仪器分析-质谱图解析
质谱法MS 仪器分析章节归纳总结思维导图-高清脑图模板

c.离子阱式
d.飞行时间
优点:测离子的质核比没有上限;可获得高分辨质谱,不 同质荷比离子可同时检测,可实现快速的离子传输,结构 简单,便于维护
缺点:要求离子尽可能同时开始飞行,需要脉冲开关
5.离子检测器
接收离子束,将微小离子流放大
a.质量范围
6.主要性能指标
b.分辨率R:质谱仪刚好分开相邻两质谱峰的能力 c.灵敏度
zeV=1/2mv 2 式中,z为电荷数,e为离子的电荷单位,
m为离子的质量,v为离子被加速后运动的速率
表示方法
质谱图/棒图:以质核比为横坐标,以相对强度为纵坐标 质谱表/表格
质谱仪
1.真空系统
避免离子散射以及离子与残余气体分子碰撞引起能量变 化,减小本底与记忆效应
2.样品导入系统
将样品气化送入离子源
β-H转移到饱和杂原子上,伴随α键的断裂 常见于醚,酯,酚,胺,酰胺等化合物质谱中
3.四元环过渡态重排βH+α
简单裂解 重排裂解
分子式确定 裂解类型
质谱法MS
基本原理
基本原理
将样品分子离子化后经加速进入磁场中,在高压电场的作用下,质量为m的正离子在磁感应强度H的磁场作用下作垂直于磁场 方向的圆周运动。其动能与加速电压V及电荷z有关。具有速率v的带电粒子进入质量分析器的电磁场中,根据所选择的不同分 离方式,最终实现各种离子按m/z进行分离,按各离子的m/z顺序对各离子信号相对强度大小进行记录的图谱即为质谱图。
m+
=(m2+
)2
/m1+
主要离子 谱图解析
同位素丰度比
4.同位素离子(计算分子式):含有重同位素的离子(由 同位素离子产生的不同质量的质谱峰称同位素峰)
仪器分析之 串联质谱

三重四级杆的定性定量方式
三重四级杆的扫描方式
DAU子离子扫描 PAR母离子扫描 CNL中性碎片丢失扫描 SIR选择离子监测 MRM多反应监测
子离子质谱图DAU
MS1
Collision
MS2
Cell
静态
扫描
用MS2质量分析器扫描指定母离子的子离子碎片,所得到的质 谱图只能是由指定母离经碰撞产生。
SIR与单四级杆仪器的SIM方式相当 对于信号强度,SIR方式更强 对于纯净基质,也许SIR的信噪比可能高于
MRM方式 对于复杂样品分析,多数情况下MRM方式
的灵敏度高于SIR方式
TIC\SIM\MRM方式的差别
信噪比(S/N)
信-信号 噪-噪音 用噪音的Standard Derivation表示 信噪比越高,表示结果的可靠性越高
X
去检测器
-
Y+
+
-
来自离子源
X
Y
RF Cycle
四级杆原理2
DC voltage U (volts)
90 80 70 60 50 40 30 20 10
0 0
Y stability boundary
X stable Y unstable
X stability boundary
X unstable Y stable
多电荷离子的MS-MS
一般都用丰度最强的质谱峰进行质谱质谱 分析,即使它是多电荷离子。
多电荷离子一般比单电荷离子需要更高的 碰撞气电压。
碎片离子可能比多电荷离子的质荷比大。
注意要保证流动相pH恒定,否则生成的多 电荷离子比例不同,造成定量误差。
X and Y stable
200
质谱谱图解析

有机化合物的质谱图千变万化,有些
化合物仅仅是取代基的位置不同,其质 谱图几有很大的差异,因此,解析未知 物质谱图很难有统一的格式,要灵活运 用可能取得的结构信息和知识
二、实例
例1
1. 最高峰A峰m/z 126(偶数),与碎片峰m/z 95(奇数)相差31u, 是失去合理中性物,据此判断m/z 126为分子离子峰
3. 分子量为偶数,显著的碎片峰都为奇数,因此未知物不含N
4. 由m/z 206 的丰度14.4%推断,m/z 离子含13个C
5. m/z 207的丰度1.2%暗示未知物分子含1-2个O,若只含一个O则H数 不合理,因此m/z 205合理的化学式为C13H17O2
6. m/z 205离子加一个甲基即为分子离子,因此未知物分子的化学式应 为C14H20O2,环加双键值为5
