全国数模竞赛优秀论文
全国大学生数学建模竞赛C题国家奖一等奖优秀论文

脑卒中发病环境因素分析及干预摘要本文主要讨论脑卒中发病环境因素分析及干预问题。
根据题中所给出的数据,利用SPSS20 软件进行相关性统计分析,分别对各气象因素进行单因素分析,进而建立后退法线性回归分析模型,得到脑卒中与气压、气温、相对湿度之间的关系。
同时在广泛收集各种资料并综合考虑环境因素,对脑卒中高危人群提出预警和干预的建议方案。
首先,利用SPSS20软件,从患病人群的性别、年龄、职业进行统计分析,得到2007-2010年男性患病人数高于女性,且男性所占比例有逐年下降趋势,女性则有上升趋势,因此,性别比例呈减小趋势。
分析不同年龄段患病人数,得到患病高峰期为75-77岁之间,且青少年比例逐年呈增长趋势,可见患病比例趋于年轻化。
同时在不同的职业中,农民发病人数最多,教师,渔民,医务人员,职工,离退人员的发病人数较少。
其次,由题中所给数据先进行单因素分析,剔除对脑卒中影响不显著的因素,得出气温、气压、相对湿度对脑卒中的影响程度大小,进而采用后退法线性回归分析建立模型,利用SPSS20对数据进行分析,求得脑卒中发病率与气温、气压、相对湿度之间的关系。
即发病率与平均温度成正相关,与最高温度成负相关,发病率与平均气压成正相关,与最低气压成负相关,与平均相对湿度成负相关,与最小相对湿度成正相关。
最后,通过查找资料发现,影响脑卒中的因素有两类,一类是不可干预因素,如年龄、性别、家族史,另一类是可干预因素,如高血压、高血脂、糖尿病、肥胖、抽烟、酗酒等因素。
分析这些因素,建立双变量因素分析模型,并结合问题1和问题2,对高危人群提出预警和干预的建议方案。
关键词脑卒中单因素分析后退法线性回归分析双变量因素分析一问题的重述脑卒中(俗称脑中风)是目前威胁人类生命的严重疾病之一,它的发生是一个漫长的过程,一旦得病就很难逆转。
这种疾病的诱发已经被证实与环境因素,包括气温、湿度之间存在密切的关系。
对脑卒中的发病环境因素进行分析,其目的是为了进行疾病的风险评估,对脑卒中高危人群能够及时采取干预措施,也让尚未得病的健康人,或者亚健康人了解自己得脑卒中风险程度,进行自我保护。
全国数学建模竞赛一等奖论文

交巡警服务平台的设置与调度摘要由于警务资源有限,需要根据城市的实际情况与需求建立数学模型来合理地确定交巡警服务平台数目与位置、分配各平台的管辖范围、调度警务资源。
设置平台的基本原则是尽量使平台出警次数均衡,缩短出警时间。
用出警次数标准差衡量其均衡性,平台与节点的最短路衡量出警时间。
对问题一,首先以出警时间最短和出警次数尽量均衡为约束条件,利用无向图上任意两点最短路径模型得到平台管辖范围,并运用上下界网络流模型优化解,得到A区平台管辖范围分配方案。
发现有6个路口不能在3分钟内被任意平台到达,最长出警时间为5.7分钟。
其次,利用二分图的完美匹配模型得出20个平台封锁13个路口的最佳调度方案,要完全封锁13个路口最快需要8.0分钟。
最后,以平台出警次数均衡和出警时间长短为指标对方案优劣进行评价。
建立基于不同权重的平台调整评价模型,以对出警次数均衡的权重u和对最远出警距离的权重v 为参数,得到最优的增加平台方案。
此模型可根据实际需求任意设定权重参数和平台增数,由此得到增加的平台位置,权重参数可反映不同的实际情况和需求。
如确定增加4个平台,令u=0.6,v=0.4,则增加的平台位置位于21、27、46、64号节点处。
对问题二,首先利用各区平台出警次数的标准差和各区节点的超距比例分析评价六区现有方案的合理性,利用模糊加权分析模型以城区的面积、人口、总发案次数为因素来确定平台增加或改变数目。
得出B、C区各需改变2个平台的位置,新方案与现状比较,表明新方案比现状更合理。
D、E、F区分别需新增4、2、2个平台。
利用问题一的基于不同权重的平台调整评价模型确定改变或新增平台的位置。
