纳米粉体制备方法的研究
混合碱法制备纳米粉体研究进展

混合 碱和 氧化 物 受 到 加 热 , 成 相 应 的 氧 化 生
物 的钠盐 和钾 盐 , 生成 的钠 盐 、 盐 和可溶 性盐 发 钾 生离 子 交 换 , 成 新 的 晶 核 , 生 随着 反 应 时 问 的 增 长, 晶核 不 断地 增 多 , 晶核 通 过 长 大 , 聚集 生 成 新
第3 2卷 第 6期 20 年 1 09 2月
山东陶瓷
S ANDoNG H CERAM I CS
V0 . 2 No 6 13 .
De . 2 9 c 00
・
综述 ・
文章编号:05 0 3(090— 02 0 10— 6920)5 02 — 4
混 合碱 法 制备 纳米 粉 体研 究 进展
成有 溶 液还原 法 、 沉淀 法 、 共 微乳 液法 、 属有 机 金
盐水 解法 、 热或 者 溶 剂 热 法 等L 。但 是 这 些 水 1 ]
方法 或者需要 高压 高 温操 作 , 者需 要 昂贵 的金 或
属有机 化合物 , 或者需要 表面 活性 剂来稳 定合成 。 这些 方法 因为 成本 过 高 , 或者条 件 苛刻 , 量小 , 产
1 5 。这 是一个 比较低 的温 度 , 以减少 能源消 6℃ 可 耗, 在这个 合成 工艺 中 , 氢氧化 物 ( 氧化钾 ) 氢 所起 的作 用不仅 仅做 为 一种 溶 剂 , 且还 有 一种 能 降 而
低该反 应 的反应 温度 的作 用 , 降低 和节 约 了实 验
成本 。
1 简 介
以制备 钛 酸钡 为 例 说 明 反应 过 程 , 与 反应 参 物 为 氢氧化 钠 、 氢氧 化钾 、 氧化 钛 、 氯化 钡钡 。
第一 步 , 氧 化钠 ( 者 氢氧 化 钾 ) 氧 化 钛 氢 或 和 生成 钛酸 钠 ( 者钛 酸钾 ) 同时氢 氧化 钠 ( 或 , 或者 氢 氧化 钾 ) 和氯化 钡 反 应 生 成 氢 氧化 钡 ; 二部 , 第 生 成 的钛 酸钠 ( 者钛 酸钾 ) 或 和氢氧 化钡 发生 反应 生
制备纳米粉体的方法

制备纳米粉体的方法纳米粉体是一种颗粒尺寸在纳米级别的粉末,其具有较大比表面积和较高的活性,可应用于许多领域,如材料科学、能源储存、生物医学等。
以下是一些制备纳米粉体的常用方法。
1. 喷雾干燥法:喷雾干燥法是一种将溶液喷雾成细小液滴,然后利用热空气使液滴快速蒸发,形成纳米颗粒的方法。
该方法具有制备速度快、操作简单的特点,适用于大批量均匀制备纳米粉体。
2. 气溶胶法:气溶胶法是指通过气态前驱物生成纳米粉体。
通常将气体和溶解物混合形成气溶胶,然后通过热、化学反应或电解作用生成纳米颗粒。
该方法能制备高纯度、均匀分散的纳米粉体。
3. 溶胶凝胶法:溶胶凝胶法是利用溶胶和凝胶两个阶段的转变来制备纳米粉体。
通常将溶解物溶解在溶剂中形成溶胶,然后通过调节pH值或控制溶剂的挥发,使溶胶逐渐凝胶化,形成纳米粉体。
4. 水热合成法:水热合成法是将溶液放入密闭反应器中,在高温高压条件下反应生成纳米粉体。
由于水的高溶解度和高扩散性,水热合成法能制备高纯度、高晶度的纳米粉体。
5. 物理气相沉积法:物理气相沉积法是通过溅射、热蒸发或激光烧结等方法将金属或化合物转化为蒸发物,并在惰性气氛中沉积到固体基底上生成纳米粉体。
该方法具有操作简单、粒径可控的优点。
6. 激光燃烧法:激光燃烧法是将金属、合金或化合物的颗粒通过高能激光束作用下产生的瞬间高温、高压浓缩区,使其发生快速燃烧反应来制备纳米粉体。
该方法制备纳米粉体速度快且可规模化。
7. 球磨法:球磨法是将粉末原料在球磨机中与高能球体一起运动和碰撞,使原料不断研磨、破碎,最终形成纳米粉体。
该方法适用于制备高能机械合金和非晶态材料的纳米粉体。
总的来说,制备纳米粉体的方法多种多样,可根据不同需要选择适合的方法。
这些方法具有制备速度快、操作简单、控制粒径可调等特点,为纳米科技应用提供了可靠的技术支持。
《Ni纳米粉体的制备及SPS烧结块体的高压扭转变形行为》范文

《Ni纳米粉体的制备及SPS烧结块体的高压扭转变形行为》篇一一、引言随着材料科学的不断发展,纳米材料因其独特的物理和化学性质而受到广泛关注。
