初三数学-分式练习题及答案 最新
分式练习题及答案

分式练习题及答案分式是数学中的一个重要概念,它在我们的日常生活中有着广泛的应用。
在学习分式的过程中,练习题是不可或缺的一部分。
通过练习题,我们可以巩固对分式的理解,提高解题能力。
本文将给大家介绍一些常见的分式练习题及其答案,希望对大家的学习有所帮助。
一、基础练习题1. 计算:$\frac{3}{4}+\frac{2}{5}$解答:首先找到两个分式的公共分母,这里是20。
然后将两个分式的分子相加,保持分母不变。
计算得到:$\frac{15}{20}+\frac{8}{20}=\frac{23}{20}$2. 计算:$\frac{5}{6}-\frac{1}{3}$解答:同样地,找到两个分式的公共分母,这里是6。
然后将两个分式的分子相减,保持分母不变。
计算得到:$\frac{5}{6}-\frac{2}{6}=\frac{3}{6}=\frac{1}{2}$3. 计算:$\frac{2}{3}\times\frac{3}{4}$解答:将两个分式的分子相乘,分母相乘,得到:$\frac{2}{3}\times\frac{3}{4}=\frac{6}{12}=\frac{1}{2}$4. 计算:$\frac{2}{3}\div\frac{5}{6}$解答:将除法转化为乘法,即将第二个分式的分子与分母互换位置,然后进行乘法运算。
得到:$\frac{2}{3}\div\frac{5}{6}=\frac{2}{3}\times\frac{6}{5}=\frac{12}{15}=\frac{4}{5}$二、应用练习题1. 甲、乙两个水管一起工作可以在3小时内将一个水池填满。
如果甲单独工作需要4小时,乙单独工作需要多少小时?解答:设乙单独工作需要x小时。
根据工作时间和工作效率的关系,可以得到以下分式:$\frac{1}{4}+\frac{1}{x}=\frac{1}{3}$。
将分式转化为方程,解方程得到:$x=12$。
(完整版)初中数学分式习题(附答案)(最新整理)

x 1 (x 1)(x 1)
2 x 1
2
当 x=2 时,原式= .
3
6.
7
解:设他第一次在购物中心买了 x 盒,则他在一分利超市买了
x 盒.
由题意得: 12.5
14
=0.5
5
x 7x
5
解得 x=5.
经检验,x=5 是原方程的根. 答:他第一次在购物中心买了 5 盒饼干.
终不变. 所以当 x=3,5-2 2 ,7+ 3 时,代数式的值都是 1 . 2
5.对于试题:“先化简,再求值:
x3 x 2 1
1
1
x
,其中
x=2.”小亮写出了如下解答过程:
∵ x3 1 x3 1
① x 3 x 1
②
x 2 1 1 x (x 1)(x 1) x 1
(x 1)(x 1) (x 1)(x 1)
1 A.
x 1
1.下列各式中,不是分式方程的是(D) x x
1 x C.
x
1
10 x 2 x
B. 1 (x 1) x 1 x
D. 1 [ 1 (x 1) 1] 1 32
| x | 5 2.如果分式 x2 5x 的值为 0,那么 x 的值是(B)
A.0
B.5
C.-5
D.±5
2x 2y
3.把分式
3. b 1Aa 1 b 1Aa 1 的值是
2(a b)
.4.当 x>
1
2
时,分式
的值为正数.
