激光法制备纳米粉体的原理

合集下载

制备纳米粉体的方法

制备纳米粉体的方法

制备纳米粉体的方法纳米粉体是一种颗粒尺寸在纳米级别的粉末,其具有较大比表面积和较高的活性,可应用于许多领域,如材料科学、能源储存、生物医学等。

以下是一些制备纳米粉体的常用方法。

1. 喷雾干燥法:喷雾干燥法是一种将溶液喷雾成细小液滴,然后利用热空气使液滴快速蒸发,形成纳米颗粒的方法。

该方法具有制备速度快、操作简单的特点,适用于大批量均匀制备纳米粉体。

2. 气溶胶法:气溶胶法是指通过气态前驱物生成纳米粉体。

通常将气体和溶解物混合形成气溶胶,然后通过热、化学反应或电解作用生成纳米颗粒。

该方法能制备高纯度、均匀分散的纳米粉体。

3. 溶胶凝胶法:溶胶凝胶法是利用溶胶和凝胶两个阶段的转变来制备纳米粉体。

通常将溶解物溶解在溶剂中形成溶胶,然后通过调节pH值或控制溶剂的挥发,使溶胶逐渐凝胶化,形成纳米粉体。

4. 水热合成法:水热合成法是将溶液放入密闭反应器中,在高温高压条件下反应生成纳米粉体。

由于水的高溶解度和高扩散性,水热合成法能制备高纯度、高晶度的纳米粉体。

5. 物理气相沉积法:物理气相沉积法是通过溅射、热蒸发或激光烧结等方法将金属或化合物转化为蒸发物,并在惰性气氛中沉积到固体基底上生成纳米粉体。

该方法具有操作简单、粒径可控的优点。

6. 激光燃烧法:激光燃烧法是将金属、合金或化合物的颗粒通过高能激光束作用下产生的瞬间高温、高压浓缩区,使其发生快速燃烧反应来制备纳米粉体。

该方法制备纳米粉体速度快且可规模化。

7. 球磨法:球磨法是将粉末原料在球磨机中与高能球体一起运动和碰撞,使原料不断研磨、破碎,最终形成纳米粉体。

该方法适用于制备高能机械合金和非晶态材料的纳米粉体。

总的来说,制备纳米粉体的方法多种多样,可根据不同需要选择适合的方法。

这些方法具有制备速度快、操作简单、控制粒径可调等特点,为纳米科技应用提供了可靠的技术支持。

激光制备纳米材料的研究及应用

激光制备纳米材料的研究及应用

激光制备纳米材料的研究及应用随着科技的发展,纳米材料在许多领域得到广泛的应用,如生物医学、光电子学、催化剂等。

激光制备纳米材料因其高精度、可控性、快速性等优势在纳米材料制备中得到广泛关注。

本文将介绍激光制备纳米材料的相关概念、方法、研究进展及应用现状。

一、概念纳米材料是指在至少一个维度上长度小于100纳米的材料,因其尺寸效应(如量子效应、表面效应等),表现出与宏观材料迥然不同的物理、化学和生物学特性。

激光制备是指利用激光源产生的能量对材料进行加工和改性的过程。

激光制备纳米材料是指利用激光对材料进行处理,使其形成纳米级别的材料。

二、方法激光制备纳米材料的常用方法有:激光烧蚀法、激光溅射法、激光还原法、激光光化学合成法、激光分光技术等。

(一)激光烧蚀法激光烧蚀法是指将激光束直接照射到材料表面,将所需去除的原材料蒸发或扩散出来,形成纳米尺度的粒子。

这种方法适用于金属、半导体等材料的制备,制备出的粒子尺寸可在1-100 nm之间。

(二)激光溅射法激光溅射法是指将激光束聚焦到金属或其它材料的靶材上,靶材表面受到高能激光的照射,表面原子发生振动和失去电子的现象,从而在大气中形成一定浓度的蒸汽,随后由惯性、弥散等力制成纳米粒子。

