显色指数原理和基本计算.pdf
显色指数计算

宋洁琼
上海时代之光照明电器检测有限公司
一、前言 近年来随着固态照明技术的逐渐成熟,LED 应用日益广泛,对整个照明行业带来深远 的发展,同时也带来了一些新的问题。LED 在整个使用寿命当中随温度、寿命的变化而存 在明显的颜色偏移。 此外受发光原理影响及加工工艺及的限制, 不同厂家或不同批次的 LED 灯具都可能因使用芯片不同而会出现较大的色度变化。因此对 LED 标准制定方面就体现新 的要求,LED 光源的色度评价不能完全等同采用传统光源的色度评价方法。 本文主要综合归纳了目前标准中 LED 色度变化的相关概念并做简要的分析阐述。
CIE 1967UCS均匀色 品图(u’,v’)
CIE 1976 L*u*v*
CIE 1960UCS均匀色 品图(u,v)
CIE 1964 W*U*V*
CIE 1976 L*a*b*
CIE 1931-XYZ 标准色度系统 (x,y)
CIE 1964-XRBG系统
uv3000 (u3000 ' u0 ') 2 (v3000 ' v0 ') 2 uv6000 (u6000 ' u0 ') 2 (v6000 ' v0 ') 2
公式 3 公式 4
3.3
LED 色度空间不均匀指标△u’v’ 另外考虑 LED 照明产品在不同发光角上可能会表现出不同的颜色特性, 标准 LM-79-09
3.2
LED 的颜色漂移△u’v’ 我国节能认证技术规范 CQC3130 中另外定义了 LED 的颜色漂移,规定 LED 产品在
3000h 内的色度变化不能超过和 0.004 且 6000h 内的色度变化不能超过 0.007。 同时该规范制 定 LED 的颜色漂移使用 CIE 1976UCS 色品图即(u’,v’)坐标体系评价色坐标的变化。但该 规范没有明确说明颜色漂移的具体定义以及计算方法。标准 LM-80-2008 旨在讨论 LED 光 源光通量维持率的测量方法, 但其中条款 7.4 提到在整个光通维持率测试期间都应测量 LED 的色度参数并计算色度偏移△u’v’,并且要体现在最终的报告当中。另外在 DOE 为照明产 品定制的产品要求《ENERGY STAR Product Specification for Luminaires》中规定,室内固态 照明产品在第一个 6000hs 内的运行期间,表现在 CIE1976(u’,v’)色度系统中的色度变化 应不超过 0.007, 该值与 CQC 要求数据吻合。 同时 DOE 指明, 该色度变化表示为产品在 6000h 时色度坐标与 0h 的初始色度坐标之间的距离。因此可推断 CQC 所指的颜色漂移也应当是 3000 或 6000 小时的色度坐标与 0 小时时的色度坐标在在 1976(u’,v’ )色度系统中的坐标 距离。 具体计算公式如下所示。
显色指数原理和基本计算.

显色指数的原理和基本计算上海时代之光照明电器检测有限公司蒋毅平众所周知色表和显色性是反应光源颜色的两个重要的量,不同光谱功率分布的光源可以有相同的色表,但是有相同色表的几种光源的显色性却可能完全不同,因此,只有讲色表和显色性两者结合起来才能全面反映光源的颜色特征。
用光谱功率分布不同的光源照明物体,产生的颜色感觉是不一样的,光源这样的决定被照物体颜色感觉的性质称之为显色性。
显色指数是描述光源显色性的一个量,具有重要的意义。
本文简单介绍显色指数的计算。
1、基本概念及计算公式1.1 RGB 系统三原色定义:所有颜色的光都可以由某3种单色光按一定比例混合而成,但这3种单色光中任何一种都不能由其余两种混合产生,这3种单色光称为三原色。
1931年CIE 规定,RGB 系统的三原色为红光(R:700nm ,绿光(G:546nm ,蓝光(B:435.8nm 。
在RGB 系统中,按下式比例混合可得到等能量白光,即0601.0:5907.4:1::=B G R F F F (1-1于是可以用数学式表达混色结果为B G R F 0601.05907.41++= (1-2F 表示混色后的光通量,而R 、G 、B 称为三刺激值。
为了便于计算以及更直观的了解光源颜色特征,引入⎪⎩⎪⎨⎧++=++=++=/(/(/(B G R B b B G R G g B G R R r (1-3 这三个量称为色度坐标或色坐标。
因为r+g+b=1,因此只要知道色坐标中的两个值就能得出第三个,即可以用平面图来表示色度,这就是色度图。
三刺激值的计算可由下式计算得出⎪⎪⎪⎩⎪⎪⎪⎨⎧===∫∫∫780380780380780380(((λλλλλλλλλd b P B d g P G d r P R (1-4式中P 为光源光谱功率分布,r 、g 、b 分别为1931 CIE-RGB 系统标准色度观察者光谱三刺激值。
1.2 XYZ 系统在RGB 系统中匹配某些可见光谱颜色时需要用到基色的负值,而且使用不便,于是国际照明委员会采用了一种新的颜色系统,1931 CIE XYZ 系统。
显色性

