固体物理_第一至第七章总复习

合集下载

固体物理总复习.

固体物理总复习.
c 倒格矢 K h h1b1 h2 b2 h3b3 是晶面指数为(h1,h2,h3)
所对应的晶面族的法线。
结晶学的倒格子
简单立方-倒格子为简单立方 体心立方-倒格子为面心立方 六角密排-倒格子为六角密排 根据公式能求出倒 格子基矢
a3
六角
90 , 120
晶格结构
对称性
§1 晶体特征与晶格的实例
1. 固体类型: 晶体,非晶体,准晶 (各有何特点) 2.晶体种类 单晶体,多晶体,液晶。 3. 单晶体的宏观特征
1) 对称性,外型规则 2) 有确定的熔点 3) 物理性质各向异性
4) 解理性. 5) 晶面角守恒.
晶格实例
1. 简单立方 2. 体心立方 3. 密堆积晶格 (a) 六角密排 (b) 面心立方 立方密排 以上各种晶格的配位 数及属于简单或复式 晶格?? 4 金刚石结构 5. 简单化合物晶体 1)NaCl 结构 2)闪锌矿结构 3)CsCl结构
§ 2.3 金属性结合
1、金属晶体的平衡
斥力与库仑引力的平衡.
斥力来源: (i) 体积减小,电子密度增大,电子的动能 将增加, 电子动能正比于(电子云密度)2/3. (ii) 电子云发生重叠,将产生强烈的排斥作用. 2、金属性结合特点 a. 电子公有化。 b. 对原子具体排列没有特殊要求; c. 范性很大。
§3 晶向,晶面和它们的标志
1.晶列 2.晶向 3.晶向的表示法 简单立方晶格的晶向标志 棱方向,面对角线方向, 体对角线方向 各有多少几个等价方向? 4.晶 面 密勒指数,如何确定米勒指数 简单立方晶格有多少等效晶面?
§ 4 倒格子
倒格子基矢的定义
a2 a3 b1 2 a1 (a2 a3 ) a a b2 2 3 1 a1 (a2 a3 ) a1 a2 b3 2 a1 (a2 a3 )

固体物理_第一至第七章总复习详解

固体物理_第一至第七章总复习详解
上页 下页 返回 结束
总复习
第二章 晶体结合 一、原子的负电性
负电性=常数(电离能+亲和能) 电离能:让原子失去电子所必需消耗的能量 亲和能:处于基态的中性气态原子获得一个电子所放出的能量
负电性大的原子,易于获得电子。 负电性小的原子,易于失去电子。
二、晶体结合的基本类型及其特性
1、离子结合:正负离子之间的库仑相互作用,强键
总复习
一维单原子链
重要结论:
试探解为: xn Aei(tnaq)
色散关系:
w2 2 (1 cosqa)
m
2
m
sin( qa ) 2
m
sin( qa ) 2
中心布里渊区范围: q
a
a
振动模式数目(格波数目):N
上页 下页 返回 结束
格波
总复习
• 格波:晶体中所有原子共同参与的一种 频率相同的振 动,不同原子间有振动
总复习
第一章 晶体结构
一、晶体的宏观特性:周期性、对称性、方向性(各向异性)
二、晶体的微观结构
1. 空间点阵(布拉伐格子) 基元、布拉伐格子、格点、单式格子、复式格子 晶体结构=基元+空间点阵 布拉伐格子(B格子)=空间点阵 复式格子=晶体结构 复式格子≠B格子
2.原胞 初基原胞、基矢、威格纳-赛兹原胞(W-S原胞,对称
位相差,这种振动以波 的形式在整个
晶体中传播,称为格波
xn Aei(tnaq)
上页 下页 返回 结束
3. 一维双原子链 总 复 习
mM 2n-2
2n-1 2n
2n+1 2n+2 2n+3
Ⅰ. 体系:N个原胞,每个原胞中包括2个原子 (m1=M, m2=m, M>m)。