7. 化合物(2)能产生如右碎片: 化 合 物 ( 2 ) 能 产 生 较 强 m/z72 而在未知物的谱图中,m/z 72 峰的丰度很低,此外,化合物 (2)不易产生m/z 58的显著峰
8. 化合物(3)能产生以下碎片离子
由化合物(3)的结构,能够很好地解释未知物谱图中各个峰的生成途 径,因此,化合物(3)为未知物谱图最可能的答案
(6) 通过上述各方面的研究,提出化合物的结构单元。再根 据化合物的分子量、分子式、样品来源、物理化学性质等, 提出一种或几种最可能的结构。必要时,可根据红外和核 磁数据得出最后结果。
(7)验证所得结果。验证的方法有:将所得结构式按质谱断裂 规律分解,看所得离子和所给未知物谱图是否一致;查该 化合物的标准质谱图,看是否与未知谱图相同;寻找标样, 做标样的质谱图,与未知物谱图比较等各种方法。
仪器分析实验10

实验十气相色谱-质谱法(GC-MS)对酯类混合试样的定性分析一、实验目的1. 了解GC-MS的基本结构和工作原理;2. 初步掌握GC-MS的操作过程;3. 掌握GC-MS对未知化合物定性的分析方法。
二、基本原理气相色谱(GC)-质谱(MS)联用仪可看作是以MS为检测器的GC或以GC为进样、分离装置的MS,因此同时具备GC对混合物的高效分离效能和MS对未知物的强定性能力,可在较短时间内实现对多组分混合物质的定性及定量分析。
在所有联用技术中,GC-MS的发展最为完善,广泛应用于环保、食品、石油化工、轻工、农药、医药、法医毒品及兴奋剂检测等各个领域。
气相色谱(GC)是以气体为流动相的色谱方法,仪器结构见图9-1,待测样品由进样口注入到色谱分离柱柱顶(进样后瞬间被气化),然后在惰性载气(流动相)的带动下进入色谱柱(常为石英毛细管柱,内壁涂覆固定相),组分在随载气运动的同时与固定相发生作用,由于不同组分与相同固定相的作用力大小不同,因此固定相对不同组分的保留能力不同,作用力小的组分会随流动相在较短时间流出色谱柱,作用力大的组分则需较长的时间才能流出色谱柱,因此实现了分离。
利用柱末端的检测器对流出组分的实时测定,就可以获得色谱流出曲线(见图9-2),根据各组分的保留时间(从进样到出现色谱峰值的时间)和峰面积就可分别实现对其的定性和定量分析。
但仅利用保留时间定性(相同测定条件下,同一组分的保留时间不变)的可靠性不高,而常用色谱检测器也无法提供其它可反映结构的信息。
图10-1 气相色谱仪器示意图图10-2 色谱流出曲线质谱法(MS)是在离子源(能量源)的作用下把待测试样转化为运动的气态离子并按核质比(m/z)大小进行分离记录的方法,测量结果可以质谱图(见图9-3)表示。
离子源能量一定时,同一化合物可生成的碎片离子及各离子间的相对强度是一定的,即质谱图可反映化合物的结构特征,因此可用来进行定性及结构解析。
此外离子强度(任一离子或总离子强度和)与进样量在一定条件下存在正比关系,这为定量分析提供了依据。
第14章MS-仪器分析

丰度比% 0.36 0.80 31.98 97.28
同位素峰的强度:含Cl、Br和S化合物
化合物含一个Cl、Br和S时都具有比分子离子高2的同位素峰,它 们的丰度较大,很容易识别 CH3F m/z = 34,由于氟无同位素,其M + 1峰的强度是M+峰的 1%,是由一个13C贡献的 CH3Cl m/z = 50,可看出M + 2 的m/z = 52的相对强度大约是分子 离子的1/3 CH3Br m/z = 94,可见[M] : [M + 2] = 1 : 1。在MS谱中M与M + 2 峰强度相近可推断分子中含一个Br原子
3. 碎片离子(fragment ion)
分子离子产生后可能具有较高的能量,将会通过进一步裂解 或重排而释放能量,裂解后产生的离子称为碎片离子。
断裂方式 均裂:X—Y = X·+Y· 异裂:X—Y = X++Y半异裂:X+•Y = X++ Y· 已电离
1) α断裂
带有电荷的官能团与相连的α碳原子之间的断裂 含饱和杂原子 CH3CH2—I