这种方法适用于制备非金属纳米材料,制备出的粒子尺寸可在10-100 nm之间。

(三)激光还原法激光还原法是指将激光直接照射到金属离子溶液中的金属离子,激光的能量促使金属离子还原成金属纳米粒子。

这种方法适用于制备金属纳米粒子的制备,制备出的粒子尺寸可在1-20 nm之间。

(四)激光光化学合成法激光光化学合成法是指将适当的材料和化学试剂溶解在溶剂中,用激光照射诱导化学反应,生成纳米材料。

这种方法适用于制备复杂结构的非金属材料,制备出的纳米材料可呈不同形状和尺寸。

(五)激光分光技术激光分光技术是指利用激光束直接对分子进行激发,由于激光的单色性和方向性,可以将分子分离,制备出不同分子量的纳米材料。

纳米粉体材料的制备

纳米粉体材料的制备
但易开裂。
3-8
Preparation of nanoparticles
(一)溶胶制备工艺
1、 有机途径
组成: 母体——醇盐,浓度10~50%;
溶剂——乙醇; 催化剂——盐酸、醋酸等 螯合剂——乙酰丙酮 水——用量一定要控制
特点:水、溶剂挥发,干燥龟裂;
薄膜厚度受限; 但可反复涂覆。
3-9
Preparation of nanoparticles
优缺点
A 样品的晶型结构完整,原料便宜;
B 设备简单、适于批量生产;
C 粉末易团聚,制备较为困难。
3 - 36
Preparation of nanoparticles
2) 水热法(高温水解法)
定义:指在高温(100~1000℃)高压(10~100Mpa)下,利用
溶液中物质化学反应进行的合成。
水的作用:作为一种组分参与反应(即是溶剂又是矿化
研究进展:己制备出多种单质、无机化合物和复合材料超细微粉
末;目前已进入规模生产阶段,美国的MIT(麻省理工学)于1986 年已建成年产几十吨的装置。
3 - 33
Preparation of nanoparticles
4 液相法 特点:化学组成可控 → 高纯、均相 成核速度可控 → 合成温度低 形状大小可控 → 纳米颗粒
分类:溶胶凝胶法;沉淀法;水热法等。
3 - 34
Preparation of nanoparticles
1)沉淀-共沉淀法
定义:含阳离子的溶液中加入沉淀剂后,使离子沉淀的 方法。(以沉淀反应为基础) 分类: 单组分沉淀:溶液只含一种阳离子,得到单组分沉淀。 单相共沉淀:溶液含多种阳离子,沉淀为化合物 (固溶体)。 共沉淀:溶液中含多种阳离子,沉淀产物为混合物。

激光诱导合成纳米粉

激光诱导合成纳米粉

四、工艺特点
激光法与普通加热法制备纳米微粒有极大不同,这主要表现为: 1、冷的反应器壁,无潜在污染。 2、原料气体分子直接或间接吸收光子能量后迅速进行反应。 3、反应具有选择性。 3、反应区条件可以被精确的控制。 4、激光能量高度集中,反应区与周围环境之间温度梯度大,有利于生成核 粒子快速凝结。
五、技术要点
二、工作原理
激光诱导化学气相反应法是利用激光来引发、活化反应物系,从而合 成高品位纳米材料的一种方法。 基本原理是:利用大功率激光器的激光束照射于反应气体,反应气体 通过对激光光子的强吸收,气体分子或原子在瞬间得到加热、活化,在极 短时间内反应气体分子或原子获得化学反应所需要的温度,迅速完成反应、 成核与凝聚、生长等过程,从而制得相应物质的纳米微粒。 因此,简单的说,激光法就是利用激光光子能量加热反应体系,从而 制得纳米微粒的一种方法。
感谢您的阅览 祝您工作愉快
领先的激光技术
卓越的高端产品
激光诱导化学气相合成纳米材料
宋文国 15255137200 ahhnswg@
目录
一、概述 二、工作原理 三、设备与流程
四、工艺特点
五、技术要点
一、概述
纳米技术作为一种最具有市场应用潜力的新兴科学技术,其潜在 的重要性毋庸置疑,一些发达国家都投入大量的资金进行研究工作。 如美国最早成立了纳米研究中心,日本文教科部把纳米技术,列为材 料科学的四大重点研究开发项目之一。在德国,以汉堡大学和美因茨 大学为纳米技术研究中心,政府每年出资6500万美元支持微系统的研 究。在国内,许多科研院所、高等院校也组织科研力量,开展纳米技 术的研究工作,并取得了一定的研究成果。 激光诱导化学气相合成技术(LICVD)制备的纳米微粉具有粉体 表面无污染、成分纯度高、粒形规则、粒径小而均匀、粒度分布窄、 粒子间粘结团聚差、易分散、无器壁效应、产量高可连续化生产等一 系列优点,是制备高质量纳米微粉的有效方法。