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结

固体物理(黄昆)第一章总结.doc固体物理(黄昆)第一章总结固体物理学是一门研究固体物质微观结构和宏观性质的学科。

黄昆教授的《固体物理》一书为我们提供了深入理解固体物理的基础。

本总结旨在概述第一章的核心内容,包括固体的分类、晶体结构、晶格振动和固体的电子理论。

一、固体的分类固体可以根据其结构特征分为晶体和非晶体两大类。

晶体具有规则的几何外形和有序的内部结构,而非晶体则没有长程有序性。

晶体又可以根据其内部原子排列的周期性分为单晶体和多晶体。

二、晶体结构晶体结构是固体物理学的基础。

黄昆教授详细讨论了晶格、晶胞、晶向和晶面等概念。

晶格是描述晶体内部原子排列的数学模型,而晶胞是晶格的最小重复单元。

晶向和晶面则分别描述了晶体中原子排列的方向和平面。

三、晶格振动晶格振动是固体物理中的一个重要概念,它涉及到晶体中原子的振动行为。

黄昆教授介绍了晶格振动的量子化描述,包括声子的概念。

声子是晶格振动的量子,它们与晶体的热传导和电导等性质密切相关。

四、固体的电子理论固体的电子理论是固体物理学的核心内容之一。

黄昆教授从自由电子气模型出发,介绍了固体中电子的行为和性质。

自由电子气模型假设电子在固体中自由移动,不受原子核的束缚。

这一模型可以解释金属的导电性和热传导性。

五、能带理论能带理论是固体电子理论的一个重要组成部分。

黄昆教授详细讨论了能带的形成、能隙的概念以及电子在能带中的分布。

能带理论可以解释不同固体材料的导电性差异,是现代半导体技术和电子器件设计的基础。

六、固体的磁性固体的磁性是固体物理中的另一个重要主题。

黄昆教授讨论了磁性的来源,包括原子磁矩和电子自旋。

磁性固体可以分为顺磁性、抗磁性和铁磁性等类型,它们的磁性行为与电子结构密切相关。

七、固体的光学性质固体的光学性质涉及到固体对光的吸收、反射和透射等行为。

黄昆教授介绍了固体的光学性质与电子结构之间的关系,包括光的吸收和发射过程。

八、固体的热性质固体的热性质包括热容、热传导和热膨胀等。

固体物理各章节知识点详细总结

固体物理各章节知识点详细总结

3.1 一维晶格的振动
3.1.1 一维单原子链的振动
1. 振动方程及其解 (1)模型:一维无限长的单原子链,原子间距(晶格常量)为
a,原子质量为m。
模型 运动方程
试探解
色散关系
波矢q范围 B--K条件
波矢q取值
一维无限长原子链,m,a,
n-2 n-1 n mm
n+1 n+2
a
..
m x n x n x n 1 x n x n 1
x M 2 n x 2 n 1 x 2 n 1 2 x 2 n
..
x m 2n1 x 2 n 2 x 2 n 2 x 2 n 1
x
Aei2n1aqt
2 n1
x
Bei2naqt
2n
相隔一个晶格常数2a的同种原子,相位差为2aq。
色散关系
2co as q A M 22B0 m 22A 2co as q B0
a h12 h22 h32

2π Kh
d h1h2h3

d K 得: h1h2h3
h1h2h3
简立方:a 1 a i,a 2 aj,a 3 a k ,
b12πa2a3 2πi
Ω
a
b22πa3a1 2πj
Ω
a
b32πa1a2 2πk
Ω
a
b1 2π i a
b2 2π j a
2π b3 k
2n-1
2n
2n+1
2n+2
M
m
质量为M的原子编号为2n-2 、2n、2n+2、···
质量为m的原子编号为2n-1 、2n+1、2n+3、···

固体物理复习概要

固体物理复习概要

第1章晶体结构和晶体衍射一、晶格结构的周期性与对称性:1.原胞(初基晶胞)、惯用晶胞的定义:原胞:晶格具有三维周期性,三维晶格中体积最小的重复单元称为固体物理学原胞,简称原胞。

惯用晶胞:为了反映晶体的周期性和对称性,所取的重复单元不一定是最小的。

结点不仅可以在顶角上,还可以在体心或面心上,这种最小重复单元称为惯用晶胞(也叫作布拉维晶胞)2.晶向与晶面指数的定义晶向:布拉维格子上任何两格点连一直线称为晶列,晶列的取向称为晶向。