ab ab
ab
3
1 3x
5. 1 1 = 1 x 1 x
2 1 x2
.6.当分式 x 2 与 与 与 x 1
分式测试题及答案

分式测试题及答案一、选择题1. 已知分式\( \frac{a}{b} \),若\( a \)和\( b \)同号,则该分式的值为()A. 正数B. 负数C. 0D. 无法确定2. 下列分式中,哪个分式的值是负数?A. \( \frac{-3}{4} \)B. \( \frac{-3}{-4} \)C. \( \frac{3}{-4} \)D. \( \frac{3}{4} \)3. 如果\( \frac{x}{y} = 2 \),当\( y \)增加时,分式的值会()A. 变大B. 变小C. 不变D. 无法确定二、填空题4. 将分式\( \frac{2x^2}{3x} \)化简为\( \frac{x}{\_\_\_} \)。
5. 若\( \frac{a}{b} = \frac{c}{d} \),且\( b \)和\( d \)不为0,则\( a \)和\( c \)成______比例。
三、解答题6. 已知\( \frac{2}{x+1} = \frac{3}{y+1} \),求\( \frac{x}{y} \)的值。
7. 计算下列分式的和:\( \frac{1}{2x+1} + \frac{2}{3x-1} \)。
四、应用题8. 一个水池的容积是\( 2000 \)升,水管A每秒可以注入\( 5 \)升水,水管B每秒可以排出\( 3 \)升水。
如果同时打开水管A和B,求水池注满需要的时间。
答案:一、选择题1. A2. C3. B二、填空题4. 35. 正三、解答题6. 由题意可得\( 2y+2 = 3x+3 \),化简得\( 2y = 3x+1 \),所以\( \frac{x}{y} = \frac{2}{3} \)。
7. 通分后计算得:\( \frac{1}{2x+1} + \frac{2}{3x-1} = \frac{3x-1}{(2x+1)(3x-1)} + \frac{4(2x+1)}{(2x+1)(3x-1)} = \frac{3x-1+8x+4}{(2x+1)(3x-1)} = \frac{11x+3}{(2x+1)(3x-1)} \)。
分式测试题及答案

分式测试题及答案一、选择题1. 分式的基本性质是()A. 分子分母同时乘以一个不为0的数,分式的值不变B. 分子分母同时除以一个不为0的数,分式的值不变C. 分子分母同时乘以或除以一个不为0的数,分式的值不变D. 以上都不对答案:C2. 已知分式\(\frac{a}{b}\),如果\(b=0\),则分式()A. 无意义B. 有意义C. 等于0D. 等于1答案:A3. 将分式\(\frac{3x^2}{2x^2-4x+2}\)化为最简形式,正确的是()A. \(\frac{3x}{2-x}\)B. \(\frac{3x}{x-1}\)C. \(\frac{3x}{2x-1}\)D. \(\frac{3x}{x-2}\)答案:B二、填空题1. 计算分式\(\frac{2}{x-1}+\frac{3}{x+1}\)的和,结果为______。
答案:\(\frac{5x+1}{x^2-1}\)2. 若分式\(\frac{2x-3}{x^2-4}\)有意义,则x不能等于______。
答案:±2三、计算题1. 计算并简化\(\frac{2x^2-4x+2}{x^2-9}\)。
答案:\(\frac{2(x-1)^2}{(x-3)(x+3)} = \frac{2}{x+3}\)(当\(x \neq 3\))2. 计算并简化\(\frac{1}{x-1} - \frac{1}{x+1} + \frac{2}{x^2-1}\)。
答案:\(\frac{2}{x^2-1}\)四、解答题1. 已知\(\frac{a}{b} = \frac{c}{d}\),求\(\frac{ad}{bc} = \)。
答案:12. 若\(\frac{2}{3} \leq \frac{a}{b} < 1\),求\(\frac{a}{b} +\frac{1}{a}\)的取值范围。
答案:\(\frac{5}{3} \leq \frac{a}{b} + \frac{1}{a} < 2\)五、证明题1. 证明:若\(\frac{a}{b} = \frac{c}{d}\),则\(\frac{a+c}{b+d} = \frac{a}{b}\)。