微纳米材料的激光制备技术

微纳米材料的激光制备技术

微纳米材料的激光制备技术激光技术作为一种高精密的制备技术,被广泛应用于微纳米材料的制备与加工中。

这种技术通过利用激光的聚焦与高能量密度,可以实现对微纳米材料的高效制备和控制。

一、激光光刻技术激光光刻技术是一种利用激光光束将图形或图案转移到半导体材料上的制备方法。

通过使用激光光刻机,可以在微纳米尺度上对半导体材料进行精确的制备。

这种技术在微电子产业中得到了广泛应用,为芯片制造提供了重要的技术支持。

二、激光蚀刻技术激光蚀刻技术是一种利用激光束对材料进行化学反应,从而实现材料去除或刻蚀的制备方法。

该技术可以控制激光功率和照射时间,从而实现对微纳米材料的精确刻蚀。

激光蚀刻技术在微纳米器件的制备中起着至关重要的作用,它能够实现对微观结构的精确控制,并对材料的性能产生重要影响。

三、激光沉积技术激光沉积技术是一种利用激光束对材料进行定向沉积的制备方法。

通过对金属或陶瓷材料进行熔融,可以实现微纳米尺度上的材料沉积。

激光沉积技术具有高能量密度、高温度和高速度等优势,可以实现对微纳米材料的高速精密制备。

四、激光热处理技术激光热处理技术是一种利用激光束对材料进行局部加热的制备方法。

通过控制激光功率和照射时间,可以实现对微纳米材料的局部加热和组织改变。

激光热处理技术可以改善材料的性能,提高微观组织的均匀性和致密性。

五、激光表面改性技术激光表面改性技术是一种利用激光束对材料表面进行改性的制备方法。

通过控制激光功率和扫描速度,可以实现对微纳米材料表面的精确改性。

激光表面改性技术可以增加材料的硬度、耐磨性和防腐蚀性,提高材料的表面质量和使用寿命。

六、激光纳米粒子制备技术激光纳米粒子制备技术是一种利用激光束对材料进行定向熔融,并通过控制冷却速率实现纳米粒子制备的方法。

该技术可以精确控制纳米粒子的形状、尺寸和结构,具有重要的应用价值。

激光纳米粒子制备技术在材料科学和生物医学领域得到了广泛应用,为研究纳米材料的性质和应用提供了重要的手段。

激光制备纳米材料的技术研究

激光制备纳米材料的技术研究

激光制备纳米材料的技术研究近年来,随着纳米材料的广泛应用和对其品质的要求越来越高,利用激光技术制备纳米材料日益受到研究者的重视。

激光制备纳米材料的技术具有精度高、可控性强、制备速度快等优点,因此已成为纳米材料制备领域的重要技术。

1. 激光制备纳米材料的原理激光制备纳米材料的原理是利用激光束与材料的相互作用,通过瞬时加热、熔化和蒸发等过程,将微米或纳米级的原料转化为纳米颗粒。

这种制备方法不仅可以控制颗粒的粒径分布和形状,还可以通过选择不同激光波长和功率,控制纳米材料的化学组成。

2. 激光制备纳米粒子的方法激光制备纳米粒子的方法主要有五种:激光气相合成法、激光热分解法、激光溶胶法、激光还原法和激光剥离法。

其中,激光气相合成法是最常用的一种方法,它通过光解反应,将气态原料转化为 solid 的颗粒;激光热分解法则利用激光束加热,将化学反应物质分解成所需的纳米颗粒;溶胶法是将溶胶制备于铝箔上的方法,铝箔受热后,瞬间传递热量给溶胶;还原法则将前驱体还原成金属或氧化物,通过激光聚焦形成纳米颗粒,而剥离法则在基板上形成一层纳米金属膜,并保持在光学场中以剥离过程形成纳米粒子。