其次,先利用二分图的完美匹配模型给出80个平台对17个出入口的最优围堵方案,最长出警时间12.7分钟。
在保证能够成功围堵的前提下,若考虑节省警力资源,分析全市六区交通网络与平台设置的特点,我们给出了分阶段围堵方案,方案由三阶段构成。
最多需调动三组警力,前后总共需要29.2分钟可将全市路口完全封锁。
全国数模优秀论文

全国数模优秀论文摘要:数学建模竞赛是我国高校和科研机构之间最具影响力的竞赛之一。
在每年的比赛中,数模优秀论文成为了评选标杆。
本文将介绍一些全国数模优秀论文的典型案例以及其独特之处,以期为今后的数学建模竞赛提供参考和借鉴。
第一部分:背景介绍数学建模竞赛在我国的高校和科研机构之间已经有着悠久的历史。
每年,大量的参赛团队通过精心准备和协作,在赛场上展示自己的数学建模能力。
然而,仅有少部分论文能够被评为全国数模优秀论文。
这些论文具有出色的创新性、严谨的研究方法和对实际问题的深入理解。
第二部分:案例分享2.1 实时监测系统优化某团队在2019年的数学建模竞赛中提出了一种实时监测系统的优化方案。
该方案通过改进数据采集与传输方式、优化算法和提高系统的稳定性,使实时监测系统的准确性和效率得到了极大的提升。
这项优化方案在实际应用中显著降低了监测数据的延迟和误差,为实时监测领域的相关研究提供了有益的参考。
2.2 路径优化及决策支持系统另一团队的研究成果是关于路径优化及决策支持系统。
他们利用数学模型和优化算法,对城市交通拥堵问题进行了研究,并提出了一种有效的路径优化策略,能够帮助驾驶员避开拥堵路段,减少交通时间和燃料消耗。
该论文的创新之处在于结合实时交通数据、地理信息和优化算法,为城市交通领域提供了新的思路和解决方案。
2.3 物流网络规划在2020年的数学建模竞赛中,一支团队针对物流网络规划问题进行了深入研究。
他们结合了图论、运筹学和网络优化方法,提出了一种高效的物流网络规划模型,并利用实际数据进行验证。
该模型不仅考虑了用户需求和运输成本,还考虑了不同供应商之间的协同与共享,使物流网络的效率和资源利用率得到了极大的提高。
第三部分:独特之处3.1 创新性全国数模优秀论文的独特之处在于具有创新性。
这些论文通过对现有问题的重新思考,提出了新的解决方法和思路。
创新性不仅体现在算法和模型的设计上,更是在问题的选取和实际应用中的独特性。
全国大学生数学建模优秀论文(A题) 国家一等奖

地下储油罐的变位分析与罐容表标定摘要加油站地下储油罐在使用一段时间后,由于地基变形等原因会发生纵向倾斜及横向偏转,导致与之配套的“油位计量管理系统”受到影响,必须重新标定罐容表。
本文即针对储油罐的变位时罐容表标定的问题建立了相应的数学模型。
首先从简单的小椭圆型储油罐入手,研究变位对罐容表的影响。
在无变位、纵向变位的情况下分别建立空间直角坐标系,在忽略罐壁厚度等细微影响下,运用积分的方法求出储油量和测量油位高度的关系。
将计算结果与实际测量数据在同一个坐标系中作图,经计算得误差均保持在3.5%以内。
纵向变位中,要分三种情况来进行求解,然后将三段的结果综合在一起与变位前作比较,可以得到变位对罐容表的影响。
通过计算,具体列表给出了罐体变位后油位高度间隔为1cm 的罐容表标定值。
进一步考虑实际储油罐,两端为球冠体顶。
把储油罐分成中间的圆柱体和两边的球冠体分别求解。
中间的圆柱体求解类似于第一问,要分为三种情况。
在计算球冠内储油量时为简化计算,将其内油面看做垂直于圆柱底面。
根据几何关系,可以得到如下几个变量之间的关系:测量的油位高度0h 实际的油位高度h 计算体积所需的高度H于是得到罐内储油量与油位高度及变位参数(纵向倾斜角度α和横向偏转角度β )之间的一般关系。
再利用附表2中的数据列方程组寻找α与β最准确的取值。
