A C ⊆,得到不等式组,即得.(1)∵{}2560A xx x =--≤∣,{}26510B x x x =-+>∣, {|16}A x x ∴=-≤≤,1|3B x x ⎧=<⎨⎩或12x ⎫>⎬⎭, ∴1|13A B x x ⎧⋂=-≤<⎨⎩或162x ⎫<≤⎬⎭; (2)∵{|16}A x x =-≤≤,0{|9}9x m C x x m x m x m -⎧⎫=≤=≤<+⎨⎬--⎩⎭∣, 由A C C =,得A C ⊆,961m m +>⎧∴⎨≤-⎩,解得31m -<≤-, ∴实数m 的值取范围为(]3,1--.30.()()()()U A B C A B A C B C ⎡⎤⎡⎤⋂⋂⋂⋂⋃⋂⋃⋂⎣⎦⎣⎦【解析】【分析】根据韦恩图,利用交集,并集与补集的概念及运算求解.【详解】根据韦恩图可知:阴影部分为:()()()()U A B C A B A C B C ⎡⎤⎡⎤⋂⋂⋂⋂⋃⋂⋃⋂⎣⎦⎣⎦.。

高一数学复习考点知识与题型专题讲解3---集合的基本运算

高一数学复习考点知识与题型专题讲解3---集合的基本运算

高一数学复习考点知识与题型专题讲解1.3集合的基本运算【考点梳理】考点一:并集考点二:交集考点三:全集与补集1.全集(1)定义:如果一个集合含有所研究问题中涉及的所有元素,那么就称这个集合为全集.(2)记法:全集通常记作U.2.补集对于一个集合A,由全集U中不属于集合A的所有元素组成的自然语言集合称为集合A相对于全集U的补集,记作∁U A符号语言∁U A={x|x∈U,且x∉A}图形语言【题型归纳】【题型归纳】题型一:根据交集求集合或者参数问题1.集合{2,2,4,6}A =-,{}2120B x x x =+-<,则A B =( )A .}{2,2,4-B .{2}-C .{2,4}D .{2,2}-2.已知集合{}1A x x =≤,{}0B x x a =-≤,且A B ⋂≠∅,那么实数a 的取值范围是( ). A .1a ≤-B .1a ≤C .1a ≥-D .1a ≥ 3.已知集合302x A x -⎧⎫=≤⎨⎬+⎩⎭,{}|32,B x x x =-≤≤∈Z ,则A B 中元素的个数为( ) A .4B .5C .6D .无数个题型二:根据并集求集合或者参数问题4.集合{}0,2,A a =,{}21,B a =,若{}0,1,2,4,16A B ⋃=,则a 的值为( )A .1B .2C .3D .45.若集合{}2135A x a x a =+≤≤-,{}516B x x =≤≤,则能使A B B ⋃=成立的所有a 组成的集合为( )A .{}27a a ≤≤B .{}67a a ≤≤C .{}7a a ≤D .∅6.已知集合{}27A x x =-≤≤,{}121B x m x m =+≤≤-,则使A B A ⋃=的实数m 的取值范围可是( )A .{}36m m -≤≤B .{}4m m ≤C .{}24m m <<D .{}6m m <题型三:根据补集运算求集合或者参数问题7.已知全集{}22,4,U a =,集合{}4,3A a =+,{}1U A =ð,则a 的所有可能值形成的集合为( )A .{}1-B .{}1C .{}1,1-D .∅ 8.设集合,集合,若,则的取值范围是A .B .C .D .9.已知全集{}1,3,5,7,9U =,集合{}5,7A =,,则a 的值为A .3B .3-C .±3D .9±题型四:集合的交并补集合或参数问题10.若全集{}12345678U =,,,,,,,,集合{}2356A =,,,,集合{}13467B =,,,,,则集合()U A C B ⋂等于( )A .{}23568,,,,B .{}25,C .{}36,D .{}256,, 11.设集合U =R ,{}13A x x =<<,{}2B x x =<,则图中阴影部分表示的集合( )A .{}1x x ≥B .{}3x x ≤C .{}12x x <≤D .{}23x x ≤<12.集合()11,13M x y y x x ⎧⎫==-⎨⎬--⎩⎭,()(){}2,2,N x y y a x a R ==-∈,若M N ⋂=∅,则实数a的取值范围是( )A .[)0,2B .[)0,4C .[)0,8D .()0,16【双基达标】一、单选题13.已知集合,A B 满足A B A =,那么下列各式中一定成立的是( ) A .A B B .B A C .A B B ⋃=D .A B A ⋃=14.设M ,N 是非空集合,且M N U ⊆⊆(U 为全集),则下列集合表示空集的是( ) A .()UMN ðB .()UM N ðIC .()()U UM N 痧D .M N ⋂15.已知集合2{|43}A y y x x x R ==-+∈,,2{|22}B y y x x x R ==--+∈,则A B ⋂等于( )A .ΦB .RC .{}13-,D .[]13,-16.已知集合{}2340A x x x =+-=,集合(){}2120B x x a x a =++--=,且A B A ⋃=,则实数a 的取值集合为( )A .{}3,2-B .{}3,0,2-C .{}3a a ≥-D .{}32a a a <-=或17.已知集合{3A x x =<或}7x ≥,{}B x x a =<,若()U A B ≠∅ð,则a 的取值范围为( ) A .3a >B .3a ≥C .7a ≥D .7a >18.设数集3|4M x m x m ⎧⎫=≤≤+⎨⎬⎩⎭,1|3N x n x n ⎧⎫=-≤≤⎨⎬⎩⎭,且M ,N 都是集合{|01}x x ≤≤的子集.如果把b a -叫做{|}x a x b ≤≤的长度,那么集合M N ⋂的长度的最小值是( ) A .13B .1C .112D .3419.已知集合()13A =,,集合{|21}.B x m x m =<<-若A B =∅,则实数m 的取值范围是( )A .3123m <…B .0m …C .32m …D .3123m << 20.已知集合{}|0A x x a =-=,{}|10B x ax =-=,且A B B =,则实数a 等于( ) A .1B .1-或1C .1或0D .1或1-或021.某地对农户抽样调查,结果如下:电冰箱拥有率为45%,电视机拥有率为55%,洗衣机拥有率为65%,拥有上述三种电器的任意两种的占35%,三种电器齐全的为25%,那么一种电器也没有的农户所占比例是( ) A .20%B .10%C .15%D .12%22.如图,I 是全集,M 、P 、S 是I 的3个子集,则阴影部分所表示的集合是( )A .(M ∩P )∩SB .(M ∩P )∪SC .(M ∩P )∩(∁I S )D .(M ∩P )∪(∁I S )【高分突破】一:单选题23.设全集{|}2U x x ∈≤Z =,{|10,}A x x x U =+≤∈,{}2,0,2B =-,则()U A B =ð( ) A .{}1B .{}0,2C .{2,0,1,2}-D .(1,2]{2}-⋃-24.已知集合{}21,M x x k k Z ==+∈,集合{}43,N y y k k Z ==+∈,则M N ⋃=( ) A .{}62,x x k k Z =+∈B .{}42,x x k k Z =+∈ C .{}21,x x k k Z =+∈D .∅25.设集合{}1A x x =≥,{}12B x x =-<<,则()R A B ⋂=ð( ) A .{}1x x >-B .{}1x x ≥C .{}11x x -<<D .{}12x x ≤<26.集合{}22A x x =-<<,{}13B x x =-≤<,那么A B =( ) A .{}23x x -<<B .{}12x x -≤<C .{}21x x -<<D .{}23x x << 27.已知集合{}|5S x N x =∈≤,{}22|T x R xa =∈=,且{}1S T ⋂=,则S T ⋃=( ) A .{1,2}B .{0,1,2}C .{-1,0,1,2}D .{-1,0,1,2,3} 28.已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T ?( )A .∅B .SC .TD .Z29.设()x x P f x x x Q ∈⎧=⎨-∈⎩,,,其中P Q ,为实数集R 的两个非空子集,定义:()(){}f P y y f x x P ==∈,,()(){}f Q y y f x x Q ==∈,.给出以下四个判断:①若,P Q φ⋂=则()()f P f Q φ⋂=;②若,P Q φ⋂=则()()f P f Q φ⋂≠; ③若,P Q R ⋃=则()()f P f Q R ⋃=;④若,P Q R ⋃≠()()f P f Q R ⋃≠. 其中正确的判断个数为( ) A .0个B .1个C .2个D .3个二、多选题30.设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足A B =∅的实数a 的取值范围可以是( )A .{|06}a a 剟B .{|2a a …或4}a …C .{|0}a a …D .{|8}a a … 31.已知全集U 的两个非空真子集A ,B 满足()U A B B =ð,则下列关系一定正确的是( )A .AB =∅B .A B B =C .A B U ⋃=D .()U B A A =ð32.给定数集M ,若对于任意a ,b M ∈,有a b M +?,且a b M -∈,则称集合M 为闭集合,则下列说法中不正确的是( ) A .集合{}4,2,0,2,4M =--为闭集合 B .正整数集是闭集合C .集合{|3,}M n n k k Z ==∈为闭集合D .若集合12,A A 为闭集合,则12A A ⋃为闭集合 33.图中阴影部分用集合符号可以表示为( )A .()ABC ⋂⋃ B .()A B CC .()U A B C ⋂⋂ðD .()()A B A C ⋂⋃⋂34.设集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,则下列选项中,满足A B ⋂≠∅的实数a 的取值范围可以是( )A .{|06}a a 剟B .{|2a a …或4}a …C .{|0}a a …D .{|8}a a …35.(多选)已知集合{}{}|27,|121A x x B x m x m =-≤≤=+<<-,则使A B A ⋃=的实数m 的取值范围可以是( ) A .{}|34m m -≤≤B .{}|2m m > C .{}|24m m <<D .{}|4m m ≤36.已知U 为全集,则下列说法正确的是( )A .若AB =∅,则()()U U A B U =痧B .若A B =∅,则A =∅或B =∅C .若A B =∅,则()()U U A B U =痧D .若A B =∅,则A B ==∅三、填空题37.若集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,则集合P 的子集个数为______. 38.某单位共有员工85人,其中68人会骑车,62人会驾车,既会骑车也会驾车的人有57人,则既不会骑车也不会驾车的人有___________人.39.已知集合{|01}A x x =<<,集合{|11}B x x =-<<,集合{}0C x x m =+>∣,若A B C ⋃⊆,则实数m 的取值范围是_____________.40.已知集合A ={(x ,y )|y =ax 2},B ={(x ,y )|y =x 2+2x +b },且(-1,2)∈A ∩B ,则a+b =________.41.已知方程x 2+mx +2=0与x 2+x +n =0的解集分别为A 和B ,且A ∩B ={1},则m +n =________.42.设2{|40}A x x x =+=,22{|2(1)10}B x x a x a =+++-=,其中x ∈R ,如果A B B =,则实数a 的取值范围__.四、解答题43.已知集合{}2|20A x x x =--=,{}2|230B x x ax a =++-=.(1)若0a =,求A B ;(2)若A B B =,求a 的取值集合. 44.若集合{|A x =240}xx ->,2{|3(1)(21)0}B x x mx m m =-++-<.(1)若A B B ≠I ,求实数m 的取值范围;(2)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,求实数m 的取值范围. 45.在①{}=1A B ⋂,②A B =,③BA 这三个条件中任选一个,补充在下面问题中,若问题中的集合存在,求实数a 的值;若问题中的集合不存在,说明理由.问题:是否存在集合,A B ,满足集合{}2|320A x x x =-+=,集合{}22|6+60B x x ax a a =+-=,使得__________成立?(注:如果选择多个条件分别解答,按第一个解答计分.) 46.已知集合{}1A x x =<,集合{2B x x =<-或}3x >. (1)求A B ,()RAB ð;(2)若{}12C x m x m =-+<<,且C ≠∅,()RC A B ⊆ð,求实数m 的取值范围.47.回答下列问题:(1)已知{}{}25,12|,|1A x x B x m x m A B B =-≤≤=+≤≤-⋂=,求m 的取值范围;(2)设U =R ,集合{}(){}223|20,1|0A x x x B x x m x m =++==+++=,若()U A B φ⋂=ð,求m的值.48.已知全集U =R ,集合{}{}27205A x x B x x x =<<=--≤≤-, (1)求()(),U U A B A B ⋂⋃痧;(2)若集合{}()2,U C x a x a C B R =≤≤-⋃=ð,求实数a 的取值范围.【答案详解】1.D【详解】 由题得{}(4)(3)0(4,3)B x x x =+-<=-,所以A B ={2,2}-.故选:D2.C【详解】 解:由1x ≤,得11x -≤≤,所以{}11A x x =-≤≤,由0x a -≤,得x a ≤,所以{}B x x a =≤,因为A B ⋂≠∅,所以1a ≥-,故选:C3.A【详解】 由{}30232x A x x x -⎧⎫=≤=-<≤⎨⎬+⎩⎭,{}|32,B x x x =-≤≤∈Z , 所以{}1,0,1,2A B ⋂=-,所以A B 中元素的个数为4.故选:A4.D【详解】因集合{}0,2,A a =,{}21,B a =,且{}0,1,2,4,16A B ⋃=, 于是得4a =,此时216a =,满足条件,即4a =,若16a =,此时2256a =,不满足条件,舍去,所以a 的值为4.故选:D5.C【分析】A B B A B ⋃=⇔⊆,考虑A =∅和A ≠∅两种情况,得到21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得答案. 【详解】A B B A B ⋃=⇔⊆当A =∅时,即2135a a +>-,6a <时成立;当A ≠∅时,满足21353516215a a a a +≤-⎧⎪-≤⎨⎪+≥⎩,解得67a ≤≤; 综上所述:7a ≤.故选:C.6.B【详解】 由题意,集合{}27A x x =-≤≤,{}121B x m x m =+≤≤-,因为A B A ⋃=,可得B A ⊆,当B φ=时,可得121m m +>-,解得2m <;当B φ≠时,可得12217121m m m m +≥-⎧⎪-≤⎨⎪+≤-⎩,解得24m ≤≤, 综上可得,实数m 的取值范围{}4m m ≤.故选:B.7.A【详解】由U A U ⊆ð,即{}1{}22,4,a ⊆,则21a =,解得1a =±, 若1a =,则34a +=,而{}4,3A a =+,不符合集合中元素的互异性,舍去;若1a =-,则{}2,4,1U =,{}4,2A =,{}1U A =ð,符合题意.所以a 的所有可能值形成的集合为{}1-.故选:A.8.B【详解】 试题分析:{}|24()2R R C A x x C A B a ∴=≤≤⋂≠∅∴> 9.C【详解】试题分析:由()23{39U a C A A U a a =⋃=∴∴=±=10.B【详解】若全集{}12345678U =,,,,,,,,集合{}2356A =,,,,集合{}13467B =,,,,,∴U B ð{}2,5,8=, 则集合()U A B ⋂=ð{}25,,11.D【详解】解:图中阴影部分表示的集合为()U A B ∩ð, ∵{}2B x x =<,∴{}2U B x x =≥ð{}13A x x =<<,∴(){}23U A B x x ⋂=≤<ð,故选:D.12.C 令1113x x ---2=(2)a x -即22(2)(1)(3)a x x x -=--- 若0a =,则上式无解,满足M N ⋂=∅,符合题意.