九年级中考数学复习《分式》专项练习题-附带答案

九年级中考数学复习《分式》专项练习题-附带答案一、单选题1.分式方程3x =2x−1的解是A.x=﹣3 B.x=−35C.x=3 D.无解2.若式子√x+2x−1有意义,则x的取值范围是()A.x≥-2且x≠1 B.x>-2且x≠1C.x≥-2 D.x>-23.已知关于x的方程2x+ax−1=1的解是非负数,则a的取值范围是()A.a≥﹣1 B.a≥﹣1且a≠0C.a≤﹣1 D.a≤﹣1且a≠﹣24.如果把分式2yx+y中的x和y都扩大为原来的2倍,那么分式的值()A.不变B.缩小为原来的12C.扩大为原来的2倍D.扩大为原来的4倍5.赵强同学借了一本书,共280页,要在两周借期内读完.当他读了一半时,发现平均每天要多读21页才能在借期内读完.他读前一半时,平均每天读多少页?如果设读前一半时,平均每天读x页,则下面所列方程中,正确的是()A.140x +140x−21=14B.280x+280x+21=14C.140x +140x+21=14D.10x+10x+21=16.试卷上一个正确的式子(1a−b −1a+b)÷=2a+b被莹莹不小心滴上墨汁,被墨汁遮住的部分的代数式是()A.aa−b B.aa+bC.ba+bD.ba−b7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是( ) A .只有乙B .甲和丁C .乙和丙D .乙和丁8.若关于 x 的一元一次不等式组 {5x+32≥2x +1x ≤a有解且最多有7个整数解;且关于 y 的分式方程2y+3y−1+a+11−y =a 有非负数解,则所有满足条件的整数 a 有( )个.A .1B .2C .3D .4二、填空题 9.若方程 x+2x−1=m+1x−1有一个增根,则m = .10.关于 x 的分式方程 xx+1−ax 2−1=1 的解为负数,则 a 的取值范围 . 11.已知分式x+12−x ,当x 取a 时,该分式的值为0;当x 取b 时,分式无意义,则a +b 的值等于 . 12.不改变分式的值,将分式的分子、分母的各项系数都化为整数,则 a−23b 12a+2b= .13.某市为绿化环境计划植树3000棵,实际劳动中每天植树的数量比原计划多30%,结果提前5天完成任务.若设原计划每天植树 x 棵,则根据题意可列方程为 . 三、解答题14.先化简,再求值: (x x−1+1x−1)÷x+1x 2−2x+1 ,其中 x =√3 .15.某商家用3000元购买了一种商品,面市后供不应求,第二次又用5400元购买了这种商品,所购商品的数量比第一次多50件,但单价涨了20%.若销售这种商品每件定价都是50元,所有商品全部售完后,商家共赢利多少元?16.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点10分、7点15分离家骑自行车上班,刚好在校门口遇上,已知李老师骑车的速度是张老师的1.2倍,求他们各自骑自行车的速度分别是多少米/分? 17.解方程 (1)x x+1−1=3x−1 (2)3x+2+2x 2−4=1x−218.“和尚头”是白银区武川乡干旱地区种植的优质小麦之一,其特点是滑润爽口、味感纯正、面筋强、食用方便,是家庭、宾馆、给老人祝寿之佳品.某商店准备用3000元购进A ,B 两种包装的这种小麦共150袋,已知购买两种小麦的费用相同,且A 种包装小麦的单价是B 种包装小麦单价的2倍. (1)A ,B 两种包装的小麦单价各是多少?(2)若计划用不超过4500元的资金再次购进A ,B 两种包装的小麦共200袋,已知A ,B 两种包装的单价不变,则A种包装的小麦最多能购进多少袋?参考答案1.C2.A3.D4.A5.C6.D7.D8.B9.210.a>1且a≠2 11.112.6a−4b3a+12b13.3000x −30001.2x=514.解:原式= x+1x−1·(x−1)2x+1= x-1令x=√3,则原式= √3−115.解:设第一次购买单价x,则第二次为1.2x元依题意得:3000x =54001.2x−50解得x=30经检验:x=30是原方程的解.