3. 激光制备纳米材料的优点与其他制备方法相比,激光制备纳米材料的优点主要有以下几方面:(1)可控性强:通过选择不同的激光波长和功率,可以控制纳米材料的大小、形状和化学组成。

(2)精度高:激光束在纳米材料的制备过程中可以控制粒径分布和形状,从而精确控制纳米材料的品质。

(3)制备速度快:与其他方法相比,激光制备纳米材料的速度更快,能够在短时间内得到大批量的纳米材料。

(4)成本低:激光制备纳米材料的成本相对较低,且由于其可控性强,不需要额外的制备流程和设备。

4. 激光制备纳米材料的应用激光制备纳米材料具有广泛的应用前景,主要涉及到以下几个领域:(1)催化: 近年来,激光制备出的催化剂广泛用于催化反应领域,如化学吸附、催化剂载体以及生化反应等领域。

纳米粉体制备方法

纳米粉体制备方法

纳米粉体制备方法纳米粉体制备办法纳米技术是当今世界各国争先进展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的惟独为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。

纳米粉体的制备办法无数,可分为物理办法和化学办法。

以下是对各种办法的分离阐述并举例。

1. 物理办法(1)真空冷凝法用真空蒸发、加热、高频感应等办法使原料气化或形成等离子体,然后骤冷。

其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。

1。

金属烟粒子结晶法是早期讨论的一种试验室办法。

将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a 压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。

在气体中,通过蒸发、凝结产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。

在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。

2。

流淌油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中延续的蒸发到流淌着的油面上,然后把含有纳米粒子的油回收到储藏器内,再经过真空蒸馏、浓缩,从而实现在短时光制备大量纳米粉体。

(2)物理粉碎法通过机械粉碎、电火花爆炸等办法得到纳米粒子。

其特点操作容易、成本低,但产品纯度低,颗粒分布不匀称。

例,有一种制备纳米粉体材料新办法,最适用于碳化物、氮化物及部分金属粉体的制备。

第1页/共4页其办法是先对反应器抽真空,然后充入庇护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。

采纳庇护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团圆的金属纳米粉末;采纳反应气体可以生产碳化物、氮化物纳米粉末。

与现有技术相比,生产的纳米粉末不易团圆,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的有用性。

纳米粉体的制备方法及其研究进展

纳米粉体的制备方法及其研究进展

纳米粉体的制备方法及团聚简介摘要:本文简要综述了制备纳米粉体的相关方法,物理方法有气体冷凝法、侧射法、高能机械球磨法等,化学方法有固相配位化学法、溶胶-凝胶法、沉淀法、化学气相沉积法等。

并且简要的介绍了团聚的原因及如何防止纳米团聚关键词:纳米粉体;制备方法;团聚近年来,随着科学技术的发展,世界各地许多科学家都在积极开展新材料尤其是纳米材料的研究。

纳米材料包括零维颗粒材料、一维纳米针、二维纳米膜材料以及三维纳米晶体材料。

纳米颗粒一般在1~100nm之间,处于微观粒子和宏观物体之间的过渡区域。

它具有小尺寸效应、表面效应、量子尺寸效应和宏观量子隧道效应等特性。

这些特性使其呈现出一系列奇异的物理、化学性质,目前在国防、电子、化工、轻工、核技术、航空航天、医学和生物工程等领域中具有重要的应用价值。

为此,本文简要综述了纳米粉体的相关方法。

1 . 纳米粉体材料的制备方法1.1 物理法1.1.1 气体冷凝法[1]气体冷凝法(IGC),其主要过程是在低压的氩、嗐等惰性气体中加热金属,使其蒸发,产生原子雾,经泠凝后形成纳米颗粒。

纳米合金可通过同时蒸发数种金属物质得到;纳米氧化物可在蒸发过程中真空室内通以纯氧使之氧化得到。

这种方法是制备清洁界面的纳米粉体的主要方法之一。

1.1.2 侧射法[1]用两块金属板分别作阳极和阴极,阴极为蒸发用的材料,在两电极间充入氩气,在两电极之间施加适当电压,两电极间的辉光放电促使氩离子的形成,在电场作用下,氩离子冲击阴极材料,使靶材原子从其表面沉积下来。