若0a ≠,得22(2)(1)(3)x x x a-=---令222()(2)(1)(3)(2)(43)g x x x x x x x =---=--+则22()2(2)(43)(2)(24)g x x x x x x =---'++-()22(2)287x x x =--+ 令()0g x '=得123222,2,222x x x =-==+ 易得()g x 得最小值为()()1314g x g x ==-,无最大值. 要使22(2)(1)(3)x x x a -=---无解,必须214a -<-,即08a <<又0a =符合题意,所以实数a 的取值范围是[)0,8.故选:C.13.CA B A A B ⋂=⇔⊆选项A. 当A B =时,满足题意,但不满足A B ,故选项A 不正确.选项B. 由题意A B ⊆,故选项B 不正确.选项C. 由题意A B ⊆,则A B B ⋃=,选项C 正确.选项D. 由题意A B ⊆,则A B B ⋃=,故选项D 不正确.故选:C14.A【详解】集合M 是非空集合,对集合M 中任一元素x ,∵M N U ⊆⊆,∴x ∈N ,∴U x N ∉ð,又若U y N ∈ð,则y N ∉,∵M N ⊆,∴y M ∉,∴()U M N ⋂=∅ð.故选:A.15.D【详解】集合2{|43}A y y x x x R ==-+∈,,化简得{|1}A y y =≥-2{|22}B y y x x x R ==--+∈,,化简得{}|3B y y =≤[]13A B ∴⋂=-,,选项ABC 错误,选项D 正确.故选:D .16.A【详解】 由题意知集合{}{}2340=4,1A x x x =+-=-,对于方程()()2120x a x a ++-+=,解得12x a =--,21x =.因为A B A ⋃=,则B A ⊆.①当21a --=时,即3a =-时,B A ⊆成立;②当21a --≠时,即当3a ≠-时,因为B A ⊆,则24a --=-,解得2a =.综上所述,a 的取值集合为{}3,2-.故选:A.17.A【详解】 依题意得{}37U A x x =≤<ð,若()U A B ≠∅ð,则3a >,故选:A .18.C【详解】解:根据新定义可知集合M 的长度为34,集合N 的长度为13,当集合M N ⋂的长度最小时,M 与N 应分别在区间[]01,上的左右两端, 故M N ⋂的长度的最小值是31114312+-=. 故选:C .19.B【详解】解:由A B =∅,得: ①若21m m ?,即13m ≥时,B =∅,符合题意;②若21m m <-,即13m <时,因为A B =∅,则1311m m ⎧<⎪⎨⎪-≤⎩或1323m m ⎧<⎪⎨⎪≥⎩,解得103m ≤<, 综上所述:0m ≥,∴实数m 的取值范围为:0m ≥.故选:B .20.D【详解】由A B B =可得B A ⊆,且{}A a =,当0a =时,B =∅,满足A B B =符合题意,当0a ≠时,1B a ⎧⎫=⎨⎬⎩⎭,若B A ⊆,则1a a =,解得:1a =或1a =-,综上所述:实数a 等于1或1-或0,故选:D.21.A【详解】解:设农户总共为100家,则有55家农户有电视机,45家农户有电冰箱,65家农户有洗衣机,有25家农户同时拥有这三种电器,另外75家只有其中两种或一种或没有电器.设只有电冰箱和电视机的农户有a 家,只有电冰箱和洗衣机的农户有b 家,只有洗衣机和电视机的农户有c 家,只有电视机、电冰箱、洗衣机的分别有d 、e 、f 家,没有任何电器的农户有x 家. 那么对于拥有电冰箱的农户可得出:2545a b e +++=①那么对于拥有电视机的农户可得出:2555a c d +++=②那么对于拥有洗衣机的农户可得出:2565b c f +++=③把上面三个式子相加可得:()290a b c d e f +++++=④对于拥有上述三种电器的任意两种的占35%,得到:35a b c ++=⑤把⑤代入④可得到20d e f ++=⑥因为农户共有100家,所以25100a b c d e f x +++++++=,把⑤和⑥代入上式得到20x =,即一种电器也没有的农户所占比例为20%,故选:A .22.C【详解】解:依题意,由图知,阴影部分对应的元素a 具有性质a ∈M ,a ∈P ,I a S ∈ð,所以阴影部分所表示的集合是()()I M P S ⋂⋂ð,故选:C.23.C【详解】 因为{}{|}2,1,0,21,2U x x =--∈≤Z =,{}{|10,}2,1A x x x U =+≤∈=--, 所以{}0,1,2U A =ð,所以(){}2,0,1,2U A B -=ð.故选:C.24.C【详解】 因为集合{}21,M x x k k ==+∈Z , 集合{}(){}43,2211,N y y k k y y k k ==+∈==++∈Z Z ,因为x ∈N 时,x M ∈成立, 所以{}21,M N x x k k ⋃==+∈Z .故选:C.25.C【详解】 由题意,集合{}1A x x =≥,{}12B x x =-<<,根据补集的运算,可得R {|1}A x x =<ð,所以(){}R 11A B x x ⋂=-<<ð. 故选:C.26.A【详解】 因为{}22A x x =-<<,{}13B x x =-≤<, 所以{}23A B x x ⋃=-<<,故选:A.27.C【详解】{}{}|50,1,2S x N x =∈≤=,而{}1S T ⋂=,所以1T ∈,则21a =,所以{}{}22|1,1T x R x a =∈==-,则{}1,0,1,2S T ⋃=-故选:C.28.C【详解】任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆, 因此,S T T =.故选:C.29.A【详解】解:若{}1P =,{}1Q =-, 则(){}1f P =,(){}1f Q =, 则()()f P f Q φ⋂≠,故①错; 若{}1P =,{}0Q =,则(){}1f P =,(){}0f Q =, 则()()f P f Q φ⋂=,故②错; 若{P =非负实数},{Q =负实数}, 则()()f P f Q R ⋃≠,故③错,若{P =非负实数},{Q =正实数}, 则()()f P f Q R ⋃=,故④错,故选:A .30.CD【详解】 解:集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,满足A B =∅, 15a ∴-…或11a +…,解得6a …或0a …. 对照四个选项,∴实数a 的取值范围可以是{|0}a a …或{|8}a a …. 故选:CD .31.CD【详解】令{}1,2,3,4U =,{}2,3,4A =,{}1,2B =,满足()U A B B =ð,但A B ⋂≠∅,A B B ≠I ,故A ,B 均不正确;由()U A B B =ð,知U A B ⊆ð,∴()()U U A A A B =⊆ð,∴A B U ⋃=,由U A B ⊆ð,知U B A ⊆ð,∴()U B A A =ð,故C ,D 均正确.故选:CD.32.ABD【详解】选项A :当集合{}4,2,0,2,4M =--时,2,4M ∈,而246M +=∉,所以集合M 不为闭集合,A 选项错误;选项B :设,a b 是任意的两个正整数,则a b M +?,当a b <时,-a b 是负数,不属于正整数集,所以正整数集不为闭集合,B 选项错误;选项C :当{}3,M n n k k Z ==∈时,设12123,3,,a k b k k k Z ==∈,则()()12123,3a b k k M a b k k M +=+∈-=-∈,所以集合M 是闭集合,C 选项正确; 选项D :设{}{}1232A n n k k Z A n n k k Z ==∈==∈,,,,由C 可知,集合12,A A 为闭集合,()122,3A A ∈⋃,而()()1223A A +∉⋃,故12A A ⋃不为闭集合,D 选项错误.故选:ABD .33.AD【详解】解:由图可知,阴影部分是集合B 与集合C 的并集,再由集合A 求交集,或是集A 与B 的交集并上集合A 与C 的交集,所以阴影部分用集合符号可以表示为()A B C ⋂⋃或()()A B A C ⋂⋃⋂,故选:AD34.CD【详解】集合{|11A x a x a =-<<+,}x R ∈,{|15B x x =<<,}x R ∈,满足A B ⋂≠∅,15a ∴-…或11a +…,解得6a …或0a …,∴实数a 的取值范围可以是{|0a a …或6}a …,结合选项可得CD 符合. 故选:CD.35.ACD【详解】,A B A B A ⋃=⊆∴,①若B 不为空集,则121m m +<-,解得2m >,{}{}|27,|121A x x B x m x m =-≤≤=+<<-12m ∴+≥-,且217m -≤,解得34m -≤≤,此时24m <≤;②若B 为空集,则121m m +≥-,解得2m ≤,符合题意,综上实数m 满足4m ≤即可,故选:ACD.36.ACD【详解】A ,因为()()()U U U C A CBC A B ⋃=⋂,A B =∅,所以()()()U U U C A C B C A B U ⋃=⋂=,A 说法正确;B ,若A B =∅,则集合,A B 不一定为空集,只需两个集合中无公共元素即可,B 说法错误,;C ,因为()()()U U U C A C B C A B =⋃,A B =∅,所以()()()U U U C A C B C A B U ⋂=⋃=,说法正确;D ,A B =∅,即集合,A B 中均无任何元素,可得A B ==∅,D 说法正确. 故选:ACD37.4【详解】解:∵集合{}0,1,2,3,4M =,{}1,3,5N =,P M N =⋂,∴{}1,3P =,∴集合P 的子集个数为:224=.故答案为:4.38.12【详解】设会骑车的人组合的集合为A ,会驾车的人组成的集合为B ,既会骑车也会驾车的人组成的集合为集合C ,易知A B C =,记card()A 表示集合A 中的元素个数,则有()()()()68625773card A B card A card B card A B =+-=+-=,所以既不会骑车也不会驾车的人为857312-=.故答案为:1239.[)1+∞,【详解】 解:集合{|01}A x x =<<,集合{|11}B x x =-<<,{|11}A B x x ∴⋃=-<<,集合{}{}0C x x m x x m =+>=>-∣∣, 又A B C ⋃⊆,1m ∴--…,解得1m ….∴实数m 的取值范围是[)1+∞,.故答案为:[)1+∞,. 40.5【详解】∵(-1,2)∈A ∩B ,∴()()()22212112a b⎧=-⎪⎨=-+-⨯+⎪⎩,,解得:a =2,b =3. ∴a +b =5.故答案为:541.-5【详解】∵A ∩B ={1},∴1既是方程x 2+mx +2=0的根,又是方程x 2+x +n =0的根.∴120110m n ++=⎧⎨++=⎩解得:32m n =-⎧⎨=-⎩经检验,当32m n =-⎧⎨=-⎩时,适合题意.∴m +n =-5. 故答案为:5-42.1a ≤-或1a =由A 中方程变形得:(4)0x x +=,解得:0x =或4x =-,即{4A =-,0},由22{|2(1)10}B x x a x a =+++-=,其中x ∈R ,且A B B =,分两种情况考虑:若B =∅时,224(1)4(1)880a a a ∆=+--=+<,即1a <-,满足题意;若B ≠∅时,224(1)4(1)880a a a ∆=+--=+≥,即1a ≥-,当1a =-时,{}{}222{|2(1)10}|00B x x a x a x x =+++-====,符合题意;当1a >-时,{}4,0B =-,所以2402(1)401a a -+=-+⎧⎨-⨯=-⎩,解得1a =,符合题意; 综上,a 的范围为1a ≤-或1a =.故答案为:1a ≤-或1a =43.(1){}3,1,3,2--;(2)[)26,.【详解】解:{}{}2|201,2A x x x =--==-,(1)当0a =时,{}{}2303,3B x x =-==-,{}3,1,3,2A B ∴=-- (2)A B B =B A ∴⊆,当B ≠∅时,{}1B ∴=-或{}2B =或{}1,2B =-当1B -∈时,130a +-=,解得:2a =,{}{}22101B x x x ∴=++==-,满足题意, 当2B ∈时,4430a +-=,解得:14a =-,2770,2424x B x x ⎧⎫⎧⎫∴=--==-⎨⎬⎨⎬⎩⎭⎩⎭,不满足题意, 若{}1,2B =-,则121232a a -=-+=⎧⎨-=-⎩,无解, 所以,当B ≠∅时,2a =,当B =∅时,()()()224238+12260a a a a a a ∆=--=-=--<,解得26a <<,a ∴的取值集合为[)26,.44.(1)23m <<或-12m <<;(2)1522m ≤≤.解:由240x x ->,即()40x x ->,解得0x <或4x >,所以{|0A x x =<或4}x >;方程23(1)(21)0x mx m m -++-=的根是121+,21x m x m ==-. (1)若A B B ≠I ,则B 不是A 的子集,且B ≠∅.当121m m +<-即2m >时,{|121}B x m x m =+<<-,满足210142m m m ->⎧⎪+<⎨⎪>⎩,解得23m <<;当121m m +>-即2m <时,{|211}B x m x m =-<<+,满足214102m m m -<⎧⎪+>⎨⎪<⎩,解得12m -<<; 当2m =时,B =∅,不符合题意.综上,实数m 的取值范围是23m <<或12m -<<.(2)当x ∈R 时,不存在元素x 使x ∈A 与x ∈B 同时成立,所以A B =∅. 若2m =时,B =∅,符合条件;当121m m +<-即2m >时,{|121}B x m x m =+<<-,满足214102m m m -≤⎧⎪+≥⎨⎪>⎩,解得522m <≤; 当121m m +>-即2m <时,{|211}B x m x m =-<<+,满足210142m m m -≥⎧⎪+≤⎨⎪<⎩,解得122m ≤<. 综上,实数m 的取值范围是1522m ≤≤.45由条件可得{}1,2A =解:选编号①,要使得{}=1A B ⋂,则1,2B B ∈∉所以26+60a a a +-=且264+620a a a ⨯⨯+-≠解得2a =-选编号②,由{}1,2A B ==,即226+60x ax a a +-=的两根为1,2 由韦达定理可得261+2=6126a a a -⎧⎪⎪⎨-⎪⨯=⎪⎩解得3a =-选编号③由B A 则B =∅或{}1B =或{}2B =当B =∅时,即()223624020a a a a ∆=--<⇒-<<当{}1B =时,261+1=62116a a a a -⎧⎪⎪⇒=-⎨-⎪⨯=⎪⎩, 当{}2B =时,2262+2=46240226a a a a a a a-⎧⎪=-⎧⎪⇒⇒⎨⎨--=-⎩⎪⨯=⎪⎩无解, 综上可得20a -≤<46.【详解】(1)因为集合{}1A x x =<,集合{2B x x =<-或}3x >,所以{1A B x x ⋃=<或}3x >, {}23R B x x =-≤≤ð,故(){}21R A B x x ⋂=-≤<ð;(2)因为C ≠∅,()R C A B ⊆ð,所以121221m m m m -+<⎧⎪-+≥-⎨⎪≤⎩,解得112m -<≤, 故实数m 的取值范围为11,2⎛⎤- ⎥⎝⎦. 47.【详解】(1)∵A B B =,即B A ⊆,当B φ=时,121m m +>-,解得2m <;当B φ≠时,121m m +>-,解得2m <;∴12112215m m m m +≤-⎧⎪+≥-⎨⎪-≤⎩,即23m ≤≤, 综上:m 的取值范围是3m ≤.(2)∵{}{}2320|1,2A x x x =++==--,又(){}2|10B x x m x m =+++=,若1m ≠时{1,}B m =--;若1m =时{1}B =-. 由()U A B φ⋂=ð,得B A ⊆,即1m -=-或2m -=-, ∴1m =或2.48.(1){}{}{}2720525A x x B x x x x x =<<=--≤≤-=-≤≤,, {2U A x x ∴=≤ð或}7x ≥,{2U B x x =<-ð或}5x >, (){}(){57,5U U A B x x A B x x ∴⋂=<<⋃=≤痧或}7x ≥. (2){2U B x x =<-ð或}5x >,()U C B R ⋃=ð,225a a ≤-⎧∴⎨-≥⎩,解得3a ≤-.。