第十四章
质谱分析法
Mass Spectrometry MS
Spectroscopy n. 光谱学, 波谱学, 光谱仪 Spectrometry n.质谱术,质谱计
主要内容
14.1 概述
14-2 质谱法基本原理及质谱仪器 14-3 质谱解析基础知识
14-4 有机波谱综合解释
§14-1 概 述
质谱法:将气态离子混合物按质荷比m/z大小
加合离子与样品分子反应
CH5
RH CH4 (M + 1)+ 准分子离子: (M ± 1)+
仪器分析-质谱图解析.

3、m/z 57为M-17离子,m/z 29为M-45 离子,同时产生m/z 45(COOH)离子峰, 说明化合物可能含有羧基
4、m/z 29为乙基碎片离子峰,说明化合物可能含有乙基
H2 O H3C C C OH
m/z=74
H3C
H2 C
O C m/z=57
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原三 子价 数原子数
U四价原 - 子2数
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
相对丰度 (%)
100 80 60 40 20
m/z
43 O
71
断裂
H7C3 C
58
99
Rearrangement
β异裂
86
113
40
60
80
100 120
4壬酮的质谱图(M=142)
C5H1 1
1、酮类化合物分子离子 峰较强。
2、α裂解(优先失去大 基团)
烷系列:29+14 n
142(M+·) 3、γ-氢重排
未知化合物质谱图分析
CH2
某化合物C10H4
HH CH2
结构式:
1、计算不饱和度U=4, 2、分子离子峰m/z=134较大,结合不饱和度,说明该化合物含有苯环
3、m/z=91为(M-43)碎片离子峰,说明化合物可能失去C3H7+为烷基苯,m/z=65是 其进一步丢失乙炔分子产生的碎片离子峰。
第8章-质谱法

8.2.1 质谱仪基本组成
质谱仪能产生离子,并将这离子按 m/e 比进行记录仪器。
质谱仪由五大部分:进样系统、离子源、质量分析器、检测记 录系统、真空系统组成。
大气
真空系统
样品入口
离子源
质量分析器
检测器
数据系统
1、真空系统
质谱仪离子源、质量分析器、检测器必须处于高真空状态,若 真空度过低,则:
①大量氧会烧坏离子源灯丝; ②本底增加,干扰质谱图; ③引起额外离子一分子反应,改变裂解模型,质谱复杂化。 ④用作加速离子的几千伏高压会引起放电。 ⑤干扰离子源中电子束正常调节等。
(7)基质辅助激光解析离子源
Matrix-Assisted Laser Desorption Ionization (MALDI)
MALDI的原理是用激光照射样品与基质形成的共结晶薄膜,基质从激光中吸 收能量传递给生物分子,而电离过程中将质子转移到生物分子或从生物分子得 到质子,而使生物分子电离的过程。因此它是一种软电离技术,适用于混合物 及生物大分子的测定。 MALDI常用的基质有2,5二羟基苯甲酸、芥子酸、烟酸、α-氰基-4-羟基肉桂酸等
强电场诱发样品电离。由电压梯度为 107-108V/cm的两个尖细电极组成。 价电子的量子轨道效应发生电离
FI形成的离子主要是分子 离子,碎片离子少,可提 供信息少,常与电子轰击 配合作用。
(4)场解析电离源 Field Desorption(FD)
FD中,样品溶在溶剂中,滴在场发射丝上,或将发射丝浸入溶 液中,待溶剂挥发后,将场发射丝插入离子源,在强电场作用 下,样品不经气化即被电离。
3、灵敏度
绝对灵敏度: 仪器可以检测到最小样品量。
离子源10-3~10-5 Pa,质量分析器10-6 Pa
仪器分析-质谱图解析

[MH]+, [M-H]+
同位素离子: 有些元素具有天然存在的稳定同位素,
所以在质谱图上出现一些M+1,M+2,M+3的峰,由这些 同位素形成的离子峰称为同位素离子峰。
EI 质 谱 的 解 析 步 骤