晶向指数:R=l1a1+l2a2+l3a3,将l1,l2,l3化为互质整数,用l1,l2,l3表示晶列的方向,这三个互质整数称为晶向指数。

晶面指数:晶面族在基矢上的截距系数的倒数,化成与之具有相同比率的三个互质的整数h,k,l。

二、什么是布拉维点阵(格子)?为什么说布拉维点阵是晶体结构的数学抽象?描述点阵与晶体结构的区别?1.如果晶体由一种原子组成,且基元中只包含一个原子,则相应的网格就称为布拉维格子。

如果晶体虽由一种原子组成,但若基元中包含两个原子,或晶体由多种原子组成,则每一种原子都可以构成一个布拉维格子。

2.布拉维格子是一个无限延伸的点阵,它忽略了实际晶体中表面、结构缺陷的存在,以及T≠0时原子瞬时位置相对于平衡位置小的偏离。

但它反映了晶体结构中原子周期性的规则排列。

即平移任意格矢R n,晶体保持不变的特性,是实际晶体的一个理想抽象。

3.晶体结构=点阵+基元三、典型的晶体结构、对应的布拉菲点阵及其最小基元是什么?晶体结构:1.氯化钠(NaCl)结构该结构的布拉维点阵是fcc,初基基元为一个Na+离子和一个Cl-离子。

2.氯化铯(CsCl)结构该结构的布拉维点阵是sc(简单立方),初基基元为一个Na+离子和一个Cl-离子。

3.六角密堆积(hcp)结构该结构的布拉维晶格点阵是简单六角,初基基元包含两个原子,原子位置:(0 0 0),(2/3,1/3,1/2)。

4.金刚石结构金刚石型结构的晶格类型属于fcc晶格点阵(该结构可以看作是两个fcc晶格格点上放上同种原子沿立方体的体对角线错开1/4对角线长而得到。

固体物理复习_简述题

固体物理复习_简述题

"固体物理"根本概念和知识点第一章根本概念和知识点1) 什么是晶体、非晶体和多晶?(H)*晶面有规则、对称配置的固体,具有长程有序特点的固体称为晶体;在凝结过程中不经过结晶(即有序化)的阶段,原子的排列为长程无序的固体称为非晶体。

由许许多多个大小在微米量级的晶粒组成的固体,称为多晶。

2) 什么是原胞和晶胞?(H)*原胞是一个晶格最小的周期性单元,在有些情况下不能反响晶格的对称性;为了反响晶格的对称性,选取的较大的周期单元,称为晶胞。

3) 晶体共有几种晶系和布拉伐格子?(H)*按构造划分,晶体可分为7大晶系, 共14布拉伐格子。

4) 立方晶系有几种布拉伐格子?画出相应的格子。

(H)*立方晶系有简单立方、体心立方和面心立方三种布拉伐格子。

5) 什么是简单晶格和复式格子?分别举3个简单晶格和复式晶格的例子。

(H)*简单晶格中,一个原胞只包含一个原子,所有的原子在几何位置和化学性质上是完全等价的。

碱金属具有体心立方晶格构造;Au、Ag和Cu具有面心立方晶格构造,它们均为简单晶格复式格子则包含两种或两种以上的等价原子,不同等价原子各自构成一样的简单晶格,复式格子由它们的子晶格相套而成。

一种是不同原子或离子构成的晶体,如:NaCl、CsCl、ZnS等;一种是一样原子但几何位置不等价的原子构成的晶体,如:具有金刚石构造的C、Si、Ge等6) 钛酸钡是由几个何种简单晶格穿套形成的?(H)BaTiO在立方体的项角上是钡(Ba),钛(Ti)位于体心,面心上是三组氧(O)。

三组氧(OI,OII,*3OIII)周围的情况各不一样,整个晶格是由 Ba、 Ti和 OI、 OII、 OIII各自组成的简立方构造子晶格(共5个)套构而成的。

7) 为什么金刚石是复式格子?金刚石原胞中有几个原子?晶胞中有几个原子?(H)*金刚石中有两种等价的C原子,即立方体中的8个顶角和6个面的中心的原子等价,体对角线1/4处的C原子等价。

固体物理学总复习要点


b2 2π a3 a1 是固体物理学原胞体积。 Ω
b3 2π a1 a2
与 K n h1b1 h2b2 h3b3 (h1, h2, h3为整数)
Ω
所联系的各点的列阵即为倒格。
2π ( i j )
1. ai b j 2πij 0 i j
[解答当] 两原子构成一稳定分子即平衡时,其相互作用势能取
极小值,于是有:
du(r)
2a 8b
= - =0
dr r= r0
r03
r09
由此得平衡时两原子间的距离为:
1
r 0