高一上数学集合综合复习题

高一上数学集合综合复习题

高一上数学集合综合复习题一、单项选择题1.下列四个关系中,正确的是( )A.∅∈{a}B.a ⊆{a}C.{a}∈{a,b,c}D.a ∈{a,b}2.“x >6”是“x >9”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.若全集U ={1,2,3,4,5,6},子集A ={1,3},B ={2,3,4,5},则A∪∪UB =( )A.{1,6}B.{1,3}C.{1,3,6}D.{1,3,4,6}4.下列表示错误的是( )A.-2∪RB.3∈NC.12∪QD.π∈Q5.下列说法正确的是()A.0∈∅B.{0}=∅C.∅⊆{0}D.{0}∈∅6.若集合A={x|x2=16},B={-4,4},则A与B的关系是()A.A∈BB.A/⊂BC.A=BD.无法确定7.设全集U={0,1,2,3,4,5,6,7,8,9},A={1,2,3,4,x},且UA={0,6,7,8,9},则x等于()A.5B.0或5C.6D.08.若不等式|x|<2和x2-2x-3<0的解集分别为A,B,则A∪B等于()A.(-2,3)B.(-2,1)C.(-1,2)D.(-2,2)9.用描述法表示集合M={-1,0,1,2}为()A.M={x|x>-1}B.M={x|-2<x<3,x∪Z}C.M={x|x<2}D.M={x|-1<x<2}10.集合{x-1,x2-1,2}中的x不能取的值是()A.2B.3C.4D.511.集合{(x,y)|x=1,y=0)表示()A.1和0的集合B.点(1,0)的集合C.直线x=1上所有点的集合D.y=0的所有点的集合12.U={1,2,3,4,5},A={3,4,5},则U A=()A.{3,4,5}B.{1,2}C.{1或2}D.{1,2,3,4,5}13.已知集合A={-1,0,1},集合B={x|x<3,x∈N},则A∩B等于()A.{-1,0,1,2}B.{-1,1,2,3}C.{0,1,2}D.{0,1}14.设全集U=R,A={x|2x-4>0},则∁UA等于()A.{x|x>2}B.{x|x≥2}C.{x|x<2}D.{x|x≤2}15.已知集合A={x|2x+px+q=0}且-2∪A,1∪A,则p,q的值分别为()A.1,2B.1,-2C.D.{-1,4}16.“a=2”是“直线ax+2y-1=0与x+(a-1)y+2=0互相平行”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件17.“a+b=2”是“a,b是方程x2-2x-15=0的两根”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件18.集合M={x|x<3.14},则下面式子正确的是()A.e∈AB.e∉AC.e⊆AD.{e}⊇A19.设集合A={(x,y)|2x+y=6},B={(x,y)|x+3y=3},则A∩B等于()A.{(3,0)}B.{-3,0}C.{(-3,0)}D.{3,0}20.已知集合S={a,b,c}中的三个元素是△ABC的三边长,则△ABC一定不是()A.锐角三角形B.直角三角形C.钝角三角形D.等腰三角形二、填空题21.设全集U=R,集合A={x|x≤-3},则UA=.22.集合中元素的三个特性是、、.23.已知集合A={2,3,4,5},A∩B={2},A∪B={2,3,4,5,6},则B=.24.给定集合A 、B ,定义一种运算⊗,A ⊗B ={m |m =x -y ,x∪A ,y∪B},若A ={4,5},B ={1,2},则A ⊗B 构成的集合是 .25.用列举法表示集合A =6|2x x ∈⎧⎫∈⎨⎬-⎩⎭Z N = .26.若集合A ={x|x2-x -6=0},B ={x|x2+2x =0},则A∪B = .27.试写出|x|>x 的一个充要条件: .28.“x =2”是“x2-4=0”的 条件.三、解答题29.已知集合A ={2,4,6},且6-a∪A ,求a 的值.30.求命题“集合{x |ax2+4x +2=0}只含有一个元素”的充要条件.31.用适当的方法表示下列集合:(1)方程x2+x -6=0的解集;(2)方程组⎩⎪⎨⎪⎧4x +3y =25,3x -4y =0的解集; (3)不大于3的正实数构成的集合.32.用列举法表示下列集合:(1)A ={||1|2*}x x x N -<∈;(2)B =.33.若集合A ={x|x2-2x -8<0},B ={x|x -m <0},且A∩B =,求实数m 的取值范围.答案一、单项选择题1.D{(,)|1,,}x y y x x N y N =-∈∈∅2.B 【解析】∪x>6不能推出x>9,而x>9必然推出x>6,∪选B.3.C4.D5.C 【解析】∅是任意集合的子集.6.C7.A8.A 【提示】A :-2<x<2,B :(x -3)(x +1)<0,解得-1<x<3,∴A ∪B :-2<x<3.9.B 【提示】由集合中描述法的概念知M ={x|-2<x <3,x∪Z},故选B.10.B11.B12.B 【提示】U A 的元素由U 中不属于A 的元素组成,U A ={1,2},故答案选B.13.D14.D15.B 【提示】分别将-2,1代入集合中的方程组得42010p q p q -+=⎧⎨++=⎩,解方程组得p =1,q =-2,故答案选B.16.A17.B 【提示】方程x2-2x -15=0的两根为5和-3,即a +b =2,但a +b =2推不出a ,b 为方程x2-2x -15=0的两个根,故为必要不充分条件.18.A19.A 【提示】联立⎩⎪⎨⎪⎧2x +y =6,x +3y =3, 解得⎩⎪⎨⎪⎧x =3,y =0, 故选A.20.D二、填空题21.{x|x>-3}22.确定性、无序性、互异性【提示】集合元素的基本特性.23.{2,6}24.{2,3,4}25.{-3,-6,6,3,2,1}26.{3,-2,0}27.x<028.充分不必要【提示】 当x2-4=0时,x =2或x =-2.三、解答题29.解:∪6-a∪A ,∴a 的值为4,2,0.30.解:对于方程ax2+4x +2=0,当a =0时,4x +2=0,x =-12,即{x |ax2+4x +2=0}=12⎧⎫-⎨⎬⎩⎭;当a≠0时,{x |ax2+4x +2=0}只有一个元素,即方程ax2+4x +2=0只有一个解,则Δ=42-4×2×a =16-8a =0,即a =2,综上,集合{x |ax2+4x +2=0}只含有一个元素的充要条件为a =0或a =2.31.(1){-3,2} (2){(4,3)} (3){x|0<x≤3}32.解:(1)A ={1,2}.(2)B ={(0,1),(1,0)}33.解:由题意知A=(-2,4),B={x|x<m},又∪A∩B= ,∴m≤-2.。

