2018-2019学年数学高考(人教A版文科)一轮复习考点规范练:18
【高考数学】2018-2019学年数学高考(人教A版文科)一轮复习考点规范练:2

考点规范练2不等关系及简单不等式的解法基础巩固1.(2017安徽合肥模拟)已知a,b∈R,下列命题正确的是()A.若a>b,则|a|>|b|B.若a>b,则C.若|a|>b,则a2>b2D.若a>|b|,则a2>b22.若集合A={x|ax2-ax+1<0}=⌀,则实数a的取值范围是()A.{a|0<a<4}B.{a|0≤a<4}C.{a|0<a≤4}D.{a|0≤a≤4}3.设a,b∈[0,+∞),A=,B=,则A,B的大小关系是()A.A≤BB.A≥BC.A<BD.A>B4.(2017吉林长春模拟)若<0,则在下列不等式:①;②|a|+b>0;③a->b-;④ln a2>ln b2中,正确的不等式是()A.①④B.②③C.①③D.②④5.已知α∈,β∈,则2α-的取值范围是()A. B.C.(0,π)D.6.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A⫋BB.B⫋AC.A=BD.A∩B=⌀7.不等式<0的解集为()A.{x|1<x<2}B.{x|x<2,且x≠1}C.{x|-1<x<2,且x≠1}D.{x|x<-1或1<x<2}8.若对任意x∈R,不等式mx2+2mx-4<2x2+4x恒成立,则实数m的取值范围是()A.(-2,2]B.(-2,2)C.(-∞,-2)∪[2,+∞)D.(-∞,2]9.若不等式f(x)=ax2-x-c>0的解集为{x|-2<x<1},则函数y=f(-x)的图象为()。
2018-2019学年高考数学(文科)一轮复习通用版:第八单元 数 列

第八单元 数 列教材复习课“数列”相关基础知识一课过1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.[小题速通]1.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21的值为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 2.数列{a n }满足a 1=3,a n +1=a n -1a n(n ∈N *),则a 2 018=( )A.12 B .3 C .-12D.23解析:选D由a1=3,a n+1=a n-1a n,得a2=a1-1a1=23,a3=a2-1a2=-12,a4=a3-1a3=3,……,由上可得,数列{a n}是以3为周期的周期数列,故a2 018=a672×3+2=a2=2 3.3.已知数列{a n}满足a n=32n-11(n∈N*),前n项的和为S n,则关于a n,S n的叙述正确的是()A.a n,S n都有最小值B.a n,S n都没有最小值C.a n,S n都有最大值D.a n,S n都没有最大值解析:选A①∵a n=32n-11,∴当n≤5时,a n<0且单调递减;当n≥6时,a n>0,且单调递减.故当n=5时,a5=-3为a n的最小值;②由①的分析可知:当n≤5时,a n<0;当n≥6时,a n>0.故可得S5为S n的最小值.综上可知,a n,S n都有最小值.4.已知数列{a n}中,a1=1,a n+1=a n+2n+1(n∈N*),则a5=________.解析:依题意得a n+1-a n=2n+1,a5=a1+(a2-a1)+(a3-a2)+(a4-a3)+(a5-a4)=1+3+5+7+9=25.答案:25[清易错]1.易混项与项数,它们是两个不同的概念,数列的项是指数列中某一确定的数,而项数是指数列的项对应的位置序号.2.在利用数列的前n项和求通项时,往往容易忽略先求出a1,而是直接把数列的通项公式写成a n=S n-S n-1的形式,但它只适用于n≥2的情形.1.已知数列的通项公式为a n=n2-8n+15,则()A.3不是数列{a n}中的项B.3只是数列{a n}中的第2项C.3只是数列{a n}中的第6项D.3是数列{a n}中的第2项或第6项解析:选D令a n=3,即n2-8n+15=3,解得n=2或6,故3是数列{a n}中的第2项或第6项.2.已知数列{a n}的前n项和为S n=3+2n,则数列{a n}的通项公式为________.解析:当n=1时,a1=S1=3+2=5;当n≥2时,a n=S n-S n-1=3+2n-(3+2n-1)=2n-2n -1=2n -1.因为当n =1时,不符合a n =2n -1,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧5,n =1,2n -1,n ≥21.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.[小题速通]1.在等差数列{a n }中,已知a 2与a 4是方程x 2-6x +8=0的两个根,若a 4>a 2,则a 2 018=( )A .2 018B .2 017C .2 016D .2 015解析:选A 因为a 2与a 4是方程x 2-6x +8=0的两个根,且a 4>a 2,所以a 2=2,a 4=4,则公差d =1,所以a 1=1,则a 2 018=2 018.2.