显色指数CRI——一只灯泡的显色指数是彩色物体被该灯泡发出的光照 显色指数 一只灯泡的显色指数是彩色物体被该灯泡发出的光照
明时彩色被显现的真实程度。 明时彩色被显现的真实程度。
白炽灯泡 100 卤钨灯泡 CRI 90`S=杰出 CRI 80`S=很好 CRI 70`S=不错
光的质量
显示指数—光源表现颜色的能力 显示指数 光源表现颜色的能力 0~100;白炽灯 100 ; 显示指数CRI—一只灯泡的显色指数是彩色物体被该灯泡发出的光照 显示指数
明时彩色被显示的真实程度。 白炽灯泡和卤钨灯泡的显色指数定义为100,而高压钠灯的显色指数为 20,美标金卤灯的显色指数为65。 下图显示用不同种类灯泡照明同样物体时的彩色效果。
显色指数cri和ra

显色指数cri和ra
CRI和RA是衡量光源的色彩还原能力的两个指标。
CRI是指显色指数,它用于评估光源对物体颜色的还原能力。
RA是指色彩还原指数,它是CRI的一种具体计算方法。
在我们的日常生活中,这两个指标对于光源的选择和应用具有重要的意义。
CRI是一个0到100的数值,越高表示光源还原物体颜色的能力越好。
当光源的CRI达到90以上时,我们会感觉到非常接近自然光的色彩还原效果。
而低于80的CRI则会导致物体颜色的偏差,使得我们无法准确地辨别物体的真实颜色。
因此,在选择照明设备时,我们应该考虑到CRI的数值,以确保我们能够获得准确的颜色信息。
RA是根据光源在光谱中的辐射分布来计算的。
它与CRI有一定的相关性,但并不完全相同。
RA的计算方法更加简单,适用于一些特定场景下的光源选择。
然而,由于RA只考虑了光源的辐射分布,而没有考虑到人眼对不同颜色的敏感度,所以它并不能完全代表光源的色彩还原能力。
在实际应用中,我们可以根据不同的场景和需求来选择适合的光源。
如果我们需要准确还原物体的颜色,比如在博物馆、艺术展览等场所,我们应该选择具有较高CRI值的光源。
而在一些普通的照明场景中,RA值较高的光源可能更加适用。
此外,我们还可以通过组合不同的光源,来获得更好的色彩还原效果。
CRI和RA是衡量光源色彩还原能力的重要指标。
通过选择合适的光源,我们可以获得更准确、自然的色彩还原效果,提升视觉体验。
在未来的发展中,我们还可以进一步完善这些指标,以满足人们对于高质量照明的需求。
显色指数的计算