高一数学集合试题及答案

高一数学集合试题及答案

高一数学集合试题及答案一、单选题1.设全集{2,1,0,1,2}U =--,集合{}{}1,0,1sin ,cos0M N π=-=,,则{1}-=( ) A .M N ⋂B .()U M NC .()U N M ⋂D .()()U U M N 2.若集合{|ln(2)1}A x Z x =∈-≤,则集合A 的子集个数为( )A .3B .4C .7D .8 3.已知集合{}220A x x x =+-<,{}1e ,R x B y y x -==∈,则A B =( ) A .()2,0- B .()2,1- C .()0,1 D .()1,+∞ 4.设集合{}1A x x =>,{}2B x x =≤,则A B =( )A .∅B .{}12x x <≤C .{}12x x x ≤>或D .R5.已知集合{}13A x N x =∈≤≤,{}2650B x x x =-+<,则A B =( ) A .∅ B .{}1,2,3 C .(]1,3 D .{}2,36.已知集合{}21A x x =<,{}lg 0B x x =<,则A B =( ) A .{}11x x -<<B .{}10x x -<<C .{}1x x <D .{}01x x <<7.集合{}230,{1,0,1,2,3}A xx x B =-<=-∣,则A B =( ) A .(1,2) B .{1,2} C .{0,1,2} D .{0,1,2,3} 8.集合{}13A x x =-<<,集合{}2B x x =<,则A B =( )A .()2,2-B .()1,3-C .()2,3-D .()1,2- 9.已知全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}3,4B =,则集合{}4=( ) A .()U A B B .()()U U A B C .()U A B ⋂ D .()U A B10.设集合{}2{|1N 9|}A x x B x x =>=∈<, ,则A B = ( )A .(13),B .(31)(13)--⋃,,C .{2}D .{-2,2}11.已知集合{}1A x x =>,()(){}150B x x x =+-≤,则A B =( )A .(]1,5-B .(]1,5C .[]1,5-D .[]1,5 12.已知集合{}{}2230,1A x x x B x x =--<=≤,则R ()A B ⋂=( )A .(,1][1,)∞∞--⋃+B .(,1](1,)-∞-⋃+∞C .(]1,1-D .[1,1)-13.已知集合(){}30A x x x =-<,{}0,1,2,3B =,则A B ( )A .{}0,1,2,3B .{}0,1,2C .{}1,2,3D .{}1,214.已知集合{}1,2,3,4,5U =,{}1,2A =,{}2,3,4B =,则集合()U AB =( ) A .{}1 B .{}2C .{}1,2,5D .{}1,2,3,4 15.已知集合{}21A x x =-<≤,{}2,1,0,1B =--,则A B =( )A .{}2,1,0,1--B .{}1,0,1-C .{}1,0-D .{}2,1,0--二、填空题16.若集合{}{}1,2,3,4,|23A B x x ==≤≤﹐则A B =_________. 17.已知集合{}2410A x mx x =++=有两个子集,则m 的值是__________. 18.某班共40人,其中24人喜欢篮球运动,16人喜欢乒乓球运动,6人这两项运动都不喜欢,则只喜欢其中一项运动的人数为________19.集合A 满足{}1,3 **15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,则集合A 的个数有________个. 20.若集合(){}21420A x a x x =-+-=有且仅有两个子集,则实数a 的值是____. 21.用适当的符号填空:(1){}0______()2,3-; (2){},,a c b ______{},,a b c ;(3)R______(],3-∞-; (4){}1,2,4______{}8x x 是的约数. 22.已知集合A 与B 的关系如下图,则图中所示的阴影部分用集合表示为________.(要求用集合A 与B 的符号关系表示)23.{}2|60A x x x =+-=,{}|10B x mx =+=,且A B A ⋃=,则m 的值是__________. 24.集合{12}A =,的非空子集是________________. 25.已知集合{0,1,2,3,4,5}A =,集合{1,3,5,7,9}B =,则Venn 图中阴影部分表示的集合中元素的个数为________.三、解答题26.已知函数2()24=-f x x 的定义域为集合A ,关于x 的不等式22430x ax a -+≤的解集为B .(1)当1a =时,求A B ;(2)设0a >,若“x B ∈”是“x A ∈”的必要不充分条件,求实数a 的取值范围.27.在①A B B ⋃=;②“x A ∈”是 “x B ∈”的充分不必要条件;③A B =∅这三个条件中任选一个,补充到本题第(2)问的横线处,求解下列问题: 已知集合{}11A x a x a =-≤≤+,{}2230B x x x =--≤ (1)当2a =时,求A B ;(2)若______,求实数a 的取值范围.28.设集合{}()(){}2|20,|30,0A x x x B x x a x a a =--<=--<>,语句:p x A ∈,语句:q x B ∈.(1)当1a =时,求集合A 与集合B 的交集;(2)若p 是q 的必要不充分条件,求正实数a 的取值范围.29.已知集合{}3A x x =<,{}2560B x x x =-+>. (1)求A B ,()R A B ;(2)若{}1C x m x m =<<+,且B C ≠∅,求实数m 的取值范围.30.为了安全和方便,把一批数据分成若干部分储存在6个服务器里,要求其中任意两个服务器发生意外数据受损时,从其余4个服务器中仍然能够提取信息恢复数据.邀你设计既节省储存空间又满足上述要求的数据储存方案.完成后可进一步探究更一般的情形.【参考答案】一、单选题1.B【解析】【分析】化简集合N ,然后由集合的运算可得.【详解】{}sin ,cos0}0,1 {N π==,{}2,1,2,U N ∴=--{}()1U MN ∴=- 故选:B.2.B【解析】【分析】根据对数的运算性质,求得集合{3,4}A =,进而求得集合A 的子集个数,得到答案.【详解】 由ln(2)1x -≤,可得202x x e->⎧⎨-≤⎩,解得22x e <≤+, 所以集合{|22}{3,4}A x Z x e =∈<≤+=,所以集合A 的子集个数为224=. 故选:B.3.C【解析】【分析】化简集合,A B 即得解.【详解】解: {}{}22021A x x x x x =+-<=-<<,{}{}1e ,R 0x B y y x y y -==∈=>,所以()0,1A B =.故选:C4.B【解析】【分析】根据交集的定义计算可得;【详解】 解:因为{}1A x x =>,{}2B x x =≤, 所以{}12A B x x ⋂=<≤;故选:B5.D【解析】【分析】本题考查集合的交集,易错点在于集合A 元素是自然数,集合B 的元素是实数.【详解】 ∵{}{}131,2,3A x N x =∈≤≤=,{}{}265015B x x x x x =-+<=<<,∴{}2,3A B ⋂=. 故选:D .6.D【解析】【分析】根据对数函数的单调性,结合解一元二次不等式的方法、集合交集的定义进行求解即可.【详解】 因为{}21(1,1)A x x =<=-,{}lg 0(0,1)B x x =<=, 所以A B ={}01x x <<,故选:D7.B【解析】【分析】求得集合{|03}A x x =<<,根据集合交集的概念及运算,即可求解.【详解】由题意,集合2|30{|03},{1,0,1,2,3{}}A x x x x x B =-<=<<=-,根据集合交集的概念及运算,可得{1,2}A B =.故选:B.8.D【解析】【分析】解不等式可求得集合B ,由交集定义可得结果.【详解】{}{}222B x x x x =<=-<<,{}()121,2A B x x ∴⋂=-<<=-.故选:D.9.C【解析】【分析】利用交集,并集和补集运算法则进行计算,选出正确答案.【详解】{}1,2,3,4A B =,(){}5U A B ⋃=,A 错误;()(){}{}{}4,51,2,51,2,4,5U U A B ==,B 错误;(){}{}{}4,53,44UA B ⋂==,C 正确; (){}{}{}1,2,51,2,31,2U A B ==,D 错误.故选:C10.C【解析】【分析】解一元二次不等式,求出集合B ,解得集合A ,根据集合的交集运算求得答案.【详解】由题意解29x <得:33x -<< ,故2N 9{|}{0,1,2}B x x =∈=<,{}||11{A x x x x ==>>或1}x <- ,所以{2}A B =,故选:C11.B【解析】【分析】化简集合B ,然后利用交集的定义运算即得.【详解】∵集合()(){}{}15015B x x x x x =+-≤=-≤≤,{}1A x x =>,∴(]1,5A B ⋂=.故选:B.12.B【解析】【分析】解一元二次不等式求集合A 、解绝对值不等式求集合B ,再应用集合的交补运算求R ()A B .【详解】由题设,{|13},{|11}A x x B x x =-<<=-≤≤,所以1{|1}A B x x =-<≤,则R (){|1A B x x ⋂=≤-或1}x >. 故选:B13.D【解析】【分析】先化简集合A ,继而求出A B .【详解】解:(){}{}30=03A x x x x x =-<<<,{}0,1,2,3B =,则A B ={}1,2. 故选:D.14.A【解析】【分析】求出U B ,计算求解即可.【详解】根据题意得,{}1,5U B =,所以(){}1U AB =.故选:A.15.B【解析】【分析】根据交集的定义即可得出答案.【详解】解:因为{}|21A x x =-<≤,{}2,1,0,1B =--,所以{}1,0,1A B =-.故选:B. 二、填空题16.{2,3}##{3,2}【解析】【分析】由交集的运算求解【详解】{}{}1,2,3,4,|23A B x x ==≤≤,则{2,3}A B =故答案为:{2,3}17.0或4【解析】【分析】由题意得A 只有一个元素,对m 分类讨论求解【详解】当0m =时,1{}4A =-,满足题意 当0m ≠时,由题意得1640m ∆=-=,4m =综上,0m =或4m =故答案为:0或418.28【解析】【分析】首先确定喜欢两项运动的人数,进而得到喜欢一项运动的人数.【详解】 6人这两项运动都不喜欢,∴喜欢一项或两项运动的人数为40634-=人; ∴喜欢两项运动的人数为:2416346+-=人,∴喜欢篮球的人数为24618-=人;喜欢乒乓球的人数为16610-=人; ∴只喜欢其中一项运动的人数为181028+=人.故答案为:28.19.3【解析】【分析】根据题意求出所有的集合A ,即可解出.【详解】因为{}1,3 **15,,A x y x N y N x ⎧⎫⊆=∈∈⎨⎬⎩⎭,即{}1,3 {}1,3,5,15A ⊆,所以{}13,5A =,,{}1,3,15A =,{}1,3,5,15A =,即集合A 的个数有3个.故答案为:3.20.±1【解析】【分析】分析出集合A 有1个元素,对a 讨论方程解的情况即可.【详解】因为集合(){}21420A x a x x =-+-=有且仅有两个子集, 所以集合A 有1个元素.当a =1时,{}1|4202A x x ⎧⎫=-==⎨⎬⎩⎭,符合题意; 当a ≠1时,要使集合A 只有一个元素,只需()()244120a ∆=--⨯-=,解得:1a =-;综上所述: 实数a 的值是1或-1.故答案为:±1.21. ⊆ = ⊇ ⊆【解析】【分析】根据集合子集的定义及集合相等的概念求解.【详解】由集合的子集、集合的相等可知(1)⊆,(2)=,(3)⊇,(4)⊆ 故答案为:⊆,=,⊇,⊆22.()A B A B ⋃【解析】【分析】由集合的交并补运算求解即可.【详解】设全集为A B ,则阴影部分表示集合A 与B 交集的补集,即()A B A B ⋃ 故答案为:()A B A B ⋃ 23.11023-、、 【解析】【分析】先求出集合A ,再由A B A ⋃=,可得B A ⊆,然后分B =∅和B ≠∅两种情况求解即可【详解】解:由260x x +-=,得2x =或3x =-,所以{}{}2|603,2A x x x =+-==-,因为A B A ⋃=,所以B A ⊆,当B =∅时,B A ⊆成立,此时方程10+=mx 无解,得0m =;当B ≠∅时,得0m ≠,则集合{}1|10B x mx m ⎧⎫=+==-⎨⎬⎩⎭, 因为B A ⊆,所以13m -=-或12m -=,解得13m =或12m =-, 综上,0m =,13m =或12m =-. 故答案为:11023-、、 24.{}{}12{12},,, 【解析】【分析】结合子集的概念,写出集合A 的所有非空子集即可.【详解】集合{1,2}A =的所有非空子集是{}{}12{12},,,. 故答案为:{}{}12{12},,,. 25.3【解析】【分析】由集合定义,及交集补集定义即可求得.【详解】由Venn 图及集合的运算可知,阴影部分表示的集合为()A A B . 又{0,1,2,3,4,5}A =,{1,3,5,7,9}B =,{1,3,5}A B ∴⋂=,(){}0,2,4A A B ∴⋂=即Venn 图中阴影部分表示的集合中元素的个数为3 故答案为:3. 三、解答题26.(1){}23x x <≤ (2)4,23⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)解不等式求出,A B ,从而求出交集;(2)利用A 是B 的真子集,列出不等式组,求出实数a 的取值范围.(1)由题意得:40240x x ->⎧⎨->⎩,解得:24x <<, 所以{}24A x x =<<,当1a =时,2430x x -+≤,解得:13x ≤≤, 所以{}13B x x =≤≤, 故{}{}{}241323A B x x x x x x ⋂=<<⋂≤≤=<≤(2)若“x B ∈”是“x A ∈”的必要不充分条件,则A 是B 的真子集,又因为0a >,所以3a a >,故{}3B x a x a =≤≤,则要满足234a a ≤⎧⎨≥⎩,且等号不同时取,解得:423a ≤≤, 故实数a 的取值范围是4,23⎡⎤⎢⎥⎣⎦ 27.(1){}|13A B x x ⋃=-≤≤(2)条件选择见解析,()(),24,-∞-+∞【解析】【分析】 (1)化简集合A 与B 之后求二者的并集(2)先判断集合A 与B 的关系,再求a 的取值范围(1)当2a =时,集合{}|13A x x =≤≤,{}|13B x x =-≤≤,所以{}|13A B x x ⋃=-≤≤;(2)若选择①A ∪B =B ,则A B ⊆,因为{}|11A x a x a =-≤≤+,所以A ≠∅,又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择②,“x A ∈“是“x B ∈”的充分不必要条件,则A B , 因为{}|11A x a x a =-≤≤+,所以A ≠∅, 又{}|13B x x =-≤≤,所以1113a a -≥-⎧⎨+≤⎩,解得02a ≤≤, 所以实数a 的取值范围是[]0,2.若选择③,A B =∅,因为{}|11A x a x a =-≤≤+,{}|13B x x =-≤≤,所以13a ->或11a +<-,解得4a >或2a <-,所以实数a 的取值范围是()(),24,-∞-+∞.28.(1){|12}x x <<; (2)20,3⎛⎤ ⎥⎝⎦. 【解析】【分析】(1)解一元二次不等式求集合A 、B ,应用集合的交运算求交集即可.(2)根据必要不充分关系有B A ≠⊂,即可求a 的范围. (1)由题设,{|12}A x x =-<<,当1a =时{|13}B x x =<<,所以{|12}A B x x =<<;(2)由题设,{|3}B x a x a =<<,且{|12}A x x =-<<,若p 是q 的必要不充分条件,则B A ≠⊂,又a 为正实数,即320a a ≤⎧⎨>⎩,解得203a <≤, 故a 的取值范围为20,3⎛⎤ ⎥⎝⎦. 29.(1){}3A B x x ⋃=≠,(){}23R A B x x ⋂=≤<(2){}2m m ≠【解析】【分析】(1)解出集合B ,利用并集、补集以及交集的定义可求得结果; (2)由已知条件可得出关于m 的不等式,即可解得实数m 的取值范围.(1) 解:因为{}3A x x =<,{}{25602B x x x x x =-+>=<或}3x >, 所以{}3A B x x ⋃=≠,{}23R B x x =≤≤,(){}23R A B x x ⋂=≤<.(2)解:因为B C ≠∅,所以2m <或13m +>,解得2m <或2m >, 所以m 的取值范围为{}2m m ≠.30.【解析】【详解】略。

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析

高一数学集合的运算试题答案及解析1.设全集,集合,则等于()A.B.C.D.【答案】D【解析】由,,所以.故选D.【考点】集合的简单运算.2.已知集合,,则().A.B.C.D.【答案】A【解析】因为,所以;又因为,所以.【考点】集合的运算.3.已知全集U=R,A={x|﹣3<x≤6,},B={x|x2﹣5x﹣6<0,}.求:(1)A∪B;(2).【答案】(1);(2).【解析】解题思路:由题意,先解出一元二次不等式,化简集合B,再求出集合B的补集,再由交、并的运算法则解出即可.规律总结:在处理集合间的运算问题时,往往先化简集合,再结合数轴求集合间的交、并、补集. 试题解析:(1),则;(2),则 .【考点】交、并、补集的运算.4.已知集合,,且,则实数的值是.【答案】.【解析】∵,,∴.【考点】集合间的关系.5.已知集合,则满足A∩B=B的集合B可以是( )A.{0,}B.{x|-1≤x≤1}C.{x|0<x<}D.{x|x>0}【答案】C【解析】利用复合函数的值域知识可得A={y|0<y},因为A∩B=B,所以B A,所以答案是C.【考点】(1)复合函数;(2)集合的运算.6.已知全集,设集合,集合,若,求实数a的取值范围.【答案】.【解析】先解方程,的x=a,-4将a,与-4比较进行讨论,再利用得进行求解.试题解析:因为,又因为2分当时满足,此时 4分当时若,则 6分当时,满足,此时 8分综合以上得:实数的取值范围,所以 10分.【考点】1.一元二次不等式的解法;2.集合的运算.7.已知全集则()A.B.C.D.【答案】C.【解析】找出全集U中不属于A的元素,确定出A的补集,找出既属于A补集又属于B的元素,即可确定出所求的集合,∵全集U={1,2,3,4},A={1,2},∴∁UA={3,4},又B={2,3},则(∁UA)∪B={2,3,4},故选C.【考点】交、并、补集的混合运算.8.以知集合,则=()A.B.C.D.【答案】C【解析】,即,,,【考点】指数不等式的运算和集合的运算9.集合,,则.【答案】【解析】根据,集合A与集合B中的公共元素为4,7,所以【考点】集合的运算10.已知集合,,则=A.B.C.D.【答案】A【解析】,,,故选:A.【考点】集合的运算11.已知,集合,.(Ⅰ)若,求,;(Ⅱ)若,求的范围.【答案】(Ⅰ),;(Ⅱ).【解析】(Ⅰ)将代入得到集合,然后计算并集和交集;(Ⅱ)结合数轴由,集合B的左端点大于等于1,右端点小于等于4,于是,特别注意端点值是否可以取等号。