∴第一次赢利:300030×(50−30)=2000(元)第二次赢利:54001.2×30×(50−36)=2100(元)两次一共赢利:2000+2100=4100元答:商家共赢利4100元.16.解:设张老师骑自行车的速度为x米/分,则李老师骑车的速度为1.2x米/分根据题意列方程得:3000 x −3000 1.2x=5解之得:x=100经检验:x=100是原方程的根.∴1.2x=1.2×100=120答:张老师骑自行车的速度为100米/分,则李老师骑车的速度为120米/分. 17.(1)解:方程两边同乘以(x+1)(x−1),得(x−1)x−(x+1)(x−1)=3(x+1)解这个整式方程,得x=−12,经检验,x=−12是原方程的根(2)解:方程两边同时乘以(x+2)(x−2),得3(x−2)+2=x+2解这个整式方程得:x=3经检验,x=3是原方程得根18.(1)解:设B种包装的小麦单价为x元/袋,则A种包装的小麦单价为2x元/袋根据题意,得1500x +15002x=150解得x=15经检验,x=15是原方程的解,且符合题意2×15=30(元/袋)答:A种包装的小麦单价为30元/袋,B种包装的小麦单价为15元/袋;(2)解:设购进A种包装的小麦m袋,则购进B种包装的小麦(200−m)袋依题意,得30m+15(200−m)≤4500解得m≤100答:A种包装的小麦最多能购进100袋。
中考复习之分式练习题(含答案)

分式练习题一、填空选择题1.函数31+=x y 的自变量取值范围是 . 2.分式方程1211-=+x x 的解为 。
3.当x 时,分式x 1没有意义. 4.已知关于x 的方程322=-+x m x 的解是正数,则m 的取值范围为______________ . 5.解方程xx -=-22482的结果是 . 6.如图,点A ,B 在数轴上,它们所对应的数分别是-4,2235x x +-,且点A 、B 到原点的距离相等,则x 的值为 . 7.化简:①2111x x x x -+=++ .②22a a a+= . ③2244xy y x x --+= 8.若2||323x x x ---的值为零,则x 的值是 9.若分式22221x x x x --++的值为0,则x 的值等于 . 10.化简:22221369x y x y x y x xy y+--÷--+=_______ 11.分式方程2131x x =+的解是_________ 12.解分式方程11222x x x-+=--,可知方程( ) A .解为2x = B .解为4x = C .解为3x = D .无解13.化简11y x x y ⎛⎫⎛⎫-÷- ⎪ ⎪⎝⎭⎝⎭的结果是 . 14.a 、b 为实数,且ab =1,设P =11a b a b +++,Q =1111a b +++,则P Q (填“>”、“<”或“=”). 15.学完分式运算后,老师出了一道题“化简:23224x x x x +-++-” 小明的做法是:原式222222(3)(2)26284444x x x x x x x x x x x +--+----=-==----; 小亮的做法是:原式22(3)(2)(2)624x x x x x x x =+-+-=+-+-=-; 小芳的做法是:原式32313112(2)(2)222x x x x x x x x x x +-++-=-=-==++-+++. 其中正确的是( )提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为(A )18%)201(400160=++x x (B )18%)201(160400160=+-+xx (C ) 18%20160400160=-+x x (D )18%)201(160400400=+-+x x 17.对于任意不相等的两个数a ,b ,定义一种运算※如下:a ※b =ba b a -+,如3※2=52323=-+.那么12※4= . 18.请你给x 选择一个合适的值,使方程2112-=-x x 成立,你选择的x =________。
分式练习题及答案