分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
H3C CH2
m/z=29
O C OH
m/z=45
HH O
结构式:
H
O
H
CH3
1、不饱和度U=4 2、分子离子峰m/z=122强度较大,结合不饱和度,说明该化合物含有苯环
3、m/z=77为 苯环离子峰,m/z=51是其进一步丢失乙炔分子产生的碎片离子峰
4、m/z=94为 M-28 离子,可能丢失C2H4,说明化合物含有乙基。
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 若含硫的样品 RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
例:设 m/z 154为分子离子峰, 154-139=15, 合理
m/z 154 155 156 157 M+2/M=5.1>4.4→分子中含有S RI 100 9.8 5.1 0.5
M/Z=154,偶数,设不含N,含1S
M+1/ M×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
+
+
m/z 54
重排离子
经过重排,断裂一个以上化学键所生成的离子。
R4 CH
H
Z
CH
C
R3 CH
R1
R2
R4 CH CH
R3
ZH
C
HC
R1
R2
麦氏重排
奇电子离子OE+·:带未配对电子的离子,如 M+·, A+····
偶电子离子EE+: 无未配对电子的离子,如 B+, D+ ···
多电荷离子: 如 z =2的离子,存在于稳定的结构中。
(即分子量)为偶数。含奇数N的有机分子, 其分子离
子峰的m/z (即分子量)为奇数。
分子式的推导
■ 同位素相对丰度计算法和查Beynon表法推导分子式
■ 先找分子离子峰,如果高质荷比峰连续有2-4个,说 明存在同位素峰或M+1峰以及M-1峰
■ 读出同位素的相对强度,然后根据同位素的相对强度比 就可判断是否含有Cl, Br, S 等同位素
如果M+2/M的值接近32.4说明含有Cl原子, 如果M+2/M的值接近97.9说明含有Br原子, 如果M+2/M的值接近4.4说明含有S原子
分子式的推导
■ 对于C, H, N, O组成的化合物, 其通式:CxHyNzOw RI(M+1) / RI(M) ×100 = 1.1x + 0.37z
( 2H 0.016, 17O 0.04忽略 )
质谱图
质谱
质谱图基础知识回顾 EI质谱的解析步骤 常见有机化合物质谱图回顾
已知及未知化合物质谱图分析
质谱图基础知识回顾
有机化合物
碎片离子
m/z 质荷比
相对分子质量
丰度
化合物结构
质谱图
◆ 以质荷比(m/z)为横坐标,离子峰相对丰度为 纵坐标。
◆ 峰的高低表示产生该峰的离子数量的多少,最高 的峰称为基峰,将基峰的相对丰度常定为100%
4、脂肪醇:分子离子峰很弱;易脱水形成M-18的峰;发生α 断裂,生成极强
的特征碎片,31( 伯醇), 45( 仲醇),59 ( 叔醇)。
5、醛、酮:分子离子峰明显;发生麦氏重排和α 断裂。脂肪醛的M-1峰强度与 M相近, HCO+(m/z 29) 很强。
6、芳烃:苯生成77,51峰。
甲苯:卓鎓离子基峰m/z91→C5H5+(m/z 65)和C3H3+(m/z39) 。 麦氏重排产生C7H8+离子(m/z92),特征m/z91和 m/z92 。 苯衍生物:m/z 76,66,65,39。
分子结构的推导
■ 计算分子的不饱和度推测分子结构
一价原子数 三价原子数
U 四价原子数 -
2
2
1
■ 根据碎片离子的质量及所符合的化学通式,推测离子可能 对应的特征结构或官能团
■ 结合相对分子质量、不饱和度和碎片离子结构及官能团等 信息,合并可能的结构单元,搭建完整分子结构
■ 核对主要碎片,检查是否符合裂解机理。 结合其他分析方法最终确定化合物结构
■ 判断其是否合理:
与相邻碎片离子(m/z 较小者)之间关系是否合理
m1 2
3
15
16
17 18 20
丢失 H.