高一数学集合考点精题训练

高一数学集合考点精题训练

(每日一练)高一数学集合考点精题训练单选题1、已知A={x|x+1>0},B={−2,−1,0,1},则(∁R A)∩B=().A.{−2,−1}B.{−2}C.{−1,0,1}D.{0,1}答案:A解析:先求得∁R A,进而可求得结果.依题意可得∁R A={x|x+1≤0}={x|x≤−1},又B={−2,−1,0,1},所以(∁R A)∩B={−2,−1}. 故选:A.2、若集合A={1,m2},集合B={2,4},若A∪B={1,2,4},则实数m的取值集合为()A.{−√2,√2}B.{2,√2}C.{−2,2}D.{−2,2,−√2,√2}答案:D解析:由题中条件可得m2=2或m2=4,解方程即可.因为A={1,m2},B={2,4},A∪B={1,2,4},所以m2=2或m2=4,解得m=±√2或m=±2,所以实数m的取值集合为{−2,2,−√2,√2}.故选:D.3、已知集合A ={x|x 2−1=0},则下列式子表示正确的有( )①1∈A ②{−1}∈A ③∅∈A ④{−1,1}⊆AA .1个B .2个C .3个D .4个答案:B解析:先求出集合A 中的元素,然后逐项分析即可.因为A ={x|x 2−1=0}={−1,1},则1∈A ,所以①正确;{−1}⊆A ,所以②不正确;∅⊆A ,所以③不正确;{−1,1}⊆A ,所以④正确,因此,正确的式子有2个.故选:B.4、方程组{x +y =3x −y =−1的解集不能表示为. A .{(x,y )|{x +y =3x −y =−1}B .{(x,y )|{x =1y =2 } C .{1,2}D .{(x,y )|x =1 ,y =2}答案:C解析:由方程组{x +y =3x −y =−1,解得{x =1y =2 ,得到解集中只含有一个元素,根据集合的表示方法,逐项判定,即可求解.由题意,方程组{x +y =3x −y =−1,解得{x =1y =2 ,其解集中只含有一个元素,根据集合的表示方法,其中A ,B .D 项表示都是正确的,其中选项C 是表示由两个元素组成的熟记,不符合要求,所以不能表示为{1,2}. 故选C .小提示:本题主要考查了集合的表示方法,其中解答中正确理解集合的表示方法是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.5、已知全集U={x∈N|−1<x≤9},集合A={0,1,3,4},B={y|y=2x,x∈A},则(∁U A)∩(∁U B)=()A.{5,7}B.{7,9}C.{5,7,9}D.{1,2,3,4,5,6,7,8,9}答案:C解析:根据给定条件用列举法表示全集U,求出集合B,再按给定运算即可作答.因为U={x∈N|−1<x≤9},于是得U={0,1,2,3,4,5,6,7,8,9},又集合A={0,1,3,4},B={y|y=2x,x∈A},则B={0,2,6,8},从而得∁U A={2,5,6,7,8,9},∁U B={1,3,4,5,7,9},所以(∁U A)∩(∁U B)={5,7,9}.故选:C。

高一数学集合练习题及答案

高一数学集合练习题及答案高一数学集合练题及答案1.设全集 $U=\{1,2,3,4\}$,$A=\{1,3\}$,$B=\{4\}$,则$(U-A) \cap B=$ ()A。

$\{2,4\}$ B。

$\{4\}$ C。

$\varnothing$ D。

$\{1,3,4\}$2.已知集合 $A=\{x|y=x-1\}$,$B=\{x|x<2\}$,则 $A \cap B=$ ()A。

$\varnothing$ B。

$\{1\}$ C。

$[1,2)$ D。

$(1,2)$3.已知集合 $M=\{(x,y)|y=x^2-x,x\in R\}$,$N=\{y|x^2-x,y\in R\}$,则 $M \cap N=$ ()___{(0,0),(2,2)\}$ C。

$(0,2]$ D。

$[-1,+\infty)$4.已知全集 $U=\{1,2,3,4,5\}$,集合 $A=\{1,2\}$,$B=\{2,3\}$,则 $(A \cup B)=$ ()A。

$\{4,5\}$ B。

$\{1,2\}$ C。

$\{2,3\}$ D。

$\{1,2,3,4\}$5.设 $U=R$,$A=\{x|2x1\}$,则 $B \cap (U-A)=$ ()A。

$\{x|x1\}$ C。

$\{x|0<x<1\}$ D。

$\{x|0\leq x\leq 1\}$6.已知集合 $A=\{-1,0,1\}$,$B=\{x|x(x-2)\leq 0\}$,则 $A \cap B=$ ()A。

$\{-1\}$ B。

$\{0,1\}$ C。

$\{0,1,2\}$ D。

$\{x|-1\leqx\leq 1\}$7.已知集合 $A=\{x|1\leq x\leq 5,x\in N\}$,$B=\{x|x<5,x\in N\}$,则 $A \cup B=$ ()A。

$\{2,3,4\}$ B。

$\{1,2,3,4,5\}$ C。

高一数学集合练习题及答案(5篇)

高一数学集合练习题及答案(5篇)高一数学练习题及答案篇1一、填空题.(每题有且只有一个正确答案,5分×10=50分)1、已知全集U = {1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 }, A= {3 ,4 ,5 }, B= {1 ,3 ,6 },那么集合 { 2 ,7 ,8}是 ( )2 . 假如集合A={x|ax2+2x+1=0}中只有一个元素,则a的值是 ( )A.0B.0 或1C.1D.不能确定3. 设集合A={x|1A.{a|a ≥2}B.{a|a≤1}C.{a|a≥1}.D.{a|a≤2}.5. 满意{1,2,3} M {1,2,3,4,5,6}的集合M的个数是 ( )A.8B.7C.6D.56. 集合A={a2,a+1,1},B={2a1,| a2 |, 3a2+4},A∩B={1},则a的值是( )A.1B.0 或1C.2D.07. 已知全集I=N,集合A={x|x=2n,n∈N},B={x|x=4n,n∈N},则 ( )A.I=A∪BB.I=( )∪BC.I=A∪( )D.I=( )∪( )8. 设集合M= ,则 ( )A.M =NB. M NC.M ND. N9 . 集合A={x|x=2n+1,n∈Z},B={y|y=4k±1,k∈Z},则A 与B的关系为 ( )A.A BB.A BC.A=BD.A≠B10.设U={1,2,3,4,5},若A∩B={2},( UA)∩B={4},( UA)∩( UB)={1,5},则以下结论正确的选项是( )A.3 A且3 BB.3 B且3∈AC.3 A且3∈BD.3∈A且3∈B二.填空题(5分×5=25分)11 .某班有同学55人,其中音乐爱好者34人,体育爱好者43人,还有4人既不爱好体育也不爱好音乐,则班级中即爱好体育又爱好音乐的有人.12. 设集合U={(x,y)|y=3x1},A={(x,y)| =3},则 A= .13. 集合M={y∣y= x2 +1,x∈ R},N={y∣ y=5 x2,x∈ R},则M∪N=_ __.14. 集合M={a| ∈N,且a∈Z},用列举法表示集合M=_15、已知集合A={1,1},B={x|mx=1},且A∪B=A,则m的值为三.解答题.10+10+10=3016. 设集合A={x, x2,y21},B={0,|x|,,y}且A=B,求x, y的值17.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a21=0} ,A∩B=B,求实数a的值.18. 集合A={x|x2ax+a219=0},B={x|x25x+6=0},C={x|x2+2x8=0}.?(1)若A∩B=A∪B,求a的值;(2)若A∩B,A∩C= ,求a的值.19.(本小题总分10分)已知集合A={x|x23x+2=0},B={x|x2ax+3a5=0}.若A∩B=B,求实数a的取值范围.20、已知A={x|x2+3x+2 ≥0}, B={x|mx24x+m10 ,m∈R}, 若A∩B=φ, 且A∪B=A, 求m的取值范围.21、已知集合,B={x|2参考答案C B AD C D C D C B26 {(1,2)} R {4,3,2,1} 1或1或016、x=1 y=117、解:A={0,4} 又(1)若B= ,则,(2)若B={0},把x=0代入方程得a= 当a=1时,B=(3)若B={4}时,把x=4代入得a=1或a=7.当a=1时,B={0,4}≠{4},∴a≠1.当a=7时,B={4,12}≠{4},∴a≠7.(4)若B={0,4},则a=1 ,当a=1时,B={0,4},∴a=1综上所述:a18、.解:由已知,得B={2,3},C={2,4}.(1)∵A∩B=A∪B,∴A=B于是2,3是一元二次方程x2ax+a219=0的两个根,由韦达定理知:解之得a=5.(2)由A∩B ∩ ,又A∩C= ,得3∈A,2 A,4 A,由3∈A,得323a+a219=0,解得a=5或a=2?当a=5时,A={x|x25x+6=0}={2,3},与2 A冲突;当a=2时,A={x|x2+2x15=0}={3,5},符合题意.∴a=2.19、解:A={x|x23x+2=0}={1,2},由x2ax+3a5=0,知Δ=a24(3a5)=a212a+20=(a2)(a10).(1)当2(2)当a≤2或a≥10时,Δ≥0,则B≠ .若x=1,则1a+3a5=0,得a=2,此时B={x|x22x+1=0}={1} A;若x=2,则42a+3a5=0,得a=1,此时B={2,1} A.综上所述,当2≤a10时,均有A∩B=B.20、解:由已知A={x|x2+3x+2 }得得.(1)∵A非空,∴B= ;(2)∵A={x|x }∴ 另一方面,,于是上面(2)不成立,否则,与题设冲突.由上面分析知,B= .由已知B= 结合B= ,得对一切x 恒成立,于是,有的取值范围是21、∵A={x|(x1)(x+2)≤0}={x|2≤x≤1},B={x|1∵ ,(A∪B)∪C=R,∴全集U=R。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