αβ一、问题重述通常加油站都有若干个储存燃油的地下储油罐,并且一般都有与之配套的“油位计量管理系统”,采用流量计和油位计来测量进/出油量与罐内油位高度等数据,通过预先标定的罐容表(即罐内油位高度与储油量的对应关系)进行实时计算,以得到罐内油位高度和储油量的变化情况。
许多储油罐在使用一段时间后,由于地基变形等原因,使罐体的位置会发生纵向倾斜和横向偏转等变化(以下称为变位),从而导致罐容表发生改变。
按照有关规定,需要定期对罐容表进行重新标定。
题目给出了一种典型的储油罐尺寸及形状示意图,其主体为圆柱体,两端为球冠体。
全国数模优秀论文参考

全国数模优秀论文参考数学建模就是通过计算得到的结果来解释实际问题,并接受实际的检验,来建立数学模型的全过程。
本篇文章整理提供了两篇全国数模优秀论文范文供大家参考学习。
全国数模优秀范文一:溜井放矿量与磨损量计算式的数模摘要:在溜井放矿过程中,井筒井壁会随着井筒内矿石移动而同时产生磨损,这种磨损缓慢、渐进式连续发生的,均匀的向四周发展扩大。
提出了连续式的积分方程,推导出溜井井筒的磨损量与放矿量之间关系的数学模型。
用德兴铜矿的相关数据进行了计算,计算结果表明,该数学模型所提供的计算数据与实际井筒磨损情况接近,可为矿山规划、溜井设计与生产管理提供可靠的依据。
关键词:溜井放矿;放矿量;磨损量;数学模型在溜井放矿过程中,井筒必然产生磨损。
若管控不严,措施不当,会引起井筒破坏,影响生产,威胁安全,严重时井筒报废。
研究溜井放矿时的井筒磨损规律,减缓井筒磨损速度,延长服务年限,增加井筒通过矿量,是一个重要的研究课题。
本文就溜井放矿时井筒磨损规律进行探讨。
1、溜井放矿时井筒磨损人们在长期观察中发现,溜井在放矿过程中,井筒的井壁磨损呈现:贮矿段井筒磨损速度较小且均匀,井壁光滑[1];矿石对井壁的磨损轻微,溜井周边面磨损是均匀的[2];贮矿段溜井磨损均匀,上下磨损速度非常接近[3];全溜井的井壁光滑、完整,磨损轻微[4]。
根据以上的观察描述,溜井放矿的井筒磨损规律是:在放矿过程中,贮矿段的溜井井筒是以其中心线为中心,向四周磨损扩大是均匀的、相等的。
2、溜井磨损的计算式2.1、多项式的计算式根据上述井筒磨损规律,按照井筒磨损速度的计算公式U=r-r0Q(其中,U为井筒磨损速度,m/万t;r为经放矿磨损后的井筒半径,m;r0为初始的井筒半径,m;Q为放出的矿石量,万t),采用多项式推导出的溜井放矿量与井筒磨损量之间的计算公式为[5]:为溜井井筒初始直径,m溜井放矿的井筒磨损量与放矿量之间的关系是一个相互渐进且连续的过程。
上述使用多项式的推导过程,采用的是渐进式,但不是连续式。
全国大学生数学建模大赛D题优秀论文(精)

会议筹备优化模型摘要能否成功举办一届全国性的大型会议,取决于会前的筹备工作是否到位。
本文为某会议筹备组,从经济、方便、满意度等方面,通过数学建模的方法制定了一个预订宾馆客房、租借会议室和租用客车的合理方案。
首先,通过对往届与会情况和本届住房信息有关数据的定量分析,预测到本届与会人数的均值是662人,波动范围在640至679之间。
拟预订各类客房475间。
其次,为便于管理、节省费用,所选宾馆应兼顾客房价位合适,宾馆数量少,距离近,租借的会议室集中等要素。
为此,依据附件4,借助EXCEL计算,得出7号宾馆为10个宾馆的中心。
然后,运用LINGO软件对选择宾馆和分配客房的0-1规划模型求解,得出分别在1、2、6、7、8号宾馆所预订的各类客房。
最后,建立租借会议室和客车的整数规划模型,求解结果为:某天上下午的会议,均在7、8号宾馆预订容纳人数分别为200、140、140、160、130、130人的6个会议室;租用45座客车2辆、33座客车2辆,客车在半天内须分别接送各两趟,行车路线见正文。
注:表中有下画线的数字,表示独住该类双人房间的个数。
关键词:均值综合满意度EXCEL 0-1规划LINGO软件1.问题的提出1.1基本情况某一会议服务公司负责承办某专业领域的一届全国性会议。