H2 H2+ H. .CH3 O. or NH2
OH. H2O HF
m = 4~14, 21~24, 37~38……通常认为是不合理丢失
分子离子峰的识别
■ 判断其是否符合氮律
不含N或含偶数N的有机分子, 其分子离子峰的m/z
m/z 154 155 156 157 M+2/M=5.1>4.4→分子中含有S RI 100 9.8 5.1 0.5
M/Z=154,偶数,设不含N,含1S
M+1/ M×100 = 1.1x + 0.37z+ 0.8S C数目=(9.80.8)/1.18
M+2/ M×100 =(1.1x)2 / 200 + 0.2w +4.4S O数目=1.56 若有1个O,则含有10个H 合
1)分子离子峰强。
2)有烷基取代的,易生成的苄基离子
+
往往是基峰。91+14 n——苄基苯系
CH2
列。
3) 当相对苯环存在 氢时,易发生 m/z 91 重排,m/z 92的峰有相当强度。
4)苯环碎片离子依此失去C2H2,化合
+
物含苯环时,一般可见 m/z 39、51、 65、77等峰。
RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w
■ 若含硫的样品 RI(M+1) / RI(M) ×100 = 1.1x + 0.37z+ 0.8S RI(M+2) / RI(M) ×100 = (1.1x)2 / 200 + 0.2w +4.4S
例:设 m/z 154为分子离子峰, 154-139=15, 合理
碎片离子:
分子离子碎裂产生,广义上指除分子离子以外的所有离子。 1)α断裂 自由基引发的断裂
2)电荷引发(诱导效应,i 断裂)
R O R'
R+ + O R'
3) 断裂
R R'
R+ + R'
4)环状化合物的裂解逆Diels-Alder反应(RDA)
e
.+
+
.
环己烯双键打开,同时引发两 个α键断裂,形成两个新的双 键。
准分子离子: 比分子多或少一个H的离子
[MH]+, [M-H]+
同位素离子: 有些元素具有天然存在的稳定同位素,
所以在质谱图上出现一些M+1,M+2,M+3的峰,由这些 同位素形成的离子峰称为同位素离子峰。
EI 质 谱 的 解 析 步 骤
分子离子峰的识别
■ 假定分子离子峰:
高质荷比区,RI 较大的峰(注意:同位素峰)
常见有机化合物质谱图回顾
1、烷烃:15, 29,43,57,71,…CnH2n+1 奇数系列峰, 43(C3H7+)、 57(C4H9+) 最强,基峰。
2、烯烃:双键β 位置C-C 键断裂(丙烯基裂解)产生的碎片离子, 出现 41, 55,
69, 83 等CnH2n-1;
3、脂肪醚:分子离子峰弱;α裂解形成烷氧基碎片m/z 29,43,57,71 。
◆ 质谱的离子类型:分子离子 碎片离子 同位素离 子 亚稳离子 重排离子 多电荷离子
质谱中的离子
分子离子: M+ ·, M - e →M+ ·
在电子轰击下,有机物分子失去一个电子所形成的离子。
分子离子中的电荷位置:
● 若分子中含有杂原子,则分子易失去杂原子的 未成键电子。 ● 若分子中没有杂原子而又双键,则双键电子较 易失去。 ● 若分子中既没有即没有杂原子也没有双键,其 正电荷一般在分支碳原子上。