4
6
而平衡时的势能为:
u(r0 ) = -
a + b =r02 r08
3a 4r02
(1) (2)
,轨道杂化,电离度和原子的负电性; (5)了解晶体的弹性模量。
第二章 晶体的结合
• 负电性。 • 四种结合—离子键、共价键、金属键、
范德瓦尔斯键、(氢键) • 每种结合的特点
例1:计算正负离子相间排列,相邻离子间距为R的一维
无限长离子链的马德隆常数。
C´ B´
A´ i
A
BC
-+ - + - + -
12.252 12.13 14.452 9.11
0.96
(Eb ) f > (Eb )b Ne取面心立方结构比取体心立方结构更稳定。
例题3:两原子间互作用势为:
ab u(r) = - r2 + r8 4eV
0
当两原子构成一稳定分子时,核间距为3 A,解离能
为 4eV,求 和 。

A1

固体物理学复习总结

第一章 晶体结构1.晶体:组成固体的原子(或离子)在微观上的排列具有长程周期性结构;eg :单晶硅。

晶体具有的典型物理性质:均匀性、各向异性、自发的形成多面体外形、有明显确定的熔点、有特定的对称性、使X 射线产生衍射。

非晶体:组成固体的粒子只有短程序,但无长程周期性;eg :非晶硅、玻璃准晶:有长程的取向序,沿取向序的对称轴方向有准周期性,但无长程周期性,不具备晶体的平移对称性;eg :快速冷却的铝锰合金2.三维晶体中存在7种晶系14种布拉菲格子;对于简单格子晶胞里有几个原子就有几个原胞,复式格子中包含两个或更多的格子。

3.典型格子特点:sc bcc fcc hcp Diamond 晶胞体积3a 3a 3a 32a 3a 每晶胞包含的格点数1 2 4 6 8 原胞体积3a 321a 341a 332a 341a 最近邻数(配位数)6 8 12 12 4 填充因子0.524 0.68 0.74 0.74 0.34 典型晶体 NaCl CaO Li K Cu Au Zn Mg Si Ge4.sc 正格子基矢:k a a j a a i a a ===321,,;sc 倒格子基矢:k ab j a i a πππ2,2b ,2b 321===; fcc 正格子基矢:)2),2),2321j i a a k i a a k j a a +=+=+=(((; fcc 倒格子基矢:)2),2),2b 321k j i ab k j i a b k j i a -+=+-=++-=(((πππ; bcc 正格子基矢: )2),2),2321k j i a a k j i a a k j i a a -+=+-=++-=(((; bcc 倒格子基矢:)2),2),2b 321j i a b k i a b k j a +=+=+=(((πππ; 倒格子原胞基V a a )(2b 321⨯=π,V a a )(2b 132⨯=π,Va a )(2b 213⨯=π 正格子和倒格子的基矢关系为ij a πδ2b j i =⋅;设正格子原胞体积为V,倒格子原胞体积为Vc ,则3)2(V c V π=⨯。

固体物理复习材料

第一章 晶体结构 名词解释:1. 晶体:原子按一定的周期排列规则的固体(长程有序)。

例如:天然的岩盐、水晶以及人工的半导体锗、硅单晶都是晶体。

2. 晶体结构:晶体中原子的具体排列形式称为晶体结构。

晶体结构=基元+布拉菲点阵。

3. 平移周期性:4. 元胞:一个晶格中的最小重复单元(体积最小)。

5. 晶胞(单胞?):为了反应晶格的对称性,常取最小重复单元的几倍作为重复单元。

6. 基元:由不等价分人原子组成的最小重复单元。

7. 布拉菲点阵:为了简单明确地描述晶体内部结构的周期性,常把基元抽象成一点,这个基元的代表点称为格点。

格点在空间的周期性排列就构成布拉菲点阵(格子)。

8. 倒易点阵:倒点阵是正点阵的傅里叶变换,它是与坐标空间联系的傅里叶空间中的周期性阵列。

9. 倒易格矢: 10. 基矢:倒格子基矢与原胞基矢有如下关系:原胞体积:11. 晶格常数:晶格常数指的就是晶胞的边长,也就是每一个立方格子的边长。

12. 复式格子:基元(格点)含有2种或2种以上的原子。

13. 简单格子(布拉菲格子):基元(格点)只有一个原子的晶格。

14. 维格纳-塞茨原胞:由某一个格点为中心,做出最近各点和次近各点连线的中垂面,这些所包围的空间为维格纳-塞茨原胞。

15. 晶面指数:以基矢a 1、a 2、a 3为坐标系,从原点算起第一个晶面的截距的倒数h 1、h 2、h 3去标记这一簇晶面,记为(h 1h 2h 3),称为晶面指数。