镍(Ni)纳米粉体作为一种重要的纳米材料,具有优异的磁性、电导率和机械性能,广泛应用于催化、电磁材料、储能装置等领域。
本篇论文旨在详细阐述Ni纳米粉体的制备方法,以及其经由SPS烧结形成的块体在高压扭转变形行为的研究。
二、Ni纳米粉体的制备(一)实验材料与设备实验所需材料主要包括金属镍和适当的还原剂,设备包括高温炉、球磨机、干燥器等。
(二)制备方法本实验采用化学还原法来制备Ni纳米粉体。
首先,将金属镍盐溶解在适当的溶剂中,然后加入还原剂进行还原反应,得到Ni 纳米颗粒。
经过离心、洗涤和干燥后,得到Ni纳米粉体。
(三)表征与性能分析通过透射电子显微镜(TEM)和X射线衍射仪(XRD)对制备的Ni纳米粉体进行表征,分析其形貌、粒径和晶体结构。
同时,通过磁性测量仪测试其磁性能。
三、SPS烧结块体的制备(一)SPS烧结技术简介放电等离子烧结(SPS)技术是一种快速、低能耗的烧结方法,适用于制备纳米材料。
它利用脉冲电流在压制成型的坯体上施加电压,通过等离子体的加热效应使坯体烧结。
(二)SPS烧结块体的制备过程将制备好的Ni纳米粉体压制成坯体,然后采用SPS技术进行烧结。
在烧结过程中,控制烧结温度、压力和时间等参数,得到致密的Ni块体材料。
四、高压扭转变形行为研究(一)实验方法采用高压扭转装置对SPS烧结的Ni块体进行扭转变形实验。
在实验过程中,施加一定的压力和扭矩,使块体发生扭转变形。
通过改变扭转变形的条件,如温度、应变速率等,研究其变形行为。
(二)结果与讨论通过观察扭转变形过程中的宏观现象和微观结构变化,分析Ni块体的变形机制。
利用扫描电子显微镜(SEM)和透射电子显微镜(TEM)观察扭转变形后的微观结构,分析其晶粒尺寸、位错密度和相变等变化。
同时,通过硬度计和拉伸试验机测试其力学性能,分析其强度、延展性和韧性等变化规律。
纳米粉体材料的制备

3-8
Preparation of nanoparticles
(一)溶胶制备工艺
1、 有机途径
组成: 母体——醇盐,浓度10~50%;
溶剂——乙醇; 催化剂——盐酸、醋酸等 螯合剂——乙酰丙酮 水——用量一定要控制
特点:水、溶剂挥发,干燥龟裂;
薄膜厚度受限; 但可反复涂覆。
3-9
Preparation of nanoparticles
优缺点
A 样品的晶型结构完整,原料便宜;
B 设备简单、适于批量生产;
C 粉末易团聚,制备较为困难。
3 - 36
Preparation of nanoparticles
2) 水热法(高温水解法)
定义:指在高温(100~1000℃)高压(10~100Mpa)下,利用
溶液中物质化学反应进行的合成。
水的作用:作为一种组分参与反应(即是溶剂又是矿化
研究进展:己制备出多种单质、无机化合物和复合材料超细微粉
末;目前已进入规模生产阶段,美国的MIT(麻省理工学)于1986 年已建成年产几十吨的装置。
3 - 33
Preparation of nanoparticles
4 液相法 特点:化学组成可控 → 高纯、均相 成核速度可控 → 合成温度低 形状大小可控 → 纳米颗粒
分类:溶胶凝胶法;沉淀法;水热法等。
3 - 34
Preparation of nanoparticles
1)沉淀-共沉淀法
定义:含阳离子的溶液中加入沉淀剂后,使离子沉淀的 方法。(以沉淀反应为基础) 分类: 单组分沉淀:溶液只含一种阳离子,得到单组分沉淀。 单相共沉淀:溶液含多种阳离子,沉淀为化合物 (固溶体)。 共沉淀:溶液中含多种阳离子,沉淀产物为混合物。
纳米TiO2粉体制备方法

1.纳米TiO 2粉体制备方法1.1.物理法1.1.1.气相冷凝法:预先处理为气相的样品在液氮的气氛下冷凝成核制得纳米TiO2 粉体,但该法不适于制备沸点较高的半导体氧化物1.1.2.高能球磨法:工艺简单,但制得的粉体形状不规则,颗粒尺寸分布宽,均匀性差1.2.化学法1.2.1.固相法:依靠固体颗粒之间的混合来促进反应,不适合制备微粒1.2.2.液相法:就是将钛的氯化物或醇盐先水解生成氢氧化钛(或羟基氧钛) ,再经煅烧得到TiO2. 研究最广泛。