本着经济、方便和代表满意的原则,从备选10家宾馆中的地理位置、客房结构、会议室的规模(费用)等因素出发,同时,依据会议代表回执中的相关信息,初步确定代表总人数并预定宾馆和客房;会议期间在某一天上下午各安排6个分组会议,需合理分配和租借会议室;为保证代表按时参会,租用客车接送代表是必需的(现有45座、36座、33座三种类型的客车,租金分别是半天800元、700元和600元)。
1.2相关信息(见附录)附件1 10家备选宾馆的有关数据。
附件2 本届会议的代表回执中有关住房要求的信息(单位:人)。
附件3 以往几届会议代表回执和与会情况。
附件4 宾馆平面分布图。
数学建模优秀论文(精选范文10篇) 2021

根据实际问题来建立数学模型,对数学模型来进行求解,然后根据结果去解决实际问题,这就是数学建模,本篇文章主要是向大家介绍几篇数学建模优秀论文得范文,希望对有这方面参考得学者有所帮助。
数学建模优秀论文精选范文10篇之第一篇:培养低年段学生数学建模意识得微课教学---------------------------------------------------------------------------------------------------------------------感谢使用本套资料,希望本套资料能带给您一些思维上的灵感和帮助,个人建议您可根据实际情况对内容做适当修改和调整,以符合您自己的风格,不太建议完全照抄照搬哦。
---------------------------------------------------------------------------------------------------------------------摘要:本文阐述了录制微课对培养学生建模意识得必要性和可行性,认为在小学数学教学中,鼓励低年段学生录制微课有积极意义,主张提高小学生建模语言表达能力,通过任务驱动和学生自主录制微课,逐步深入学习建模内容,培养并增强学生得建模意识。
关键词:低年段数学; 微课; 建模意识;当今社会,信息技术高速发展使教学资源高度丰富。
广大教师纷纷探讨如何利用信息技术更好地为教学服务,有效地改进教与学得方式,提高学生学习兴趣。
一、录制微课对培养学生建模意识得必要性和可行性“三年级现象”备受关注,很多人认为小学三年级是道坎,有得学生一、二年级数学成绩很好,到了三年级就断崖式下降。
如果真得出现这种现象,那么学生一、二年级数学成绩好只是表象。
一、二年级是学生初步感知数学得重要时期。
低年段数学知识是基础,对于低年段数学教学包括建模教学必须引起广大教育工作者得重视,让学生从小接受正确得教学模式,真正掌握学习数学得思想方法,避免出现短暂成绩好得现象。
“高教社杯”全国大学生数学建模竞赛CUMCM国家一等奖优秀论文C题目论文

2012高教社杯全国大学生数学建模竞赛承诺书我们仔细阅读了中国大学生数学建模竞赛的竞赛规则.我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。
我们知道,抄袭别人的成果是违反竞赛规则的,如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。
我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。
如有违反竞赛规则的行为,我们将受到严肃处理。
我们授权全国大学生数学建模竞赛组委会,可将我们的论文以任何形式进行公开展示(包括进行网上公示,在书籍、期刊和其他媒体进行正式或非正式发表等)。