显色指数的计算光源显色性定义: 是指与参照标准下相比较, 一个光源对物体颜色外貌所产生的效果。
1965 年C IE 制定一种评价光源显色性的方法, 简称“测验色”法, 1974 年修订后, 正式向国 际上推荐使用。
此方法是用一个显色指数量值表示光源的显色性。
光源的显色指数是待评 光源下物体的颜色与参照光源下物体颜色相符程度的度量。
为了符合人类长期的照明习惯,C IE 规定5000 K 以下的低色温光源用普郎克辐射体作为参照光源, 色温5 000 K 以上的用 标准照明体D 作为参照光源, 设定参照光源的显色指数为100。
评价时采用一套14 种试验 颜色样品, 其中1到8用于光源一般显色指数(8 个数平均值) , 各试验色样的数值称之为特殊显色指数。
我们平时说的“显色指数”, 即是一般显色指数的简称。
若某个试验色样在待评光源与参照光源照明下有颜色差Ei ∆那么:特殊显色指数10046i R Ei =-*∆;一般显色指数81/8a i R R ⎛⎫= ⎪⎝⎭∑ 一、根据待测光源的光功率谱分布, 计算待测光源的色度坐标k x ,k y ,k u ,k v 及相关色温C T 。
1、待测光源的色度坐标k x ,k y ,k u ,k v 的确定使用光谱仪测出待测光源的光谱功率分布函数()s P λ,计算光源的三刺激值X ,Y ,Z :780380()()ms X K P x d λλλ=⎰,780380()()m s Y K P y d λλλ=⎰;780380()()m s Z K P z d λλλ=⎰; 其中: m K 为辐射量和光度量之间的比例系数,为常数,等于683 lm/ W 。
()x λ,()y λ,()z λ为CIE1931标准色度观察者光谱三刺激值(注:此处的三刺激值可由1931CIE-RGB 系统标准色度观察者光谱三刺激值()r λ,()g λ,()b λ来确定。
某一波长λ的光谱刺激()r λ,()g λ,()b λ与光谱色度坐标()r λ,()g λ,()b λ关系如下:r r r g b =++,g g r g b =++,b b r g b=++;某一波长λ的光谱刺激()r λ,()g λ,()b λ与()x λ,()y λ,()z λ色度坐标关系为:0.49000()0.31000()0.2000()()0.66697() 1.13240() 1.20063()r g b x r g b λλλλλλλ++=++, 0.17697()0.81240()0.01063()()0.66697() 1.13240() 1.20063()r g b y r g b λλλλλλλ++=++, 0.00000()0.0100()0.99000()()0.66697() 1.13240() 1.20063()r g b z r g b λλλλλλλ++=++,(该三式可由矩阵表示)。
关于显色指数

加紅粉是現在主流做法,一般用氮化物紅粉或矽酸鹽紅粉、氮化物會比矽酸鹽穩定、光效也較好但重點是加紅粉顯指提高ㄋ但顏色又跑ㄋ、用短波段芯片也許能更好解決問題、但又擔心色差如6000k顯指提高但色差很大、目前還沒有最好解決方案。
顯指應該保持在80又不失亮度應該是目前極限ㄋ显色指数光源对物体的显色能力称为显色性,是通过与同色温的参考或基准光源(白炽灯或画光)下物体外观颜色的比较。
光所发射的光谱内容决定光源的光色,但同样光色可由许多,少数甚至仅仅两个单色的光波纵使而成,对各个颜色的显色性亦大不相同。
相同光色的光源会有相异的光谱组成,光谱组成较广的光源较有可能提供较佳的显色品质。
当光源光谱中很少或缺乏物体在基准光源下所反射的主波时,会使颜色产生明显的色差(color shift)。
色差程度愈大,光源对该色的显色性愈差。
演色指数系数(Kaufman)仍为目前定义光源显色性评价的普遍方法。
显色分两种忠实显色:能正确表现物质本来的颜色需使用显色指数(Ra)高的光源,其数值接近100,显色性最好。
效果显色:要鲜明地强调特定色彩,表现美的生活可以利用加色的方法来加强显色效果。
采用低色温光源照射,能使红色更加鲜艳;采用中等色温光源照射,使蓝色具有清凉感;采用高色温光源照射,使物体有冷的感觉。
显色指数与显色性的关系当光源光谱中很少或缺乏物体在基准光源下所反射的主波时,会使颜色产生明显的color shift.色差程度越大,光源对该色的显色性越差。
演色指数系数(Kau fman)仍为目前定义光源显色性评价的普遍方法。
白炽灯的显色指数定义为100,视为理想的基准光源。
此系统以8种彩度中等的标准色样来检验,比较在测试光源下与在同色温的基准下此8色的偏离(Deviation)程度,以测量该光源的显色指数,取平均偏差值Ra20-100,以100为最高,平均色差越大,Ra值越低。
低于20的光源通常不适于一般用途。
指数(Ra)等级显色性一般应用90-100 1A 优良需要色彩精确对比的场所80-89 1B 需要色彩正确判断的场所60-79 2 普通需要中等显色性的场所40-59 3 对显色性的要求较低,色差较小的场所20-39 4 较差对显色性无具体要求的场所白炽灯的理论显色指数为100,但实际生活中的白炽灯种类繁多,应用也不同,所以其Ra 值不是完全一致的。
显色指数原理和基本计算