以四氯化钛为原料,其反应为TiCl4 + 4H2O → Ti (OH) 4 + 4HCl ,Ti (OH) 4 → TiO2 + 2H2O.以醇盐为原料,其反应为Ti (OR) 4 + 4 H2O → Ti (OH) 4 + 4 ROH ,Ti (OH) 4TiO2 + 2 H2O.−−−→煅烧主要包括硫酸法、水解法、溶胶-凝胶(Sol2gel) 法、超声雾化、热解法等。
溶胶- 凝胶法就是将钛醇盐制备成二氧化钛溶胶. 为了得到多孔催化剂,通常采用煅烧等方法将凝胶进行干燥,去除溶剂,制得干凝胶. Dagan 等[25 ]采用超临界干燥法所制得的TiO2气凝胶孔隙率为85 % ,比表面积高达600 m2·g - 1 ,晶粒尺寸为5. 0 nm ;对水杨酸的光催化氧化表明该催化剂具有比Degussa P - 25 TiO2粉末更高的催化活性.1.2.3.气相法:其核心技术是反应气体如何成核的问题. 通过四氯化钛与氧气反应或在氢氧焰中气相水解获得纳米级TiO2 ,目前德国Degussa 公司P-25 粉末光催化剂是通过该法生产的常用的化学制备方法有溶胶-凝胶法、沉淀法、水解法、喷雾热解法、水热法和氧化- 还原法等。
2.纳米TiO2薄膜制备方法:除了与粉体制备相同的制备方法如溶胶-凝胶法、热解法外,还有液相沉积法、化学气相沉积法、磁控溅射法等。
2.1.溶胶-凝胶法(Sol-Gel):制备的薄膜纯度高,且制备工艺简单,易批量生产;2.2.水热合成法:通过水解钛的醇盐或氯化物前驱体得到无定形沉淀,然后在酸性或碱性溶液中胶溶得到溶胶物质,将溶胶在高压釜中进行水热Ostwald熟化。
水热法制备batio3纳米粉体原理

水热法制备batio3纳米粉体原理
水热法制备BaTiO3纳米粉体的原理是通过在高温高压的水热条件下,利用水分子和溶剂分子的高度活跃性,使得反应物中的离子在水热反应的过程中重新排列和结合,最终形成目标产物。
具体原理如下:
1. 水热环境:水热反应一般在高温高压下进行,典型的反应条件是温度在100-200摄氏度之间,压力在1-3 MPa左右。
这样的环境使得反应物能够在水分子的催化下更快地进行反应。
2. 溶解反应物:将所需的反应物,如钛酸铅和钡盐溶解在适当的溶剂中,形成反应物溶液。
溶剂通常选择对反应物具有较好的溶解性,如酸、碱或氢氧化钠等。
3. 反应:将制备好的反应物溶液加入到高压釜中,加热至设定的温度并保持一定的时间。
在高温高压的条件下,溶液中的离子发生迁移和重排,形成新的晶体。
4. 沉淀:经过一定时间的反应后,将高压釜冷却至室温,产物会经历一个从溶液中析出的过程。
这是因为溶解度随温度的下降而降低,导致产物退火结晶生成固态的BaTiO3纳米粉体。
通过水热法制备的BaTiO3纳米粉体具有高度纯净性、均匀性好、粒径小等优点,适用于丰富光电、催化及传感等领域的应用。
水热法制备氧化铝纳米粉体及其形貌的研究

水热法制备氧化铝纳米粉体及其形貌的研究水热法制备氧化铝纳米粉体及其形貌的研究摘要:本文通过水热法制备了氧化铝(Al2O3)纳米粉体并研究了其形貌特征。
实验结果表明,采用水热法合成的Al2O3纳米粉体在形貌上表现出良好的均一性和分散性。
扫描电子显微镜观察结果显示,Al2O3纳米粉体呈现出较为均匀的球形形貌,平均粒径约为20-50纳米。
此外,通过控制水热合成反应温度和时间,可以进一步调节Al2O3纳米粉体的粒径大小。
X射线衍射分析结果表明,所合成的Al2O3纳米粉体为γ-Al2O3相,且晶型较为完善。
关键词:水热法,氧化铝纳米粉体,形貌特征,均一性,分散性引言:纳米材料受到广泛的研究和应用领域的关注,其中氧化铝纳米粉体因其优异的物理和化学性能,在催化、传感、涂覆和陶瓷等领域具有广泛的应用前景。
水热法作为一种简单、有效的制备方法,能够在较低的温度和压力下制备出高质量的纳米材料。
因此,本文采用水热法制备氧化铝纳米粉体,并对其形貌特征进行了分析和研究。
实验方法:1. 实验材料:本实验所使用的材料为铝酸盐和蒸馏水,铝酸盐为Al(NO3)3·9H2O。
2. 水热法合成氧化铝纳米粉体:将一定量的铝酸盐溶解于一定体积的蒸馏水中,得到铝酸盐溶液。
然后,在高压釜中加入铝酸盐溶液,并设定不同的水热反应温度和时间。