高一数学集合练习题附答案

高一数学集合练习题附答案一、单选题1.设全集U =R ,集合302x A xx ⎧⎫-=≤⎨⎬+⎩⎭,集合{}ln 1B x x =≥,则()UA B =( )A .()e,3B .[]e,3C .[)2,e -D .()2,e -2.设M ,N ,U 均为非空集合,且满足M ⫋N ⫋U ,则()()U U M N ⋂=( ) A .MB .NC .u MD .u N3.已知集合{A xy =∣,{}0,1,2,3B =,则A B =( ) A .{3} B .{2,3} C .{1,2,3} D .{0,1,2,3}4.设全集(){},|R,R U x y x y =∈∈,集合(){},|cos sin 10A x y x y θθ=+-=,则UA 所表示的平面区域的面积为( )A .1πB C .1D .π5.若集合{A y y ==,{}3log 2B x x =≤,则A B =( ) A .(]0,9B .[)4,9C .[]4,6D .[]0,96.已知集合{}i ,N nM m m n ==∈,其中i 为虚数单位,则下列元素属于集合M 的是( ) A .()()1i 1i -+ B .1i1i-+ C .i 1i- D .()21i -7.设集合{}|14A x x =<<,集合2{|230}B x x x =≤一一,则A B =( ) A .[一1,4)B .(一1,4)C .(1,3]D .(1,3)8.已知集合{}24A x N x =∈≤,{}1,B a =,B A ⊆,则实数a 的取值集合为( )A .{}0,1,2B .{}1,2C .{}0,2D .{}29.若集合302x A xx ⎧⎫-=<⎨⎬+⎩⎭,{}0B x x =>,则A B ⋃=( ) A .{}02x x << B .{}3x x > C .{}2x x >- D .{}3x x >-10.已知集合02A x x,{}0,1B =,则A B ⋃=( )A .{}01x x <<B .{}01x x ≤≤C .{}02x x <≤D .{}02x x ≤≤11.已知集合{123}M =,,,{134}N =,,,则M N ⋂等于( ) A .{13},B .{1234},,, C .{24},D .{134},,12.满足条件{M ⋃永安,漳平}{=德化,漳平,永安}的集合M 的个数是( ) A .6B .5C .4D .313.设全集{}U 0|x x =≥,集合2{|}0M x x x =-<,{}|1N x x =≥,则()UM N =( ) A .()0,1B .[)0,1C .()1,+∞D .[)0,∞+14.已知函数()2log f x x =,()2g x a x =-,若存在[]12,1,2x x ∈,使得()()12f x g x =,则实数a 的取值范围是( ) A .()(),25,-∞⋃+∞ B .(][),25,-∞⋃+∞ C .()2,5D .[]2,515.已知集合{}2230A x x x =--<,{}15B x x =≤≤,则A B =( )A .(]1,3-B .[)1,3C .(]1,5-D .(]3,5二、填空题16.设集合{}13A x x =<<,{}B x x a =<,若A B ⊆,则a 的取值范围是_________.17.若集合{}{}220,10M x x x N x ax =+-==+=,且N M ⊆,则实数a 的取值集合为____.18.已知{}3A x a x a =≤≤+,{}15b x x =-<<,A B =∅,则实数a 的取值范围是______19.已知集合{}N 4sin ,02A x x θθπ=∈<≤≤,若集合A 中至少有3个元素,则实数θ取值范围为________20.某班有学生45人,参加了数学小组的学生有31人,参加了英语小组的学生有26人.已知该班每个学生都至少参加了这两个小组中的一个小组,则该班学生中既参加了数学小组,又参加了英语小组的学生有___________人.21.某学校开设校本课程,高一(2110)班确定了数学类、英语类、历史类三个类别校本课程供班上的40名学生选择参加,且40名学生全部参与选择.其中只选数学类的有8人,只选英语类的有8人,只选历史类的有8人,既选数学类又选英语类的有7人,既选数学类又选历史类的有11人,既选英语类又选历史类的有8人,则三类课程都选择参加的有___________人.22.若全集{}0,1,2,3,4U =,{}0,1,2,3A =,{}2,3,4B =,则A B ⋃=______. 23.已知集合A ={x |2<x <4},B ={x |(x -1)(x -3)<0},则A ∩B 等于________. 24.若集合A ={x ∈R|ax 2+ax +1=0}中只有一个元素,则a =________.25.已知集合{}2202120200A x x x =-+<,{}B x x a =<,若A B ⊆,则实数a 的取值范围是______.三、解答题26.立德中学高一年级共有200名学生,报名参加学校团委与学生会组织的社团组织,据统计,参加艺术社团组织的学生有103人,参加体育社团组织的学生有120人(并非每个学生必须参加某个社团).求在高一年级的报名学生中,同时参加这2个社团的最多有多少人?最少有有多少人?27.函数()f x 满足(21)41f x x +=-. (1)求()f x 的解析式;(2)集合{}2|()30A x x f x =++=,写出集合A 的所有子集.28.已知集合{12}S n =,,,(3n ≥且*n N ∈),12{}m A a a a =,,,,且A S ⊆.若对任意i j a A a A ∈∈,(1i j m ≤≤≤),当i j a a n +≤时,存在k a A ∈(1km ≤≤),使得i j k a a a +=,则称A 是S 的m 元完美子集.(1)判断下列集合是否是{12345}S =,,,,的3元完美子集,并说明理由; ①1{124}A =,,; ②2{245}A =,,.(2)若123{}A a a a =,,是{127}S =,,,的3元完美子集,求123a a a ++的最小值; (3)若12{}m A a a a =,,,是{12}S n =,,,(3n ≥且*n N ∈)的m 元完美子集,求证:12(+1)2m m n a a a +++≥,并指出等号成立的条件.29.设全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤. (1)求A B ,A B ; (2)求()R B A .30.已知集合{}2,560|U R A x x x ==-+≤,112B xx ⎧⎫=≤⎨⎬-⎩⎭. (1)求,A B ;(2)判断Ux A ∈是x B ∈的什么条件.【参考答案】一、单选题 1.D 【解析】 【分析】求出集合A 、B ,利用交集和补集的定义可求得集合()U A B ∩. 【详解】因为{}30232x A xx x x ⎧⎫-=≤=-<≤⎨⎬+⎩⎭,{}{}ln 1e B x x x x =≥=≥, 所以,{}e UB x x =<,因此,()()2,e UA B =-.故选:D. 2.D 【解析】 【分析】利用()()()U U uM N M N ⋂=⋃,判断相互之间的关系.【详解】()()()UU uM N M N ⋂=⋃,M N N ⋃=,()u uM N N ⋃=.故选D. 3.C 【解析】 【分析】先由y =A ,再根据集合交集的原则即可求解. 【详解】对于集合A ,10x -≥,即1≥x ,则{}1A x x =≥, 所以{}1,2,3A B =, 故选:C 4.D 【解析】 【分析】求出原点到直线(系)的距离,即可判断集合A ,从而得到UA ,即可求出所表示的平面区域的面积; 【详解】解:对于直线(系)cos sin 10x y θθ+-=,则坐标原点()0,0到直线的距离1d ==,则集合(){},|cos sin 10A x y x y θθ=+-=表示平面上所有到原点距离等于1的直线上的点组成的集合,全集(){},|R,R U x y x y =∈∈表示坐标平面上的所有点的集合, 所以(){}22,|1UA x y x y =+<,则UA 所表示的平面区域的面积为π;故选:D 5.A 【解析】 【分析】先解出集合A 、B,再求A B . 【详解】因为{{}0A y y y y ===≥,{}{}3log 209B x x x x =≤=<≤,所以{}09A B x x ⋂=<≤.故选:A . 6.B 【解析】 【分析】计算出集合M ,在利用复数的四则运算化简各选项中的复数,即可得出合适的选项. 【详解】当N k ∈时,4i 1k =,41i i k +=,422i i 1k +==-,433i i i k +==-,则{}i,1,i,1M =--, ()()1i 1i 112M -+=+=∉,()()()21i1i 2i i 1i 1i 1i 2M ---===-∈++-,()()()i 1i i 11i 1i 1i 1i 22M +==-+∉--+,()2i 1i 2M =-∉-, 故选:B. 7.A 【解析】 【分析】解二次不等式求得集合B 然后根据并集的定义即得. 【详解】由2230x x --≤,解得13x -≤≤,[]1,3B ∴=-,又()1,4A =,[1,4)A B ∴⋃=-.故选:A. 8.C 【解析】 【分析】化简集合A ,根据B A ⊆求实数a 的可能取值,由此可得结果. 【详解】因为集合{}24A x N x =∈≤化简可得{0,1,2}A =又{}1,B a =,B A ⊆, 所以0a =或2a =,故实数a 的取值集合为{0,2}, 故选:C. 9.C 【解析】 【分析】解分式不等式确定集合A ,再由并集的定义计算. 【详解】解:依题意,{}30232x A xx x x ⎧⎫-=<=-<<⎨⎬+⎩⎭,则{}2A B x x ⋃=>-, 故选:C . 10.D 【解析】 【分析】根据集合的并集的定义即可求解. 【详解】 {}{}{}200,102A B x x x x ==<≤≤≤.故选: D. 11.A 【解析】 【分析】根据交集的定义计算可得; 【详解】解:因为{}1,2,3M =,{}1,3,4N =,所以{}1,3M N ⋂=; 故选:A 12.C 【解析】 【分析】根据集合的并集可得答案. 【详解】因为集合{M ⋃永安,漳平}{=德化,漳平,永安}, 所以集合M 可以为{德化},{德化,漳平},{德化,永安}, {德化,永安,漳平},共4个,故选:C. 13.B 【解析】 【分析】首先解一元二次不等式求出集合M ,再根据补集、并集的定义计算可得; 【详解】解:由20x x -<,即()10x x -<,解得01x <<,所以{}{}210||0M x x x x x -=<=<<,因为{}|1N x x =≥,{}U 0|x x =≥,所以{}U|01N x x =≤<,所以(){}U|01MN x x =≤<;故选:B 14.D 【解析】 【分析】根据条件求出两个函数在[1,2]上的值域,结合若存在[]12,1,2x x ∈,使得12()()f x g x =,等价为两个集合有公共元素,然后根据集合关系进行求解即可. 