我们参赛选择的题号是(从A/B/C/D中选择一项填写):C我们的参赛报名号为(如果赛区设置报名号的话):所属学校(请填写完整的全名):(隐去论文作者相关信息等)日期:2012年9月10日赛区评阅编号(由赛区组委会评阅前进行编号):2012高教社杯全国大学生数学建模竞赛编号专用页赛区评阅编号(由赛区组委会评阅前进行编号):全国评阅编号(由全国组委会评阅前进行编号):脑卒中发病环境因素分析及干预摘要:脑卒中逐渐威胁人们的生活,本文主要针对脑卒中发病病例信息和受病环境因素进行统计分析,从实际数据结果加深对脑卒中的认识,旨在对脑卒中加以预防。
针对问题一,先主要借助于EXCEL编程及筛选功能、MATLAB辅助编程对附件数据进行错误修复及标准化处理,得到2007~2010年期间有效数据的发病年、月、日,然后在EXCEL中分别按性别、年龄、职业、时间(包括年、月、日)四个字段对发病人数进行统计,并以图、表的形式予以展示,最后总结出脑卒中患者男女性别比为:1、集中患病年龄段为71~80岁、高危职业为农民、存在一定季节性等结论,该问属于一般的数据统计分析模型。
针对问题二,先对患者按照天来统计四年每天的发病人数(共1461条数据),再将气象数据与发病人数按天进行关联构成新的源数据,同时计算每天的气压差、温差,最后以发病率为因变量,以平均气压、最高气压、最低气压、气压差、平均温度、最高温度、最低温度、温度差、平均湿度、最低湿度10个特征为自变量进行多元线性回归,其步骤是先画因变量与自变量的散点图观测它们的关系,再利用SPSS软件统计所有变量之间的相关性,最后进行多元逐步回归分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、基础知识1.1 常见数学函数如:输入x=[-4.85 -2.3 -0.2 1.3 4.56 6.75],则:ceil(x)= -4 -2 0 2 5 7fix(x) = -4 -2 0 1 4 6floor(x) = -5 -3 -1 1 4 6round(x) = -5 -2 0 1 5 71.2 系统的在线帮助1 help 命令:1.当不知系统有何帮助内容时,可直接输入help以寻求帮助:>>help(回车)2.当想了解某一主题的内容时,如输入:>> help syntax(了解Matlab的语法规定)3.当想了解某一具体的函数或命令的帮助信息时,如输入:>> help sqrt (了解函数sqrt的相关信息)2 lookfor命令现需要完成某一具体操作,不知有何命令或函数可以完成,如输入:>> lookfor line (查找与直线、线性问题有关的函数)1.3 常量与变量系统的变量命名规则:变量名区分字母大小写;变量名必须以字母打头,其后可以是任意字母,数字,或下划线的组合。
此外,系统内部预先定义了几个有特殊意1 数值型向量(矩阵)的输入1.任何矩阵(向量),可以直接按行方式...输入每个元素:同一行中的元素用逗号(,)或者用空格符来分隔;行与行之间用分号(;)分隔。
所有元素处于一方括号([ ])内;例1:>> Time = [11 12 1 2 3 4 5 6 7 8 9 10]>> X_Data = [2.32 3.43;4.37 5.98]2上面函数的具体用法,可以用帮助命令help得到。
如:meshgrid(x,y)输入x=[1 2 3 4]; y=[1 0 5]; [X,Y]=meshgrid(x, y),则X = Y =1 2 3 4 1 1 1 11 2 3 4 0 0 0 01 2 3 4 5 5 5 5目的是将原始数据x,y转化为矩阵数据X,Y。
2 符号向量(矩阵)的输入1.用函数sym定义符号矩阵:函数sym实际是在定义一个符号表达式,这时的符号矩阵中的元素可以是任何的符号或者是表达式,而且长度没有限制。
只需将方括号置于单引号中。
例2:>> sym_matrix = sym('[a b c;Jack Help_Me NO_WAY]')sym_matrix =[ a, b, c][Jack, Help_Me, NO_WAY]2.用函数syms定义符号矩阵先定义矩阵中的每一个元素为一个符号变量,而后像普通矩阵一样输入符号矩阵。