而且加大被溅射的阴阳表面可提高纳米微粒的获得量。

该方法可有效控制多种高熔点和低熔点的纳米金属;能制备多组元的化合物纳米颗粒。

1.1.3 高能机械球磨法[1]高能球磨法是近年来发展起来的一种制备纳米粉体材料的方法,该方法尤其是在制备合金粉末方面具有良好的工业应用前景。

它是将欲合金化的元素粉末混合起来,在高能球磨机长时间运转,将回转机械能传递给金属粉末,依靠求魔过程中粉末的塑形变形产生复合,并发生扩散和固态反应而形成合金粉末。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

激光法制备纳米粉体的原理
激光制备纳米粉体的基本方法有激光诱导化学气相沉积法(LICVD)和激光烧蚀法(LAD)。

激光诱导制备纳米粉体并不是仅仅以激光为加热源,而是利用激光的诱导作用和作用物质对特定激光波长的共振吸收制备出所要求的纳米粉体J。

LICVD制备纳米粒子的基本原理是利用反应气体分子(或光敏分子)对特定波长激光的共振吸收,诱导反应气体分子的激光热解、激光离解(如紫外光解、红外多光子离解)、激光光敏化等化学反应,在一定工艺条件下(激光功率密度、反应池压力、反应气体配比、流速和反应温度等)反应生成物成核和生长,通过控制成核与生长过程,即可获得纳米粒子[ 。

将反应气体混合后,经喷嘴喷入反应室形成高速稳定的气体射流,为防止射流分散并保护光学透镜,通常在喷嘴外加设同轴保护气体。

如反应物的红外吸收带与激光振荡波波长相匹配,反应物将有效吸收激光光子能量,产生能量共振,温度迅速升高,形成高温、明亮的反应火焰,反应物在瞬间发生分解化合,形核长大。

它们在气流惯性和同轴保护气体的作用下,离开反应区后,便快速冷却并停止生长,最后将获得的纳米粉体收集于收集器中]。

激光烧蚀法是一个蒸发、分解合成、冷凝的过程,其基本原理是:将作为原料的耙材置于真空或充满氩等保护气体的反应室中,耙材表面经激光照射后,与入射的激光束相作用。

耙材吸收高能量激光束后迅速升温、蒸发形成气态。

气态物质可直接冷凝沉积形成纳米微粒,气态物质也可在激光作用下分解后再形成纳米微粒。

若反应室中有反应气体,则蒸发物可与反应气体发生化学反应,经过形
核生长、冷凝后得到复合化合物的纳米粉体。

激光烧蚀法同激光诱导化学气相法相比,其生产率更高,使用范围更广,并可合成更为细小的纳米粉体。

由于激光的特殊作用,激光烧蚀法可制得在平衡态下不能得到的新相]。

激光烧蚀法中,激光主要作用于固体一真空(气体)界面,随着对材料性能的新的要求,人们开始尝试激光烧蚀液一固界面。

激光诱导液一固界面反应法与诱导固体一真空(气体)界面原理相似,只是反应或保护环境由真空或气体变为液体。

首先,激光与液一固界面相互作用形成一个烧蚀区,再促使正负粒子、原子、分子以及其它粒子组成的等离子体的形成。

等离子体形成后,因处于高温高压高密度绝缘膨胀态四处扩散,利用粒子间的相互作用和液体的束缚作用,在液一固界面附近形成纳米粉体。

由于液体的作用促进了等离子体的重新形核生长,此方法在制备那些只有在极端条件下才能制备的亚稳态纳米晶具有很大的优越性J。

为拓宽激光在纳米粉体制备中的应用,可采用激光一感应复合加热法制备纳米粉体。

在激光作用之前,先将靶材用高频感应加热融化并达到较高温度,再引入激光作用于靶体。

这可使靶体对激光的吸收大为加强,利于提高激光的利用率,并在耙区附近产生很大的温度和压力梯度,有利于提高粉末产率和降低粉体的平均粒径,故这种复合加热方法既具有感应加热制粉的优点又兼有激光制粉的优点。

相关文档
最新文档