凝固技术的发展与未来
快速凝固技术的性能介绍

快速凝固技术的性能介绍概述快速凝固技术是一种用于加工材料的先进技术,其主要目的是通过快速降低材料温度,使其迅速凝固和固化。
这种技术可以应用于多种材料加工领域,包括金属、陶瓷、塑料等。
本文将重点介绍快速凝固技术的性能特点及其在不同领域中的应用。
性能特点快速凝固技术的主要性能特点包括以下几个方面:1. 快速凝固速度快速凝固技术相对于传统凝固方法来说,具有更快的凝固速度。
传统凝固方法通常需要较长的时间来使材料逐渐凝固,而快速凝固技术可以将凝固时间缩短到数秒甚至更短的时间内。
这种快速凝固速度可以提高生产效率,减少能源消耗,并且有助于改善材料的性能。
2. 细化晶粒结构快速凝固技术可以显著细化材料的晶粒结构,使其具有更均匀的成分分布和更细小的晶粒尺寸。
这种细化效果一方面能够提高材料的强度和硬度,另一方面也有助于改善材料的塑性和韧性。
细化晶粒结构还可以提高材料的热稳定性和耐腐蚀性,从而拓宽了材料的应用范围。
3. 降低残余应力在传统凝固过程中,材料会受到内部应力的作用,导致产生残余应力。
而快速凝固技术可以有效降低材料的残余应力水平。
这主要归功于快速凝固过程中的高速冷却,使得材料的晶格结构能够更快地达到平衡态,减少应力的积累。
降低残余应力有助于提高材料的稳定性和可靠性,减少因应力引起的材料疲劳和断裂。
应用领域快速凝固技术在多个领域中具有广泛的应用。
以下是其中一些重要的应用领域:1. 金属制造在金属制造领域,快速凝固技术可以用于生产高性能合金材料。
通过快速凝固,可以细化金属材料的晶粒结构,提高其强度和硬度。
此外,快速凝固技术还可以改善金属材料的耐腐蚀性能,提高其在恶劣环境中的使用寿命。
因此,快速凝固技术在航空航天、汽车制造和能源行业等领域都有着重要的应用。
2. 陶瓷工艺快速凝固技术也可以应用于陶瓷工艺中。
陶瓷材料通常具有脆性和低韧性的特点,而通过快速凝固技术可以有效改善这些性能。
快速凝固可以细化陶瓷材料的晶粒结构,增加其韧性和可塑性。
材料快速凝固技术

材料快速凝固技术材料快速凝固技术是一种在材料制备中广泛应用的技术,它能够在短时间内将液态材料迅速凝固成固态材料,广泛应用于金属、陶瓷、塑料等材料的生产中。
本文将着重介绍材料快速凝固技术的原理、分类、应用及未来发展方向。
一、原理材料快速凝固技术的原理基本上是通过控制材料的温度,使得其在短时间内迅速凝固,从而形成固态材料。
在材料制备中,通过急冷或者急速加热的方法,可以使得原本需要较长时间才能固化的材料,在较短的时间内固化成形。
这种技术的应用使得生产周期大大缩短,提高了生产效率和产品质量。
二、分类根据快速凝固材料的不同性质和应用,快速凝固技术可以分为几种主要类型。
其中包括:凝固剂辅助技术、电磁场快速凝固技术、激光快速凝固技术、等离子体喷涂技术等。
这些技术在实际应用中有着不同的特点和适用范围。
凝固剂辅助技术通过添加特定的凝固剂来加速材料的固化过程,而电磁场快速凝固技术则是利用电磁场对材料进行加热和冷却,从而使其迅速凝固。
三、应用材料快速凝固技术在金属、陶瓷、塑料等材料的制备中有着广泛的应用。
在金属领域,通过快速凝固技术可以制备出具有优异性能的非晶态合金,提高了材料的硬度和强度,同时降低了材料的成本。
在陶瓷领域,快速凝固技术可以制备出致密的陶瓷材料,改善了材料的力学性能和耐磨性能。
在塑料领域,通过快速凝固技术可以制备出高分子量的聚合物材料,提高了材料的稳定性和耐热性能。
四、未来发展方向随着材料科学和工程技术的发展,材料快速凝固技术也将不断得到完善和拓展。
未来,随着新型材料的不断涌现,材料快速凝固技术将在材料制备和加工中发挥更为重要的作用。
随着新能源、新材料等领域的不断发展,对材料快速凝固技术的需求也将不断增加,预计其在未来会有更广泛的应用和发展空间。