完成水热合成后,用离心机将得到的样品分离,用蒸馏水进行洗涤,最终干燥得到Al2O3纳米粉体。
结果与讨论:利用扫描电子显微镜观察和测量发现,采用水热法合成的Al2O3纳米粉体在形貌上表现出较好的均一性和分散性。
图1(a)显示了Al2O3纳米粉体的低倍放大图像,可以观察到纳米粉体均匀散布在样品表面。
图1(b)是对Al2O3纳米粉体高倍放大的图像,可以看到球形颗粒的细节,并且颗粒间的排列较为紧密。
根据粒径分析,Al2O3纳米粉体的平均粒径约为20-50纳米,且分布较为均匀。
通过调节水热反应温度和时间,可以进一步调节Al2O3纳米粉体的粒径大小。
纳米粉末的制备方法

纳米粉末的制备方法材料研1203 Z1205020 石南起纳米科技是20世纪80年代末90年代初诞生并迅速发展和渗透到各学科领域的一门崭新的高科技。
由于它在21世纪产业革命中具有战略地位,因而受到世界的普遍关注。
有人说,70年代微电子学产生了世界性的信息革命,那么纳米科技将是21世纪信息革命的核心。
纳米技术的飞速发展极大的推动了材料科学的研究和发展,而纳米材料研究的一个重要阶段是纳米粉体的制备。
1.纳米粉体的制备要使纳米材料具有良好的性能,纳米粉末的制备是关键。
纳米粉末的制备方法主要有物理法、化学法和高能球磨法。
1.1物理法物理法中较重要的是气体中蒸发法,在惰性气体中蒸发金属,急冷生成纳米粉体。
如在容器中导入低压的氩或氦等惰性气体,通过发热体使金属熔化、蒸发,蒸发的金属原子和气体分子碰撞,使金属原子凝聚成纳米颗粒。
通过蒸发温度、气体种类和压力控制颗粒大小,一般制得颗粒的粒径为10nm左右。
比较重要的物理法还有溅射法、金属蒸气合成法及流动油上真空蒸发法等。
1.2化学法化学法制备纳米粉可分气相反应法和液相反应法。
1.2.1气相反应法气相反应法是利用化合物蒸气的化学反应的一种方法,其特点是:(1)原料化合物具有挥发性,提纯比较容易,生成物纯度高,不需要粉碎。
(2)气相物质浓度小,生成的粉末凝聚较小。
(3)控制生成条件,容易制得粒径分布窄,粒径小的微粒。
(4)气氛容易控制,除氧化物外,用液相法直接合成困难的金属、碳化物、氮化物均可合成。
气相合成中除了反应原料均为挥发性物外,也可用电弧、等离子体、激光加热固体使其挥发,再与活性气体反应生成化合物纳米粉体。
1.2.2液相反应法液相反应法作为一种制备超细粉体的方法成为各国材料科学家研究的热点,它具有无需高真空等苛刻物理条件、易放大的特点,并且得到的粉体性能比较优越。
常用的液相反应法有共沉淀法、水解法、溶胶凝胶法、微乳液反应法等。
共沉淀法是利用各种在水中溶解的物质,经反应成不溶解的氢氧化物、碳酸盐、硫酸盐、醋酸盐等,再经加热分解生成高纯度的超微粉料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
s ac rpaai n m eho fN a m ee owd ri o d rt c iv hep poe o lc ng te p o rp e rto eh n t ee g— e rh on p e rto t d o no trp e n r e o a h e e t ur s fs e t r pe rpaa n m tod i n i e i h i h
J 微 粒 .气 态 物 质 也 可 在 激 光 作 用 下 分 解 后 再 形 成 纳 米 微
1 激 光 法 制 备 纳 米 粉 体
I 粒 。若 反应 室 中有反 应气 体 ,则蒸 发 物可 与反应 气 体发
! 生化 学 反应 ,经 过形 核生 长 、冷凝 后 得到 复合 化合 物 的
磁性 、催化性 、光吸收、热阻和熔点等方面与常规材料 l
功 能 陶 瓷 材 料 、涂 层 材 料 、 磁 性 材 料 、 催 化 材 料 、气 敏
激光 烧蚀 法 是将 作 为原料 的耙 材 置于 真空 或充 满氩
相比显示出奇特 的性能 ,因而广泛应用于高性能结构与 l 等 保 护 气 体 的 反 应 室 中 ,耙 材 表 面 经 激 光 照 射 后 , 与 入
本 文 对 纳 米 粉 体 的 制 备 方 法 进 行 了研 究 。 总 结 出各 种 方 法 的 利 弊 。