分式练习题及答案一、计算下列分式的值:1. $\dfrac{3}{4} - \dfrac{1}{6} + \dfrac{2}{5}$解:将所有分式的分母通分,得到:$\dfrac{9}{12} - \dfrac{2}{12}+ \dfrac{4}{12} = \dfrac{11}{12}$2. $\dfrac{5}{6} \div \dfrac{2}{3}$解:将除法转换成乘法,并将除数取倒数,得到:$\dfrac{5}{6}\cdot \dfrac{3}{2} = \dfrac{15}{12} = \dfrac{5}{4}$3. $\dfrac{2}{3} \times \dfrac{3}{4} \div \dfrac{1}{2}$解:先进行分式的乘法运算,得到:$\dfrac{2}{3} \times\dfrac{3}{4} = \dfrac{6}{12} = \dfrac{1}{2}$,然后将乘法转换成除法,得到:$\dfrac{1}{2} \div \dfrac{1}{2} = 1$二、判断下列分式的大小关系,用“<”、“>”或“=”表示:1. $\dfrac{2}{3}$ ____ $\dfrac{4}{5}$解:通分后比较分子的大小,得到:$\dfrac{10}{15}$ <$\dfrac{12}{15}$,即 $\dfrac{2}{3}$ < $\dfrac{4}{5}$2. $\dfrac{7}{8}$ ____ $\dfrac{7}{9}$解:通分后比较分子的大小,得到:$\dfrac{63}{72}$ >$\dfrac{56}{72}$,即 $\dfrac{7}{8}$ > $\dfrac{7}{9}$3. $\dfrac{5}{6}$ ____ $\dfrac{5}{8}$解:通分后比较分子的大小,得到:$\dfrac{40}{48}$ =$\dfrac{30}{48}$,即 $\dfrac{5}{6}$ = $\dfrac{5}{8}$三、将下列分数化成最简分数形式:1. $\dfrac{12}{15}$解:可以约分,分子分母同时除以3,得到:$\dfrac{4}{5}$2. $\dfrac{18}{24}$解:可以约分,分子分母同时除以6,得到:$\dfrac{3}{4}$3. $\dfrac{40}{48}$解:可以约分,分子分母同时除以8,得到:$\dfrac{5}{6}$四、计算下列混合数的值:1. $2 \dfrac{1}{2} + 3 \dfrac{2}{3}$解:先将混合数转换成带分数的形式,得到:$2 \dfrac{1}{2} =\dfrac{5}{2}$,$3 \dfrac{2}{3} = \dfrac{11}{3}$,然后进行分数的加法运算,得到:$\dfrac{5}{2} + \dfrac{11}{3} = \dfrac{15}{6} +\dfrac{22}{6} = \dfrac{37}{6}$2. $4 \dfrac{3}{4} - 3 \dfrac{1}{2}$解:先将混合数转换成带分数的形式,得到:$4 \dfrac{3}{4} =\dfrac{19}{4}$,$3 \dfrac{1}{2} = \dfrac{7}{2}$,然后进行分数的减法运算,得到:$\dfrac{19}{4} - \dfrac{7}{2} = \dfrac{19}{4} -\dfrac{14}{4} = \dfrac{5}{4}$3. $1 \dfrac{2}{3} \times 2 \dfrac{1}{2}$解:先将混合数转换成带分数的形式,得到:$1 \dfrac{2}{3} =\dfrac{5}{3}$,$2 \dfrac{1}{2} = \dfrac{5}{2}$,然后进行分数的乘法运算,得到:$\dfrac{5}{3} \times \dfrac{5}{2} = \dfrac{25}{6}$总结:本文介绍了分式的基本计算,包括求值、大小关系比较、最简形式化简以及混合数的计算。
中考数学总复习《分式》专项测试卷带答案