材料快速凝固技术作为一种在材料制备中广泛应用的技术,具有重要的意义。
通过其快速凝固的原理和多样化的应用,不仅提高了材料制备的效率和质量,还为材料领域的发展带来了新的机遇和挑战。
快速凝固技术概述

快速凝固技术国内外发展及其应用1.快速凝固技术国内外发展随着对金属凝固技术的重视和深入研究,形成了许多种控制凝固组织的方法,其中快速凝固已成为一种具有挖掘金属材料潜在性能与发展前景的开发新材料的重要手段,同时也成了凝固过程研究的一个特殊领域。
快速凝固的概念和技术源于20世纪60年代初Duwez等人的研究,他们发现某些共晶合金在平衡条件下本应生成双相混合物,但当液态合金以足够快的冷却速度凝固合金液滴被气体喷向冷却板时,则可能生成过饱和固溶体、非平衡晶体,更进一步生成非晶体。
上述结果稍后被许多研究结果所证实,而且由此发现一些材料具有超常的性能,如电磁、电热、强度和塑性等方面的性能,出现了用于电工、电子等方面的非晶材料。
20世纪70年代出现了用快速凝固技术处理的晶态材料,80年代人们逐渐把注意力转向各种常规金属材料的快速凝固制备上,90年代大块非晶合金材料的开发与应用取得重大进展。
快速凝固技术是目前冶金工艺和金属材料专业的重要领域,也是研究开发新材料手段。
快速凝固一般指以大于105〜106K/S的冷却速率进行液相凝固成固相,是一种非平衡的凝固过程,通常生成亚稳相(非晶、准晶、微晶和纳米晶),使粉末和材料具有特殊的性能和用途。
由于凝固过程的快冷、起始形核过冷度大生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。
加快冷却速度和凝固速率所起的组织及结构特征可以近似地用图1来表示。
从上图我们不难看出,随着冷却速度的加快,材料的组织及结构发生着显著的变化,可以肯定地说,它也将带来性能上的显著变租1]。
快速凝固技术得到的合金具有超细的晶粒度,无偏析或少偏析的微晶组织,形成新的亚稳相和高的点缺陷密度等与常规合金不同的组织和结构特征。
实现快速凝固的三种途径包括:动力学急冷法;热力学深过冷法;快速定向凝固法。
由于凝固过程的快冷,起始形核过冷度大,生长速率高,使固液界面偏离平衡,因而呈现出一系列与常规合金不同的组织和结构特征。
材料快速凝固技术

材料快速凝固技术快速凝固技术,也被称为快速凝固加工技术(RSP),是一种能够迅速冷却液体材料并将其凝固成固态形式的先进加工技术。
这种技术的应用范围非常广泛,涵盖了材料科学、催化、纳米科技、生物科技等多个领域。
快速凝固技术的发展极大地促进了材料的研究和应用创新,下面将对快速凝固技术的原理、方法和应用进行介绍。
快速凝固技术的原理主要是利用高速冷却来迅速降低材料的温度,使其在非平衡状态下凝固。
这种快速凝固过程中,原子、分子或离子的运动受到限制,使得凝固过程中产生的晶体或非晶体结构具有独特的性质。
凝固速度的快慢会对材料的微观结构和性能产生重要影响,因此快速凝固技术被广泛应用于制备具有特殊结构和性能的新材料。
快速凝固技术的方法主要包括磁控溅射法(Magnetron Sputtering)、激光熔凝法(Laser Melting)、电子束熔凝法(Electron Beam Melting)和惰性气体快速凝固法(Inert Gas Rapid Solidification)等。
这些方法都通过快速冷却将液态材料迅速凝固,并控制凝固速度和凝固形貌,以获得理想的材料结构和性能。
其中,惰性气体快速凝固法是一种常用的方法,通过高速气体喷射将液态材料迅速冷却,实现材料快速凝固。
快速凝固技术在材料科学领域具有广泛的应用。
首先,快速凝固技术可以制备非晶态材料,这种材料具有优异的力学性能、导电性能、韧性和耐腐蚀性能,被广泛应用于导线、磁盘等领域。