16. 米勒指数:以单胞的三条棱a 、b 、c 为坐标系,决定的指数,称为米勒指数,记为(hkl )。

17. 晶向指数:如果从一个结点沿某晶列方向到最近邻结点的平移矢量为R l =l 1a 1+l 2a 2+l 3a 3,则用l 1、l 2、l 3来标志该晶列所对应的晶向,记为[l 1,l 2,l 3],称为晶向指数。

18. 金刚石结构: 19. 六角密排结构: 20. 立方密排结构: 21. NaCl 结构:22. 几种对称操作及相应对称元素:对称操作所凭借的几何元素—对称元素。

固体物理复习纲要

固体电子学导论纲要1.第一章1理解自由电子气体模型的意义 (1)自由电子气体模型:○1自由电子近似:忽略电子和离子实之间的相互作用。

○2独立电子近似(单电子近似):忽略电子和电子间的相互作用。

○3弛豫时间近似:讨论输运现象时引进的。

(2)模型的意义:自由电子气体模型是有关金属的最简单的模型。

金属,特别是简单金属的许多物理性质可以通过它得到相当好的理解。

它可以解释金属作为电和热的良导体的原因(可以解释金属遵从欧姆定律,电导率和热导率成线性关系,)(ωσ的低频段行为,以及金属对可见光高的反射率等)。

2掌握单电子的基态性质 单电子的状态用波函数)(r ψ描述rk i eVr∙=1)(ψ电子能量为22222122)(mv m p m k k === ε其中λπ2=k3理解自由电子气体的简并在统计物理学中,体系与经典行为的偏离,常称为简并性。

在0=T 时,金属自由电子气体是完全简并的。

由于F T 很高,在室温下,电子气体也是高度简并的。

4理解费米面、费米能级在k 空间中把占据态和未占据态分开的界面叫做费米面。

k 空间中的态密度为381πV k =∆ 费米面上单电子态的能量称为费米能量。

mk FF 222 =ε其中费米波矢n k F 233π=。

另费米动量F F k p =,费米速度m k v F F =,费米温度BF F k T ε=(B k 为波尔兹曼常量)。

5理解自由电子气体的热性质温度0>T 时,电子在本征态上的分布由费米-狄拉克分布函数给出11/)(+=-T k i B i e f με其中i f 是电子占据本征态i ε的几率,μ是系统的化学势。

])(121[22FB F T k επεμ-=电子比热FBV T T nk T C 22πγ== 6了解顺磁性简而言之:电子自旋产生磁场,分子中有不成对电子时,各单电子平行自旋,磁场加强。

这时物质呈顺磁性。

7理解准经典模型在自由、独立电子近似的基础上,进一步假定: ○1电子会受到散射,或经受碰撞。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