中考数学总复习《分式》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________【A 层·基础过关】1.若分式1x -4有意义,则实数x 的取值范围是 . 2.若分式a -2a+3的值为0,则a 的值为( )A.-3B.0C.2D.53.化简x 2÷(x 2y)2的结果是( )A.1y 2B.x 2y 2C.y 2x2D.x 2y 6 4.化简a -1a+1a的结果是( )A.0B.1C.aD.a -25.(2024·湖北中考)计算:mm+1+1m+1= .6.化简: (a +1+1a -1)÷a 2+a a -1.7.(2024·连云港中考)下面是某同学计算1m -1-2m 2-1的解题过程:解:1m -1-2m 2-1=m+1(m+1)(m -1)-2(m+1)(m -1)……①=(m +1)-2……② =m -1……③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程.8.(2024·贵阳市观山湖区二模)先化简,再求值:a -1a -2·a 2-4a 2-2a+1-1a -1,其中a =3.9.先化简,再求值: (x +2+4x -2)÷x 3x 2-4x+4,其中x 是满足条件x ≤2的合适的非负整数.【B 层·能力提升】10.若x 是非负整数,则表示2x x+2-x 2-4(x+2)2的值的对应点落在如图数轴上的范围是( )A.①B.②C.③D.①或②11.已知1a +2b=1,且a ≠-b ,则ab -a a+b的值为 .12.(2024·眉山中考)已知a 1=x +1(x ≠0且x ≠-1),a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 2 024的值为 . 13.先化简(1+3a -1)÷a 2-4a -1,再从-1,0,1,2中选择一个适当的数作为a 的值代入求值.【C 层·素养挑战】14.(2024·北京中考)已知a -b -1=0,求代数式3(a -2b )+3b a 2-2ab+b 2的值.15.先化简,再求值:(1-1a )÷a 2-1a 2+2a+1,其中a 是不等式组{a -2≥2-a ①2a -1<a +3②,的最小整数解.参考答案【A 层·基础过关】1.(若分式1x -4有意义,则实数x 的取值范围是 x ≠4 . 2.(若分式a -2a+3的值为0,则a 的值为(C)A.-3B.0C.2D.53.化简x 2÷(x 2y)2的结果是(C) A.1y 2B.x 2y 2C.y 2x2D.x 2y 64.化简a -1a+1a的结果是(B)A.0B.1C.aD.a -25.(2024·湖北中考)计算:mm+1+1m+1= 1 .6.(化简: (a +1+1a -1)÷a 2+aa -1.【解析】原式=(a+1)(a -1)+1a -1·a -1a (a+1)=a 2-1+1a -1·a -1a (a+1)=a 2a -1·a -1a (a+1)=a a+1.7.(2024·连云港中考)下面是某同学计算1m -1-2m 2-1的解题过程:解:1m -1-2m 2-1=m+1(m+1)(m -1)-2(m+1)(m -1)……①=(m +1)-2……② =m -1……③上述解题过程从第几步开始出现错误?请写出完整的正确解题过程. 【解析】从第②步开始出现错误,正确的解题过程如下: 原式=m+1-2(m+1)(m -1)=m -1(m+1)(m -1)=1m+1.8.(2024·贵阳市观山湖区二模)先化简,再求值:a -1a -2·a 2-4a 2-2a+1-1a -1,其中a =3.【解析】a -1a -2·a 2-4a 2-2a+1-1a -1=a -1a -2·(a+2)(a -2)(a -1)2-1a -1=a+2a -1-1a -1=a+2-1a -1=a+1a -1当a =3时,原式=3+13-1=42=2.9.先化简,再求值: (x +2+4x -2)÷x 3x 2-4x+4,其中x 是满足条件x ≤2的合适的非负整数.【解析】原式=(x 2-4x -2+4x -2)÷x 3(x -2)2=x 2x -2·(x -2)2x 3=x -2x∵x ≠0且x -2≠0 ∴x ≠0且x ≠2 ∴x =1 则原式=1-21=-1.【B 层·能力提升】10.若x 是非负整数,则表示2xx+2-x 2-4(x+2)2的值的对应点落在如图数轴上的范围是(B)A.①B.②C.③D.①或②11.已知1a +2b=1,且a ≠-b ,则ab -a a+b的值为 1 .12.(2024·眉山中考)已知a 1=x +1(x ≠0且x ≠-1),a 2=11-a 1,a 3=11-a 2,…,a n =11-a n -1,则a 2 024的值为 -1x.13.