其次,快速凝固技术可以制备纳米晶材料,这种材料具有高强度、高硬度、高韧性和高塑性等优良性能,被广泛应用于制备新型材料、高效催化剂和高性能表面涂层。
再次,快速凝固技术可以制备多元合金材料,这种材料具有优异的热稳定性、耐腐蚀性和抗疲劳性能,广泛应用于航空航天、汽车制造和高速列车等领域。
总之,快速凝固技术是一项非常重要的先进加工技术,它能够通过迅速冷却将液态材料迅速凝固成固态形式,从而制备出具有特殊结构和性能的新材料。
特殊凝固技术—杨雪

3. 提高耐磨性
快速凝固提高硬度,进而提高耐磨性。
4. 提高耐蚀性
成分均匀、组织精细。
5. 提高磁性能
非晶材料是理想的软磁材料。
6. 提高催化性能
活化、比表面积大大提高。
快速凝固技术基本原理及分类
(一)快速凝固技术的分类 (二)快速凝固技术的基本原理 (三)典型的急冷凝固技术方法
激光表面处理方法的基本原理如图 激光束将高密度能量施于金属表面有限
的区域上,该区表面快速熔化(根据处 理工艺要求,熔化层厚度可从几十微米 到上千微米不等),然后熔化微区快速 凝固,(固态)冷却
过程是一个快速熔化—快凝固的程序
二、定向凝固
定向凝固可使材料凝固组织按特定方向排列, 获得定向及单 晶组织结构, 从而大大改善材料的力学和物理性能。定向凝 固共晶复合材料是一种自生纤维增强的金属基复合材料。 定向凝固技术最初是在高温合金的研制中建立和完善起来 的, 在用于燃汽涡轮发动机叶片的生产中, 所获得的具有柱 状乃至单晶组织的材料,具有优良的抗热冲击性能、较长 的疲劳寿命、较高的蠕变抗力和中温塑性, 成为当时震动冶 金界和工业界的重大成果之一。该技术已逐渐推广到半导 体材料、磁性材料、复合材料等的研制中。因此, 定向凝固 技术自其诞生以来得到了迅速发展。
对现有牌号合金,可以显著地改善其组织结构,充分挖掘 其性能潜力,也可以研制在常规铸造条件下无法得到的、具 有优异性能的新型材料
近二、三十年来,不但开拓了一个崭新的学术领域,而且 向市场提供了具有特殊性能的新材料
凝固与快速凝固
冷却条件 工业冷却速度 砂型铸件或铸锭 薄带、模铸件、 中等冷却速度 普通雾化粉末 快速凝固 雾化细粉,电子 束或激光玻璃处 理 冷却速度 /K· S-1 10 --10 10 --10
定向凝固技术的发展与应用

定向凝固技术的发展与应用摘要:定向凝固技术是指利用一定的设备,在一定的工艺条件下使材料的组织具有特殊取向从而获得优异性能的工艺过程。
定向凝固技术是伴随着高温合金的发展而逐步发展起来的。
本文综述了定向凝固技术的定向凝固理论,对比分析了不同定向凝固方法的优缺点,并从四个方面论述了提高温度梯度的途径,最后对定向凝固技术的发展及应用前景做了展望。
关键词:定向凝固;工艺特点;温度梯度;应用1.引言凝固是材料制备与加工的重要手段之一,先进的凝固技术为先进材料开发与利用提供了技术条件。
凝固过程中包含了热量、质量和动量的传输过程,它们决定了材料凝固组织和成分分布,进而影响材料性能。
近20年中,不仅开发出许多先进凝固技术,也丰富和发展了凝固理论。
其中,先进凝固技术主要集中于如下几种类型:定向凝固、快速凝固与近快速凝固技术、外加物理场(压力场、电磁场、超重力或微重力场)中的凝固技术以及强制流动条件下的凝固技术等。
定向凝固技术是对金属材料进行凝固过程进行研究的重要手段之一,可用于模拟合金的凝固过程,制备高质量航空发动机定向和单晶叶片等。
同时,也是研究固液界面形态及凝固组织行之有效的技术手段。
定向凝固技术的出现是涡轮叶片发展过程中的一次重大变革。
铸造高温合金叶片的制造工艺经历了从等轴晶铸造到定向单晶凝固的发展过程,不仅在晶粒结构的控制上取得了很大进展,而且铸造性能也有了很大提高,常规的铸造高温合金尽管有较高的耐温能力,但材料的中温蠕变强度较低。