例3:>> syms a b c ;>> M1 = sym('Classical');>> M2 = sym(' Jazz');>> M3 = sym('Blues');>> A = [a b c;M1,M2,M3;sym([2 3 5])]A =[ a, b, c][Classical, Jazz, Blues][ 2, 3, 5]1.4 数组(矩阵)的点运算运算符:+(加)、-(减)、./(右除)、.\(左除)、.^(乘方),例4:>> g = [1 2 3 4];h = [4 3 2 1];>> s1 = g + h, s2 = g.*h, s3 = g.^h, s4 = g.^2, s5 = 2.^h1.5 矩阵的运算运算符:+(加)、-(减)、*(乘)、/(右除)、\(左除)、^(乘方)、’(转置)等;常用函数:det(行列式)、inv(逆矩阵)、rank(秩)、eig(特征值、特征向量)、rref (化矩阵为行最简形)例5:>> A=[2 0 –1;1 3 2]; B=[1 7 –1;4 2 3;2 0 1];>> M = A*B % 矩阵A与B按矩阵运算相乘>> det_B = det(B) % 矩阵A的行列式>> rank_A = rank(A)% 矩阵A的秩>> inv_B = inv(B)% 矩阵B的逆矩阵>> [V,D] = eig(B)% 矩阵B的特征值矩阵V与特征向量构成的矩阵D>> X = A/B % A/B = A*B-1,即XB=A,求X>> Y = B\A % B\A = B-1*A,即BY=A,求Y上机练习(一):1.练习数据和符号的输入方式,将前面的命令在命令窗口中执行通过;2.输入A=[7 1 5;2 5 6;3 1 5],B=[1 1 1; 2 2 2; 3 3 3],在命令窗口中执行下列表达式,掌握其含义:A(2, 3) A(:,2) A(3,:) A(:,1:2:3) A(:,3).*B(:,2)A(:,3)*B(2,:) A*B A.*B A^2 A.^2 B/A B./A 3.输入C=1:2:20,则C(i)表示什么?其中i=1,2,3, (10)4.查找已创建变量的信息,删除无用的变量;5.欲通过系统做一平面图,请查找相关的命令与函数,获取函数的帮助信息。
二、编程2.1 无条件循环当需要无条件重复执行某些命令时,可以使用for循环:for 循环变量t=表达式1 : 达式2 : 表达式3语句体end说明:表达式1为循环初值,表达式2为步长,表达式3为循环终值;当表达式2省略时则默认步长为1;for语句允许嵌套。
例6:如:矩阵输入程序生成3×4阶的Hiltber矩阵。
m=input(‘矩阵行数:m=’);for i=1 : 3n= input(‘矩阵列数:n=’);for j=1 : 4 for i=1:mH(i,j)=1/(i+j-1);for j=1:nend disp([‘输入第’,num2str(i),’行,第’, num2str(j),’列元素’]) end A(i, j) = input (‘’)end end2.2 条件循环1) if-else-then 语句if-else-then 语句的常使用三种形式为:(1) if 逻辑表达式 (3) if 逻辑表达式1 语句体 语句体1end elseif 逻辑表达式2 语句体2 (2) if 逻辑表达式1 elseif 逻辑表达式3 语句体1 … else else语句体2 语句体nend end 2) while 循环语句while 循环的一般使用形式为:while 表达式 语句体 end 例7:用二分法计算多项式方程523--x x = 0在[0,3]内的一个根。