上页
下页
返回
结束
2. 一维单原子链
n-2
总 复 习
m
n-1
n
n+1
a n+2
xn-2
xn-1
xn
xn+1
xn+2
简谐近似, 2 d xn 运动方程 : 最近邻近似 m 2 ( xn1 xn1 2 xn ) dt
上页 下页 返回 结束
一维单原子链
重要结论:
试探解为: 色散关系:
2、共价结合:依靠共用电子对结合,强键;饱和性和方向性 3、金属结合:共有化电子与正离子实库仑作用,强键 4、范德瓦尔斯结合 :瞬时电偶极矩之间的有效吸引作用,弱键 5、氢键结合:一个氢原子同时与两个电负性较大的原子结合, 形成一个强的共价键和一个弱的离子键,饱和性。
上页 下页 返回 结束
总 复 习
含原子数=8
8. 六方密排结构(hcp) 配位数=12,基元内原子数=2,惯用原胞体积是初基元胞体积的 3倍
上页 下页 返回 结束
总 复 习 五、晶向指数和晶面指数 1.晶向指数[m,n,p] 2.晶面指数(密勒指数)(hkl)
上页
下页
返回
结束
总 复 习
六、倒格子与布里渊区
1. 倒格子: (1)定义(倒易点阵基矢 ) (2)倒格子的重要性质(正倒格子间的关系) 2. 布里渊区(B.Z)
三、基本概念:
平衡间距、结合能、马德隆常数、雷纳德 - 琼斯( LennardJones )势、 sp3杂化、共价键饱和性和方向性、原子的负电 性 四、基本计算 1 、两个粒子之间的相互作用势能,如果分别用吸引势能 和排斥势能来表示,可用幂函数表示 2、平衡间距 3、离子晶体的结合能 4、分子晶体的结合能
一维双原子链:
原子的自由度数为1,晶体共有2N个原子,总自由度数为2N,独 立振动模式数为2N
上页 下页 返回 结束
5格波能量是量子化的,其能量以ћω为单 位。只能是ћω的整数倍,当电子或光子与晶格振 动相互作用时,总是以ћω为单元交换能量。这种 假想粒子即格波能量量子ћω称为声子
晶格振动理论 晶格振动理论就是在这种绝热近似的基础上建立的。
总 复 习
第三章
晶格振动
一、一维单原子晶格的振动 1. 物理模型 2. 近似条件:最近邻近似、简谐近似 3. 分析受力:牛顿方程 4. 定解条件―――玻恩-卡曼条件(周期性边界条件)
概念: (1)格波 qa qa 2 sin( ) m sin( ) m 2 2 (2)色散关系 (3)q的取值(第一布里渊区内) (4)格波数(模式数):N
吉林建工学院
4– 1 点缺陷
3、近自由电子近似模型 三种能带图示的区别
第四章 晶体中的缺陷
扩展区图示 (单值函数)
一个布里渊区表 示 一个能带
简约区图示 (多值函数)
重复区图示 (周期性)
产生的原因(电子的共有化运动), 宽度的计算,能隙的起因,图示方式
吉林建工学院
总 复 习
4、有关计算:
(1)紧束缚模型计算能带式以及能带宽度 (2)能态密度量间隔中的状态数单位能量间隔中的状态数 (3)带顶和带底电子或空穴的有效质量
上页
下页
返回
结束
总 复 习
基本要求:
1、掌握晶体结合的基本类型及其特性
2、会相关的基本计算
3、会解释sp3杂化、共价键饱和性和方向性
上页
下页
返回
结束
第三章
晶格振动
1、绝热近似模型
在研究电子的运动时,认为离子静止在平衡位置上, 变成一个在晶格周期场中运动的多电子问题; 固体电子论
在研究离子的运动时,则认为电子能够即时跟上离 子位置的变化,变成离子实或原子如何围绕平衡位 置运动的问题。
上页 下页 返回 结束
总 复 习
三、常见晶体结构
致密度(又称空间利用率)、配位数、密堆积 1. 简单立方(sc) 配位数=6,惯用原胞包含格点数 = 1,惯用原胞包含原子数 = 1 2. 面心立方(fcc)配位数=12,惯用原胞包含格点数=4,惯
用原胞包含原子数 = 4
3.体心立方(bcc) 配位数=8,惯用原胞包含格点数=2,惯用原胞包含原子数 = 2 4. 金刚石结构 配位数=4 ,B格子是fcc ,惯用原胞包含格点数=4,基元内原
xn Ae
i (t naq )
上页
下页
返回
结束
3. 一维双原子链
总 复 习
m 2n-2
M 2n 2n+1 2n+2 2n+3
2n-1
Ⅰ. 体系:N个原胞,每个原胞中包括2个原子
(m1=M, m2=m, M>m)。
上页
下页
返回
结束
总 复 习
上页
下页
返回
结束
总 复 习
重要特点
(1)存在着两支ω(q)关系; ω+(q),称光学支波,或高频支; ω-(q),称声学支波 ,或低频支。
(1)定义
(2)画图
七、三维7大晶系和14种布拉伐格子,二维4大晶系和5种布拉
伐格子
上页
下页
返回
结束
总 复 习
基本要求:
1、基本概念清晰(例如:基元、布里渊区等)
2、熟练掌握8种常见晶体结构的特点
3、会计算致密度、布里渊区体积、正倒格子原胞体积
4、会画立方晶系的晶向、晶面,简单二维晶格的第一、 第二布里渊区。 5、能列出三维7大晶系和14种布拉伐格子,二维4大晶 系和5种布拉伐格子 6、熟悉正倒格子间的关系
上页 下页 返回 结束
总 复 习
4 晶格振动(Lattice vibration)的规律
(1)晶格振动的波矢(q)数目=晶体原胞数 (2)晶格振动频率数目(格波数目或振动模 式数目)=体系自由度数
例:一维单原子链
q有N个不同取值,每个q对应于ω(q),则共有N个不同格波数, N也是一维单原子链体系的自由度数。
吉林建工学院
4– 1 点缺陷
2近自由电子模型与紧束缚模型各有何特点?
近自由电子近似 紧束缚近似
第四章 晶体中的缺陷
晶体中电子有两类
外层价电子 能量高; 晶体势场较弱; 电子行为类似于自由电子; 内层电子 能量低; 晶体势场较强; 电子基本上围绕原子核 运动;故相邻原子的影 响看作是微扰处理。
故晶体势场对电子运动的影 响看作微扰处理。
子数=2 (同种元素),惯用原胞包含原子数=2x4=8
上页 下页 返回 结束
5. 闪锌矿结构(立方硫化锌结构) 含原子数=8
总 复 习
配位数=4 ,B格子是fcc,惯用原胞包含格点数=4,惯用原胞包
6. 氯化铯(CsCl)结构
配位数=8, B格子是sc,惯用原胞包含格点数=1,惯用原胞包 含原子数=2 7. NaCl结构 配位数=6 ,B格子是fcc,惯用原胞包含格点数=4,惯用原胞包
k
简立方结构的最近邻格点数为6, 分别为:
(a,0,0),(0,a,0), (0,0,a), (-a,0,0), (0,a,0), (0,0,-a)。
O
j
i
上页
下页
返回
结束
总 复 习 代入本征值表达式计算
E k i J 0
Rs 最 近 邻
ik Rs J R e s
(3)周期场近似
周期场近似:由于晶格的周期性结构,可以合理的假设
所有点子及离子产生的场均具有晶格周期性。
V r V r Rn