【详解】当12x ≤≤时,22log 1()log 2f x ≤≤,即0()1f x ≤≤,则()f x 的值域为[0,1], 当12x ≤≤时,4()2a g x a -≤≤-,则()g x 的值域为[4,2]a a --, 因为存在[]12,1,2x x ∈,使得12()()f x g x =, 则[4,2][0,1]a a --≠∅ 若[4,2][0,1]a a --=∅, 则14a <-或02a >-, 得5a >或2a <,则当[4,2][0,1]a a --≠∅时,25a ≤≤, 即实数a 的取值范围是[2,5],A ,B ,C 错,D 对. 故选:D . 15.B 【解析】 【分析】求出集合{}2230A x x x =--<,再根据集合的交集运算求得答案.【详解】由题意,{}2230{|13}A x x x x x =--<=-<<,故{}{|13}15{|13}A B x x x x x x ⋂=-<<⋂≤≤=≤<, 故选:B二、填空题16.[)3,+∞【解析】 【分析】根据A B ⊆列出不等式即可求解. 【详解】因为{}13A x x =<<,{}B x x a =<,A B ⊆,故只需3a ≥即可满足题意. 故答案为:[)3,+∞.17.10,1,2⎧⎫-⎨⎬⎩⎭【解析】 【详解】先求出集合M ,然后分N =∅和N ≠∅两种情况求解 【点睛】由220x x +-=,得(1)(2)0x x -+=,解得1x =或2x =-, 所以{}1,2M =-,当N =∅时,满足N M ⊆,此时0a = 当N ≠∅时,即0a ≠,则1N a ⎧⎫=-⎨⎬⎩⎭,因为N M ⊆,所以1M a-∈,所以11a -=或12a-=-, 解得1a =-或12a =, 综上,12a =,或1a =-,或0a =, 所以实数a 的取值集合为10,1,2⎧⎫-⎨⎬⎩⎭,故答案为:10,1,2⎧⎫-⎨⎬⎩⎭18.4a ≤-或5a ≥ 【解析】 【分析】由3a a <+可得A ≠∅,根据题意可得到端点的大小关系,得到不等式,从而可得答案. 【详解】由题意 3a a <+,则A ≠∅要使得A B =∅,则31a +≤-或5a ≥ 解得4a ≤-或5a ≥ 故答案为:4a ≤-或5a ≥ 19.5,66ππ⎛⎫⎪⎝⎭【解析】 【分析】分析可知元素0、1、2必属于集合A ,可得出1sin 2θ>,由[]0,2θπ∈可求得θ的取值范围. 【详解】要使集合A 中至少有3个元素,则元素0、1、2必属于集合A ,所以只需4sin 2θ>,即1sin 2θ>, 又[]0,2θπ∈,解得5,66ππθ⎛⎫∈ ⎪⎝⎭. 故答案为:5,66ππ⎛⎫⎪⎝⎭.20.12 【解析】 【分析】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,列方程求解即可. 【详解】设该班学生中既参加了数学小组,又参加了英语小组的学生有x 人,则31264512x =+-=. 故答案为:12. 21.5 【解析】 【分析】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解方程可求得结果 【详解】设三类课程都选择参加的学生有x 人,由题意得()()()83711840x x x x ⨯+-+-+-+=,解得5x =. 故答案为:522.{}0,1,4【解析】 【分析】根据集合的运算法则计算. 【详解】由已知{4}A =,{0,1}B =,所以{0,1,4}A B =. 故答案为:{0,1,4}. 23.{x |2<x <3} 【解析】 【分析】解二次不等式可得集合B ,再求交集即可. 【详解】∵A ={x |2<x <4},B ={x |(x -1)(x -3)<0}={x |1<x <3}, ∴A ∩B ={x |2<x <3}. 故答案为:{x |2<x <3} 24.4 【解析】 【分析】集合A 只有一个元素,分别讨论当0a =和0a ≠时对应的等价条件即可 【详解】解:2{|10}A x R ax ax =∈++=中只有一个元素, ∴若0a =,方程等价为10=,等式不成立,不满足条件.若0a ≠,则方程满足0∆=,即240a a -=,解得4a =或0a =(舍去). 故答案为:425.[)2020,∞+【解析】 【分析】解一元二次不等式求得集合A ,根据A B ⊆求a 的取值范围. 【详解】由2202120200x x -+<,解得:12020x <<, ∴()1,2020A =,又A B ⊆,且{}|B x x a =<, ∴2020a ≥,故a 的取值范围为[)2020,∞+. 故答案为:[)2020,∞+三、解答题26.103;23. 【解析】 【分析】由题可知当艺术社团组织的学生都参加体育社团组织时,同时参加这2个社团的人数最多,当每个学生都参加某个社团时,同时参加这2个社团的学生最少. 【详解】由题意:当艺术社团组织的103名学生都参加体育社团组织时,同时参加这2个社团的学生最多,且有103人;当每个学生都参加某个社团时,同时参加这2个社团的学生最少,且有10312020023+-=人,所以同时参加这2个社团的最多有103名学生,最少有23名学生. 27.(1)()23f x x =-(2){}0,{}2-,{}0,2-和∅【解析】【分析】(1)利用换元法:21t x =+,求出()f t ,即可求出()f x 的解析式;(2)根据()230x f x ++=求出集合A 的元素,根据元素即可写出集合A 的所有子集.(1)令21x t +=,所以12t x -=, 所以()141232t f t t -=⋅-=-,即()23f x x =-; (2)因为()23f x x =-, {}{}22|()30|20A x x f x x x x =++==+=,因为220x x +=,解得0x =或2x =-,所以{}0,2A =-,所以集合A 的所有子集为:{}0,{}2-,{}0,2-和∅.28.(1)1A 不是S 的3元完美子集;2A 是S 的3元完美子集;理由见解析(2)12(3)证明见解析;等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤ 【解析】【分析】(1)根据m 元完美子集的定义判断可得结论;(2)不妨设123a a a <<.由11a =,12a =,13a ≥分别由定义可求得123a a a ++的最小值; (3)不妨设12m a a a <<<,有121i i i i m i a a a a a a a n +-<+<+<<+≤.121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,,此时该集合恰有m i -个不同的元素,显然矛盾.因此对任意1i m ≤≤,都有11i m i a a n +-++≥,由此可得证.(1)解:(1)①因为1235+=≤,又13A ∉,所以1A 不是S 的3元完美子集. ②因为2245+=≤,且24A ∈,而55454425245+>+>+>+>+>, 所以2A 是S 的3元完美子集.(2)解:不妨设123a a a <<.若11a =,则112a a A +=∈,123A +=∈,134A +=∈,与3元完美子集矛盾; 若12a =,则114a a A +=∈,246A +=∈,而267+>,符合题意,此时12312a a a ++=. 若13a ≥,则116a a +≥,于是24a ≥,36a ≥,所以123+13a a a +≥. 综上,123a a a ++的最小值是12.(3)证明:不妨设12m a a a <<<.对任意1i m ≤≤,都有11i m i a a n +-++≥,否则,存在某个(1)i i m ≤≤,使得1i m i a a n +-+≤. 由12m a a a <<<,得121i i i i m i a a a a a a a n +-<+<+<<+≤. 所以121i i i m i a a a a a a +-+++,,,是A 中1m i +-个不同的元素,且均属于集合12{}i i m a a a ++,,,, 该集合恰有m i -个不同的元素,显然矛盾.所以对任意1i m ≤≤,都有11i m i a a n +-++≥. 于是1211211212()()()()()(1)m m m m m m a a a a a a a a a a a a m n ---++++=+++++++++≥. 即12(1)2m m n a a a ++++≥. 等号成立的条件是11N 1n a m +=∈+*且(1)(2)1i n i a i m m +=+≤≤. 29.(1){23A B x x ⋂=-<≤或}9x =,A B R =(2)(){2R B A x x ⋂=≤-或}9x >【解析】【分析】(1)根据集合的交集和并集的定义即可求解; (2)先根据补集的定义求出B R ,然后再由交集的定义即可求解. (1) 解:因为{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{23A B x x ⋂=-<≤或}9x =,A B R =;(2)解:因为全集为R ,{3A x x =≤或}9x ≥,{}29B x x =-<≤, 所以{2R B x x =≤-或}9x >,所以(){2R B A x x ⋂=≤-或}9x >.30.(1){}|23A x x =≤≤;{2B x x =<或}3x ≥.(2)充分不必要条件【解析】【分析】(1)分别解一元二次不等式和分式不等式即可得答案; (2)由题知{2U A x x =<或}3x >,进而根据充分不必要条件判断即可.(1)解:解不等式2560x x -+≤得23x ≤≤,故{}|23A x x =≤≤; 解不等式()()320113110022220x x x x x x x ⎧--≤-≤⇔-≤⇔≤⇔⎨----≠⎩, 解得2x <或3x ≥,故{2B x x =<或}3x ≥.(2)解:因为{}|23A x x =≤≤, 所以{2U A x x =<或}3x >, 因为{2B x x =<或}3x ≥, 所以U x A ∈是x B ∈的充分不必要条件.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章集合(B 组) 分满:100分 时间:50分钟 一、选择题(每小题5分,共45分) 1.下列四个集合中,是空集的是( )
A .}33|{=+x x
B .},,|),{(22R y x x y y x ∈-=
C .}0|{2≤x x
D .},01|{2R x x x x ∈=+- 2. 若集合{}|6,A x x x N =≤∈,{|}B x x =是非质数,C A B = , 则C 的非空子集的个数为( )
A 6个
B 10个
C 12个
D 14个
3.若集合}1,1{-=A ,}1|{==mx x B ,且A B A =⋃,则m 的值为( ) A .1 B .1- C .1或1- D .1或1-或0
4.若集合{}
{
}
22
(,)0,(,)0,,M x y x y N x y x y x R y R =+==+=∈∈,则有( ) A .M N M = B . M N N = C . M N M = D .M N =∅
5.方程组⎩⎨⎧=-=+9
1
2
2y x y x 的解集是( ) A .()5,4 B .()4,5- C .(){}4,5- D .(){}4,5-。