先化简(1+3a -1)÷a 2-4a -1,再从-1,0,1,2中选择一个适当的数作为a 的值代入求值.【解析】原式=a -1+3a -1·a -1(a -2)(a+2)=a+2a -1·a -1(a -2)(a+2)=1a -2当a =1或2时,分式无意义 故当a =-1时,原式=-13当a =0时,原式=-12.【C 层·素养挑战】14.(2024·北京中考)已知a -b -1=0,求代数式3(a -2b )+3b a 2-2ab+b 2的值.【解析】∵a -b -1=0 ∴a -b =1 ∴3(a -2b )+3b a 2-2ab+b 2=3a -6b+3b (a -b )2=3a -3b (a -b )2=3(a -b )(a -b )2=3a -b=31=3.15.先化简,再求值:(1-1a )÷a 2-1a 2+2a+1,其中a 是不等式组{a -2≥2-a ①2a -1<a +3②,的最小整数解.【解析】原式=a -1a ·(a+1)2(a+1)(a -1)=a+1a.解不等式组{a -2≥2-a ①2a -1<a +3②,中的①,得a ≥2解不等式②,得a <4 则2≤a <4所以a 的最小整数解是2 所以原式=2+12=32.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018学年上学期学生测验评价参考资料
九年级数学第21章
(分式)
班级姓名学号
一、选择题(共8题,每题有四个选项,其中只有一项符合题意。
每题3分,共24分):
1.下列运算正确的是( )
A.x10÷x5=x2
B.x-4·x=x-3
C.x3·x2=x6
D.(2x-2)-3=-8x6
2. 一件工作,甲独做a小时完成,乙独做b小时完成,则甲、乙两人合作完成需要( )小时.
A.11
a b
+ B.
1
ab
C.
1
a b
+
D.
ab
a b
+
3.化简
a b
a b a b
-
-+
等于( )
A.
22
22
a b
a b
+
-
B.
2
22
()
a b
a b
+
-
C.
22
22
a b
a b
-
+
D.
2
22
()
a b
a b
+
-
4.若分式
2
2
4
2
x
x x
-
--
的值为零,则x的值是( )
A.2或-2
B.2
C.-2
D.4
5.不改变分式
5
2
2
2
3
x y
x y
-
+
的值,把分子、分母中各项系数化为整数,结果是( )
A.215
4
x y
x y
-
+
B.
45
23
x y
x y
-
+
C.
615
42
x y
x y
-
+
D.
1215
46
x y
x y
-
+
6.分式:①
22 3
a a +
+
,②
22
a b
a b
-
-
,③
4
12()
a
a b
-
,④
1
2
x-
中,最简分式有( )
A.1个
B.2个
C.3个
D.4个
7.计算
4
222
x x x
x x x
⎛⎫
-÷
⎪
-+-
⎝⎭
的结果是( )
A. -12x +
B. 12
x + C.-1 D.1 8.若关于x 的方程x a c
b x d
-=- 有解,则必须满足条件( )
A. a ≠b ,c ≠d
B. a ≠b ,c ≠-d
C.a ≠-b , c ≠d C.a ≠-b , c ≠-d 9.若关于x 的方程ax=3x-5有负数解,则a 的取值范围是( ) A.a<3 B.a>3 C.a ≥3
D.a ≤3 10.解分式方程
2
236
111
x x x +=+--,分以下四步,其中,错误的一步是( ) A.方程两边分式的最简公分母是(x-1)(x+1)
B.方程两边都乘以(x-1)(x+1),得整式方程2(x-1)+3(x+1)=6
C.解这个整式方程,得x=1
D.原方程的解为x=1
二、填空题:(每小题4分,共20分)
11.把下列有理式中是分式的代号填在横线上 .
(1)-3x ;(2)y x ;(3)2
2732xy y x -;(4)-x 8
1;(5) 35+y ; (6)112--x x ;(7)-π-12m ; (8)5.023+m .
12.当a 时,分式
3
21
+-a a 有意义.
13.若-1,则x+x -1
=__________.
14.某农场原计划用m 天完成A 公顷的播种任务,如果要提前a 天结束,那么平均每天比原计划要多播种_________公顷.