Rn n1a1 n2a2 n3a3
基本思路:多粒子体系问题简化为晶格周期场下的单电子问题
上页
下页
返回
结束
4– 1 点缺陷
第四章 晶体中的缺陷
能带理论作了哪些基本近似?它与金属自由电子论 相比有哪些改进?
(2)声子不是真实粒子而是准粒子,具有准动量:
p q
(3)一定温度下平均声子数服从玻色—爱因斯坦统计
规律;
n( , T ) e
1

k BT
1
下页 返回 结束
对于一给定的晶体,它所对应的声子数目是不是固定不变的 ?
上页
总 复 习
6 晶格热容理论介绍(CV)
• 在固体比热理论的早期,量子理论建立以前, 只能用经典理论来解释固体的晶格热容: 杜隆—珀替模型 • (Einstein)爱因斯坦,( p.Debye)德拜先后 提出两种非常著名的简化模型,无需复杂计 算就能得出色散关系 从而求出晶格热容Cv, 对Cv在高温与低温区段的变化规律作出正 确解释。
上页 下页 返回 结束
总 复 习
3.实验和理论的比较:
Einsten模型:高温时符合,低温时不符合。 Debye模型:高温时符合,低温时符合。 高温下两种模型都是正确的,但相对而言,爱因斯坦模型 要更简单、更方便些,因此在高温下多用爱因斯坦模型,低 温下则应用德拜模型。 4 .频率分布函数(又称态密度、模式密度 ) n ( ) lim 定义:单位频率间隔中的晶格振动模式数 0 4 q2 计算:三维 () W 4 q2 V
4、关于声学波和光学波的讨论:长波极限、第一B.Z边界特点等。 5、掌握晶格振动量子化与声子,平均声子数与什么因素有关。
6、掌握晶格振动的Einsten模型和Debye模型,并会解释二模型 与实验结果的比较。
7、会计算频率分布函数
上页 下页 返回 结束
总 复 习
1、能带理论建立基础
(1)绝热近似 (2)单电子近似
如: k k x i k y j k z k 同理 k Rs1 k x a Rs1 ai
相关文档
最新文档