X
+Y
+
Z)
(1-6)
⎪⎩ z = Z /( X + Y + Z )
1.3 CIE1960 均匀颜色空间
在 x-y 色度图上,不同部分的相等距离并不代表视觉上相等的色度差,为了克服这个缺点, 麦克亚当引入了一种新的均匀色度 u-v 色度图。均匀色度坐标 u、v 与 x、y 的关系为
⎪⎪⎧u ⎨ ⎪⎪⎩v
1.4809509 1.8871493 0.2372197 0.3251254
2
1.0851375 1.9752934 0.2156554 0.3393173
3
0.9422031 2.1194114 0.1808578 0.3471641
4
1.4909037 2.2631593 0.1529027 0.3321074
FR : FG : FB = 1: 4.5907 : 0.0601
(1-1)
于是可以用数学式表达混色结果为
F = 1R + 4.5907G + 0.0601B (1-2)
F 表示混色后的光通量,而 R、G、B 称为三刺激值。
为了便于计算以及更直观的了解光源颜色特征,引入
⎧ r = R /(R + G + B) ⎪⎨g = G /(R + G + B) (1-3) ⎪⎩b = B /(R + G + B)
5
2.3487773 2.2359215 0.1676629 0.3067029
6
3.3122612 2.2501348 0.1730674 0.2830812
7
3.2960365 2.0378025 0.2138435 0.2804225
显色指数的计算

显色指数的计算光源显色性定义: 是指与参照标准下相比较, 一个光源对物体颜色外貌所产生的效果。
1965 年C IE 制定一种评价光源显色性的方法, 简称“测验色”法, 1974 年修订后, 正式向国 际上推荐使用。
此方法是用一个显色指数量值表示光源的显色性。
光源的显色指数是待评 光源下物体的颜色与参照光源下物体颜色相符程度的度量。
为了符合人类长期的照明习惯,C IE 规定5000 K 以下的低色温光源用普郎克辐射体作为参照光源, 色温5 000 K 以上的用 标准照明体D 作为参照光源, 设定参照光源的显色指数为100。
评价时采用一套14 种试验 颜色样品, 其中1到8用于光源一般显色指数(8 个数平均值) , 各试验色样的数值称之为特殊显色指数。
我们平时说的“显色指数”, 即是一般显色指数的简称。
若某个试验色样在待评光源与参照光源照明下有颜色差Ei ∆那么:特殊显色指数10046i R Ei =-*∆;一般显色指数81/8a i R R ⎛⎫= ⎪⎝⎭∑ 一、根据待测光源的光功率谱分布, 计算待测光源的色度坐标k x ,k y ,k u ,k v 及相关色温C T 。
1、待测光源的色度坐标k x ,k y ,k u ,k v 的确定使用光谱仪测出待测光源的光谱功率分布函数()s P λ,计算光源的三刺激值X ,Y ,Z :780380()()ms X K P x d λλλ=⎰,780380()()m s Y K P y d λλλ=⎰;780380()()m s Z K P z d λλλ=⎰; 其中: m K 为辐射量和光度量之间的比例系数,为常数,等于683 lm/ W 。
()x λ,()y λ,()z λ为CIE1931标准色度观察者光谱三刺激值(注:此处的三刺激值可由1931CIE-RGB 系统标准色度观察者光谱三刺激值()r λ,()g λ,()b λ来确定。
某一波长λ的光谱刺激()r λ,()g λ,()b λ与光谱色度坐标()r λ,()g λ,()b λ关系如下:r r r g b =++,g g r g b =++,b b r g b=++;某一波长λ的光谱刺激()r λ,()g λ,()b λ与()x λ,()y λ,()z λ色度坐标关系为:0.49000()0.31000()0.2000()()0.66697() 1.13240() 1.20063()r g b x r g b λλλλλλλ++=++, 0.17697()0.81240()0.01063()()0.66697() 1.13240() 1.20063()r g b y r g b λλλλλλλ++=++, 0.00000()0.0100()0.99000()()0.66697() 1.13240() 1.20063()r g b z r g b λλλλλλλ++=++,(该三式可由矩阵表示)。