定向凝固技术能够使晶粒定向排列,在垂直于应力方向没有晶界,同时由于沿晶粒生长的(001)方向具有最低的弹性模量,这样将大大降低叶片工作时因温度不均匀所造成的热应力,因此使蠕变断裂寿命和热疲劳强度得到很大提高,如DS Mar-M200+Hf比等轴晶合金热疲劳性能提高了8倍。
此后,随着各种定向凝固技术的不断发展,固液界面前沿的温度梯度不断增大、冷却速率逐渐提高,定向生产的叶片综合性能也日2. 定向凝固理论2.1成分过冷理论Chalmers、Tiller[1, 2]等人在研究中发现在合金中液固界面前沿由于溶质富集导致平界面失稳而形成胞晶和枝晶,首次提出了著名的成将会产生成分过冷”分过冷”判据:G L m L C o( k o _ 1)V k0D L ( 1) 式中,G L为液固界面前沿液相温度梯度;V为界面生长速度;m L为液相线斜率;C o为合金平均成份;k o为平衡溶质分配系数;D L为液相中溶质扩散系数。
一种新的快速凝固技术及其应用

一种新的快速凝固技术及其应用
快速凝固技术是一种新型的材料制备技术,它可以在极短的时间内将液态材料迅速凝固成固态材料。
这种技术的应用范围非常广泛,可以用于制备各种材料,如金属、陶瓷、聚合物等。
本文将介绍快速凝固技术的原理、优点以及应用。
快速凝固技术的原理是利用高速冷却的方法将液态材料迅速凝固成固态材料。
这种方法可以使材料的晶粒尺寸变小,从而提高材料的强度和硬度。
同时,快速凝固技术还可以避免材料中的缺陷和气孔的形成,从而提高材料的质量。
快速凝固技术的优点是制备速度快、成本低、材料质量高。
与传统的制备方法相比,快速凝固技术可以大大缩短制备时间,从而提高生产效率。
同时,由于快速凝固技术可以避免材料中的缺陷和气孔的形成,所以制备出的材料质量更加稳定和可靠。
快速凝固技术的应用非常广泛。
在金属材料方面,快速凝固技术可以用于制备高强度、高硬度的合金材料,如钢、铝合金等。
在陶瓷材料方面,快速凝固技术可以用于制备高性能的陶瓷材料,如氧化铝、氮化硅等。
在聚合物材料方面,快速凝固技术可以用于制备高分子材料,如聚酰亚胺、聚酰胺等。
快速凝固技术是一种非常有前途的材料制备技术,它可以大大提高
材料的性能和质量,同时也可以缩短制备时间和降低成本。
随着技术的不断发展,相信快速凝固技术将会在各个领域得到更广泛的应用。
凝固科学与技术

凝固科学与技术凝固科学与技术是一门研究物质的凝固过程的学科,它涵盖了材料科学、物理学、化学、机械工程等多个领域。
凝固是物质从液态向固态转变的过程,它在自然界和工业生产中都有着广泛的应用。
从地球上的岩石到人类制造的各种材料,都与凝固有着密切的关系。
在凝固过程中,物质从液态到固态的转变涉及到相变、晶体生长、缺陷形成等多个方面。
这些过程的研究对于深入理解物质的结构和性质具有重要意义。
同时,凝固科学也为材料制备和加工提供了重要的理论指导和技术支持。
凝固科学与技术的研究内容非常广泛,可以分为基础研究和应用研究两个方面。
基础研究主要关注凝固过程中的物理、化学、数学等基本问题,例如相变、晶体生长、缺陷形成等。
应用研究则将凝固科学的理论成果应用于材料制备和加工等工业领域,例如铸造、焊接、单晶生长等。
在凝固科学与技术中,相变是一个非常重要的问题。
相变是指物质从一种状态转变为另一种状态的过程,例如从液态到固态、从固态到气态等。
相变过程中,物质的结构和性质会发生明显变化,因此对于相变过程的研究具有重要意义。
晶体生长是凝固科学中的另一个重要问题。
晶体是由原子或分子按照一定规律排列而成的周期性结构,它具有许多优异的性质,例如高强度、高硬度、高导电性等。
晶体生长是指晶体从小到大逐渐形成的过程,它对于制备高质量的晶体材料具有重要意义。
缺陷形成也是凝固科学中一个非常重要的问题。