6.下列表述中错误的是( )
A .若A
B A B A =⊆ 则, B .若B A B B A ⊆=,则
C .)
(B A A
)(B A D .()()()B C A C B A C U U U =
7.某班有学生55人,其中体育爱好者43人,音乐爱好者34人,还有4人既不爱好体育也 不爱好音乐,则该班既爱好体育又爱好音乐的人数为( )人。

A 23 B 24 C 25 D 26
8.已知集合{
}
2
|10,A x x A R φ=+== 若,则实数m 的取值范围是( ) A .4<m B .4>m C .40<≤m D .40≤≤m
9.设全集U 是实数集R ,{}
2
4M x x =|>,{}3N x x =|1<<,
则图中阴影部分所表示的集合是( )
M
N
U
A. {}1x x |-2≤<
B.{}2x x |-2≤≤
C. {}2x x |1<≤
D.{}2x x |<
二、填空题(每小题5分,共20分)
10.设集合{}
2|560B x x x =-+=,{}
2
|280C x x x =+-=,则集合C B ⋃=
11.设{}{}34|,|,<>=≤≤==x x x A C b x a x A R U U 或则___,___a b ==。

12.已知A={(x,y)|x+y-2=0},B={(x,y)|x-2y+4=0},C={(x,y)|y=3x+b},若(A ∩B)⊆C,则
b= . 13.已知集合86A Z x N x ⎧⎫
=∈∈⎨
⎬-⎩⎭
,试用列举法表示集合A =
三、解答题(共35分。

注意:要有解答过程及必要的文字说明)
14.(11分)已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B A ⊆,求m 的取值范围。

15.(11分)已知集合}023|{2=+-=x ax x A (1)至多有一个元素,则a 的取值范围; (2)若至少有一个元素,则a 的取值范围。

16.(13分)设2
2
2
{40},{2(1)10}A x x x B x x a x a =+==+++-=,其中x R ∈,
如果A B B = ,求实数a 的取值范围。

相关文档
最新文档