解:a = 0;fa = -inf ;b = 3;fb = inf ; while b-a > eps*b x =(a+b )/2; fx = x^3-2*x-5; if sign(fx)== sign(fa) a =x ;fa = fx ; elseb = x ;fb = fx ; end end x运行结果为:x = 2.09455151481542332.3 分支结构若需要对不同的情形执行不同的操作,可用switch 分支语句:switch 表达式(标量或字符串)case 值1语句体1case 值2语句体2…otherwise语句体nend说明:当表达式不是“case”所列值时,执行otherwise语句体。
2.4 建立M文件将多个可执行...的系统命令,用文本编辑器编辑后并存放在后缀为.m 的文件中,若在MATLAB命令窗口中输入该m-文件的文件名(不跟后缀.m!),即可依次执行该文件中的多个命令。
这个后缀为.m的文件,也称为Matlab的脚本文件(Script File)。
注意:文件存放路径必须在Matlab能搜索的范围内。
2.5 建立函数文件对于一些特殊用户函数,系统提供了一个用于创建用户函数的命令function,以备用户随时调用。
1.格式:function [输出变量列表]=fun_name(输入变量列表)用户自定义的函数体2.函数文件名为:fun_name,注意:保存时文件名...与函数名...最好相同;3.存储路径:最好在系统的搜索路径上。
4. 调用方法:输出参量=fun_name (输入变量)例8:计算s = n!,在文本编辑器中输入:function s=pp(n);s=1;for i=1:ns=s*i;ends;在MA TLAB命令窗口中输入:s=pp(5)结果为s = 120上机练习(二):1.编写程序,计算1+3+5+7+…+(2n+1)的值(用input 语句输入n 值)。
2.编写分段函数 ⎪⎩⎪⎨⎧≤≤-<≤=其它021210)(x x x xx f 的函数文件,存放于文件ff.m 中,计算出)3(-f ,)2(f ,)(∞f 的值。
三、矩阵及其运算3.1 矩阵的创建1.加、减运算运算符:“+”和“-”分别为加、减运算符。
运算规则:对应元素相加、减,即按线性代数中矩阵的“十”、“一”运算进行。
例3-1 在Matlab 编辑器中建立m 文件:LX0701.mA=[1, 1, 1; 1, 2, 3; 1, 3, 6] B=[8, 1, 6; 3, 5, 7; 4, 9, 2] A +B=A+B A-B=A-B在Matlab 命令窗口建入LX0701,则 结果显示:A+B=9 2 7 4 7 10 5 12 8 A -B=-7 0 -5 -2 -3 -4 -3 -6 4 2.乘法运算符:*运算规则:按线性代数中矩阵乘法运算进行,即放在前面的矩阵的各行元素,分别与放在后面的矩阵的各列元素对应相乘并相加。
(1)两个矩阵相乘例3-2 在Mtalab 编辑器中建立M 文件:LX0702.mX= [2 3 4 51 2 2 1];Y=[0 1 11 1 00 0 11 0 0];Z=X*Y存盘在命令行中建入LX0702,回车后显示:Z=8 5 63 3 3(2)矩阵的数乘:数乘矩阵上例中:a=2*X则显示:a =4 6 8 102 4 4 2(3)向量的点乘(内积):维数相同的两个向量的点乘。
命令:dot向量点乘函数例:X=[-1 0 2];Y=[-2 -1 1];Z=dot(X, Y)则显示:Z =4还可用另一种算法:sum(X.*Y)ans=4(4)向量叉乘在数学上,两向量的叉乘是一个过两相交向量的交点且垂直于两向量所在平面的向量。
在Matlab中,用函数cross实现。
命令cross 向量叉乘函数例3-3 计算垂直于向量(1, 2, 3)和(4, 5, 6)的向量。