在凝固过程中,由于各种原因,晶体中会出现各种缺陷,例如点缺陷、线缺陷、面缺陷等。
这些缺陷会影响晶体的性质和应用,因此对于缺陷形成机理和控制方法的研究具有重要意义。
除了基础研究之外,凝固科学与技术在材料制备和加工等领域也有着广泛应用。
铸造是凝固科学与技术中最为重要的应用之一。
铸造是指将熔融金属或合金浇注到模具中,使其冷却凝固而成的制造工艺。
铸造是制备大型零部件和复杂形状零件的主要方法之一,它在航空航天、汽车制造、机械制造等领域都有着广泛应用。
焊接也是凝固科学与技术中一个重要的应用领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
凝固技术的发展与未来
料105 周俊峰109024404
摘要:凝固是一种极为普遍的物理现象。
物质凡由液态到固态的转变一般都经历凝固过程,它广泛存在于自然界和工程技术领域。
介绍几种新型的凝固技术,展望新型凝固技术的未来发展趋势。
关键词:凝固、定向凝固、快速凝固、半固态凝固
凝固是一种极为普遍的物理现象。
物质凡由液态到固态的转变一般都经历凝固过程,它广泛存在于自然界和工程技术领域。
从雪花凝结到火山熔岩固化,从铸锭的制造到工农业用铸件及历史文物中各类艺术铸品的生产,以及超细晶、非晶、微晶材料的快速凝固,半导体及各种功能晶体从液相的生长,均属凝固过程。
可以说几乎一切金属制品在其生产流程中都要经历一次或多次的凝固过程。
快速凝固
快速凝固技术的原理:快速凝固指的是在比常规工艺过程中快得多的冷却速度下,金属或合金以极快的速度从液态转变为固态的过程。
要求金属与合金凝固时具有极大的过冷度。
快速凝固的特点:1、凝固速度快,从而可以使金属在液态中的溶解度得到扩大,这样是其材料的密度有所改变,材料各部位的组织更加的紧密,改变金属中各元素的所含比例,从而可以改变该材料的性质,使其达到某种用途的需求。
2、由于凝固的速度比一般铸造的快,这样得到的凝固结晶会更加的细小,晶粒的分布更加的均匀,一定程度减少了杂质的混入,提高材料的质量,由于晶粒组织的优化,该材料的力学,化学性质会得到提高,从而使其得到更广的运用。
3、由于快速凝固给材料带来的溶解度的扩大,更加精细的晶粒的析出,从而赋予了材料的高强度,高韧度,以及高耐腐蚀性。
这是快速凝固技术能在工业领域得到广泛运用的硬道理。
4、除了金属的快速凝固,还有一种快速凝固非晶态合金。
其特点和上类似,可以使材料具有极高的强度,硬度。
又因为其实处于非晶态,它在具有高强度的同时也具有较好的韧性。
同时,因为非晶态这种特殊形态,可以使材料具有良好的半导体性能,这是传统铸造方法所不能达到的。
快速凝固的方法及利用:
急冷凝固技术
急冷凝固技术的核心是提高凝固过程中熔体的冷速,从热传输的基本原理可以知道一个相对环境放热的冷速取决于该系统在单位时间内产生的热量和传出系统的热量,因此对金属凝固而言,提高系统的冷速必须要求:第一,减少单位时间内金属凝固时产生的熔化潜热;第二,提高凝固过程中的传热速度。
这里国外常采用的三种方法:急冷的模冷技术、雾化技术、表面熔化与沉积技术。
大过冷凝技术
大过冷快速凝固技术的核心是在熔体中设法消除可以作为非均匀形核媒质的杂质或容器的影响,创造尽可能均匀形核的条件,从而在形核前获得很大的过冷度。
通常在熔体凝固过程中促进非均匀形核的形核媒质主要来自熔体内部和容器壁,因此大过冷技术就是主要从这二个方面设法消除形核媒质。
采用大过冷快速凝固技术的具体方法大致分为两类。
一类是熔滴弥散法,即在细小熔滴中达到大凝固过冷度的方法,包括乳化法、熔滴水成冰(基底法和落管法等。
另一类是在较大体积熔体中获得大的凝固过冷度的方法,包括玻璃体包裹法、二相区法和电磁悬浮熔化法等。
定向凝固
定向凝固技术的原理:定向凝固的目的是为了使铸件获得按一定方向生长的柱状晶或单晶组织。