关 键 词 :纳 米 粉 体 ;制 备 方 法 ; 团 聚 ; 性 质
中图分 类号 :T 7 H8
文献 标识 码 :A d i O3 6 /. s.0 2 6 7 . 1.40 0 o: .9 9ji n10 — 6 3 0 1 .1 l s 2 0
机 电 产 品 开崖 与 新
Vo1 4, 4 . No. 2
Juy. 01 l, 2 1
பைடு நூலகம்
纳 米 粉体 制 备 方 法 的研 究
辛 辉 。 易贝 贝
( 顶 山工 业 职 业 技 术 学 院 化 工 系 ,河 南 平顶 山 4 7 0 ) 平 6 0 1
摘 要 : 纳 米 粉 体 具 有 独 特 的 性 能 而 被 广 泛 应 用 。 其 制 备 方 法 的 研 究 已 经 成 为 材 料 研 究 领 域 的 重 要 内 容 。
激光法 制备 粉 体是 以激 光 为加 热源 ,利 用激 光 的诱 l 纳 米 粉 体 。
导作用 和作 用物 质对 特定 激 光波 长 的共 振 吸收制 备 出所 l
Absr c :N a ome e o d ri d l sd s e i niu r p ry. ee r h o e aa on m eh d o a omee o d rh sb e he tat n trp w e swiey u e i t u q e p o e t R sac n prp rt t o fN n nc s i trp w e a e n t
第 2 4卷 第 4期 21 0 1年 7月 文 章编 号 :1 0 — 6 3 ( 0 1 4 0 3 0 0 2 6 7 2 1 )0 — 2 — 3
D v lp n & I n v t n o c ie y& E e t c l r d c e eo me t n o ai fMa h n r o lcr a o u m i P
ne rn e g. i
K e r s a o e e o d r; p e a ai n m e h d; u ie; p o ry y wo d :n n m trp w e r p r to t o nt r pe t
( 光 功 率 密 度 、 反 应 池 压 力 、反 应 气 体 配 比 、 流 速 和 激
Re e c n e r ton M e ho fNa ome e wde s ar h o Pr pa a i t d o n t r Po r
XI H u . y,Be - i N i i Be
( p r n f emclE gn eigi ig igh nId sr l lg f cn lg ,Pn dns a n n 6 0 1 De at t Ch r a n ie r Pn dn sa n uta Col eo Teh oo y ig igh nHe a 4 7 0 ,Chn ) me o n n i e ia
: 射 的激 光 束 相 作 用 。耙 材 吸 收高 能 量 激 光 束 后 迅 速 升
材料 、医药 和石 油化 工 领域 。纳 米粉 体 制备 方法 的研 究 1 温 、 蒸 发 形 成 气 态 。 气 态 物 质 可 直 接 冷 凝 沉 积 形 成 纳 米
已经 成为 材料研 究领 域 的一个 重要 内容 。
i p ra t c t nti he fed o t ra e e r h.Th a e u mnz st e a v n a e n d s d a ag s o l t e h h ou h t e r — m o t n on e n t l fma e lr s a c i i e p p rs m e h d a t g s a d ia v nt e fal he m t od t r g h e
0 引 言
I
反 应 温 度 等 )反 应 生 成 物 成 核 和 生 长 ,通 过 控 制 成 核 与
。 纳 米 粉 体 泛 指 粒 径 在 1 10 m 范 围 内 的 粉 末 。 由于 I 生 长 过 程 , 即 可 获 得 纳 米 粒 子 闭 ~ 0n
纳米粉 体 的 晶粒 小 ,表 面 曲率大 或 表面 积大 ,所 以 它在 : 12 激 光 烧 蚀 法 .