15.计算1
2
01(1)5(2004)2π-⎛⎫
-+-÷- ⎪⎝⎭
的结果是_________.
16.已知u=
12
1
s s t -- (u ≠0),则t=___________. 17.当m=______时,方程233
x m
x x =-
--会产生增根. 18.用科学记数法表示:12.5毫克=________吨. 19.当x 时,分式
x
x
--23的值为负数. 20.计算(x+y)·22
22
x y x y y x
+-- =____________. 三、计算题:(每小题6分,共12分)
21.2365
1x x x x x
+----; 22.2424422x y x y x x y x y x y x y ⋅-÷-+-+.
四、解方程:(6分) 23.
2
1212
339
x x x -=+--。
五、列方程解应用题:(10分) 24.甲、乙两个工程队共同完成一项工程,乙队先单独做1天, 再由两队合作2天就完成全部工程,已知甲队与乙队的工作效率之比是3:2,求甲、 乙两队单独完成此项工程各需多少天?
六、阅读理解题:(12分) 25.阅读下列材料: ∵
11111323⎛⎫=- ⎪⨯⎝⎭, 111135
235⎛⎫=- ⎪⨯⎝⎭
, 111157257⎛⎫=- ⎪⨯⎝⎭
, ……
1111171921719⎛⎫
=- ⎪⨯⎝⎭
,
∴
1111
1335571719++++
⨯⨯⨯⨯ =11111111111(1)()()()2323525721719-+-+-++-
=11111111
(1)2335571719-+-+-++
- =119(1)21919
-=.
解答下列问题: (1)在和式
111
133557
+++⨯⨯⨯中,第6项为______,第n 项是__________.
(2)上述求和的想法是通过逆用________法则,将和式中的各分数转化为两个数之差,使
得除首末两项外的中间各项可以_______,从而达到求和的目的.
(3)受此启发,请你解下面的方程:
1113
(3)(3)(6)(6)(9)218
x x x x x x x ++=++++++.
参考答案 一、选择题:
1、B
2、D
3、A
4、C
5、D
6、B
7、A
8、B
9、B 10、D 二、填空题:
11、⑵、⑸、⑹ 12、a ≠-
3
2
13
、 14、()aA m m a - 15、-2
16、
12S S u
u
-+ 17、-3 18、1.25×10-8 19、2<X <3 20、x+y 三、计算题: 21、解:原式=
3651(1)x x x x x +----=3365(1)(1)(1)
x x x x x x x x x -++---- =
3365(1)x x x x x -+---=8(1)(1)x x x --=8
x
22、解:原式=24222222222()()xy x y x y x y x y x y x +-÷-+-=222222
xy x y
x y x y ---
=
2222xy x y x y --=()()()xy y x x y x y -+-=xy x y
-+
四、解方程: 23、解:
1212
33(3)(3)
x x x x -=+-+- 方程两边相乘(x+3)(x-3)
x-3+2(x+3)=12 x-3+2x+6=12 3x=9
x=3
经检验:x=3是原方程的增根,所以原方程无解。
五、列方程解应用题:
24、解:设甲队、乙队的工作效率分别为3x,2x ,则有
12(32)
12x x x
-+=
1102121112
x x x x -===
经检验x=
112是原方程的解,所以原方程解为x=112
所以甲队工作效率为14,乙队工作效率为1
6
,
所以甲队独做需4天,乙队独做需6天。
六、阅读理解题: 25、⑴
1
1113
⨯ 1(21)(21)n n -+
⑵分式加减 抵消 ⑶解:11
11111113()()()333363692(9)
x x x x x x x -
+-+-=++++++ 11111113()3336692(9)1113()392(9)1933(9)2(9)33
(9)2(9)(9)(2)0
x x x x x x x x x x x x x x x x x x -+-+-=++++++-=++•=++=
+++-= 解得:x 1=-9,x 2=2
经检验x=2是原方程的解,所以原方程解为x=2。