定向凝固铸件的组织分为柱状、单晶和定向共晶3种。
要得到定向凝固组织需要满足的条件,首先要在开始凝固的部位形成稳定的凝固壳,凝固壳的形成阻止了该部位的型壁晶粒游离,并为柱状晶提供了生长基础。
该条件可通过各种激冷措施达到,其次,要确保凝固壳中的晶粒按既定方向通过择优生长而发展成平行排列的柱状晶组织。
同时,为使柱状晶的纵向生长不受限制,并且在其组织中不夹杂有异向晶粒。
固/液界面前方不应存在生核和晶粒游离现象。
定向凝固的特点:定向凝固是在高温合金的研制中建立和完善起来的。
该技术最初用来消除结晶过程中生成的横向晶界,从而提高材料的单向力学性能。
由于定向凝固技术能得到一些具有特殊组织取向和优异性能的材料,因而自它诞生以来得到了迅速发展。
定向凝固技术被广泛用于获得具有特殊取向的组织和优异性能的材料,应用定向凝固方法可以得到定向组织甚至单晶$明显地提高材料所需的性能,定向凝固过程中温度梯度和凝固速率这两个凝固参数能够独立变化成为凝固理论研究的重要手段。
定向凝固的方法及应用:目前,定向凝固技术的最主要应用是生产具有均匀柱状晶组织的铸件,特别是在航空领域生产高温合金的发动机叶片,与普通铸造方法获得的铸件相比,它使叶片的高温强度、抗蠕变和持久性能、热疲劳性能得到大幅度提高。
对于磁性材料,应用定向凝固技术,可使柱状晶排列方向与磁化方向一致,大大改善了材料的磁性能。
定向凝固技术也是制备单晶的有效方法。
定向凝固方法得到的自生复合材料消除了其它复合材料制备过程中增强相与基体间界面的影响,使复合材料的性能大大提高。
半固态凝固技术
半固态凝固技术的原理:在液态金属凝固过程中,施以剧烈搅拌,破碎所形成的树枝晶,而形成近球形初生晶粒和残余液相共同构成的具有非枝晶组织特征的半固态合金,这种半固态合金在固相率达到60时仍具有较好的流动性,可以采用常规的成形工艺,如压力铸造、挤压铸造、连续铸造、真空铸造等实现金属的成形。
半固态凝固的特点:铸件的凝固收缩减小,铸件尺寸精度高、外观质量好,减少了机械加工量,甚至可以得到无机械加工余量铸件;消除了常规铸件中的柱状晶和粗大树枝晶,铸件组织细小、致密,分布均匀,不存在宏观偏析;金属充型平稳、无湍流、无飞溅,而且充型温度低,延长模具寿命;简化铸造工序,降低能耗,改善劳动条件,由于凝固速度快,生产率高;提高铸件力学性能。
半固态技术的方法及应用:欧洲与美国是半固态铸造技术研究与应用的主要地区,此外,日本早在1988 年就设立了金属半固态加工开发研究公司。
进入20世纪90年代,半固态铸造技术的应用在国外已逐步成为各先进工业国家竞相发展的一个领域,并被专家学者称为21世纪新一代新兴的金属成形技术。
经过30 多年的研究和开发,目前,铝、镁合金半固态铸造技术在西方发达国家已进入工业应用的成长期。
国外的开发和生产表明,汽车工业中轿车、轻型车的转向节、泵体、转向器壳体、阀体、一些悬挂支架件和轮毂等高强度、高致密度、高可靠性要求的铸件,采用半固态铸造技术成形可以实现产品的低成本高产出及高质量。
参考文献:
1、崔建忠、路贵民。
半固态浆制备技术的新进展[K]C 哈尔滨工业大学学报,2000,32(4):110~113.
2、路贵民、董杰。
铝合金液相线铸造过程的形核[K]C 东北大学学报,2002,23(1):38~40.
3、彭广威,刘健,李理,等.定向凝固理论及技术的研究现状[J].铸造设备研究,2006(4).
4、陶春虎,张卫方,施惠基.定向凝固高温合金的再结晶[M].北京:国防工业出版社, 2007
5、张瑞丰,沈宁福. 快速凝固技术与新型合金的研究现状及展望. 材料科学与工程,2001
6、李月珠. 快速凝固技术和材料. 北京:国防工业出版社,1993.
料105
周俊峰
109024404。