在等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和,则S 5=( ) A .3 B .4 C .5D .6解析:选C ∵等差数列{a n }中,a 2+a 3+a 4=3,S n 为等差数列{a n }的前n 项和, ∴a 2+a 3+a 4=3a 3=3, 解得a 3=1,∴S 5=52(a 1+a 5)=5a 3=5.3.正项等差数列{a n }的前n 项和为S n ,已知a 4+a 10-a 27+15=0,则S 13=( )A .-39B .5C .39D .65解析:选D ∵正项等差数列{a n }的前n 项和为S n , a 4+a 10-a 27+15=0,∴a 27-2a 7-15=0,解得a 7=5或a 7=-3(舍去), ∴S 13=132(a 1+a 7)=13a 7=13×5=65. 4.已知等差数列{a n }的前n 项和为S n ,且3a 3=a 6+4.若S 5<10,则a 2的取值范围是( ) A .(-∞,2) B .(-∞,0) C .(1,+∞)D .(0,2)解析:选A 设等差数列{a n }的公差为d ,∵3a 3=a 6+4, ∴3(a 2+d )=a 2+4d +4,可得d =2a 2-4.∵S 5<10,∴5(a 1+a 5)2=5(a 2+a 4)2=5(2a 2+2d )2=5(3a 2-4)<10,解得a 2<2.∴a 2的取值范围是(-∞,2).5.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由当且仅当n =8时S n 有最大值,可得 ⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 [清易错]1.求等差数列的前n 项和S n 的最值时,需要注意“自变量n 为正整数”这一隐含条件. 2.注意区分等差数列定义中同一个常数与常数的区别.1.(2018·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 的值为( )A .18B .19C .20D .21解析:选C 由a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.2.在数列{a n }中,若a 1=-2,且对任意的n ∈N *,有2a n +1=1+2a n ,则数列{a n }前10项的和为( )A .2B .10 C.52D.54解析:选C 由2a n +1=1+2a n ,可得a n +1-a n =12,即数列{a n }是以-2为首项,12为公差的等差数列,则a n =n -52,所以数列{a n }的前10项的和S 10=10×⎝⎛⎭⎫-2+522=52.1.等比数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的比等于同一常数(不为零),那么这个数列就叫做等比数列.这个常数叫做等比数列的公比,通常用字母q 表示,定义的表达式为a n +1a n=q .(2)等比中项:如果a ,G ,b 成等比数列,那么G 叫做a 与b 的等比中项.即:G 是a 与b 的等比中项⇔a ,G ,b 成等比数列⇒G 2=ab .2.等比数列的有关公式 (1)通项公式:a n =a 1q n -1.(2)前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1(1-q n )1-q =a 1-a n q 1-q ,q ≠1.3.等比数列的常用性质 (1)通项公式的推广:a n =a m ·q n-m(n ,m ∈N *).(2)若m +n =p +q =2k (m ,n ,p ,q ,k ∈N *),则a m ·a n =a p ·a q =a 2k ;(3)若数列{a n },{b n }(项数相同)都是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a nb n (λ≠0)仍然是等比数列;(4)在等比数列{a n }中,等距离取出若干项也构成一个等比数列,即a n ,a n +k ,a n +2k ,a n+3k,…为等比数列,公比为q k . [小题速通]1.(2017·全国卷Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯( )A .1盏B .3盏C .5盏D .9盏解析:选B 每层塔所挂的灯数从上到下构成等比数列,记为{a n },则前7项的和S 7=381,公比q =2,依题意,得S 7=a 1(1-27)1-2=381,解得a 1=3.2.设S n 是等比数列{a n }的前n 项和,若S 4S 2=3,则S 6S 4=( )A .2 B.73 C.310D .1或2解析:选B 设S 2=k ,则S 4=3k ,由数列{a n }为等比数列,得S 2,S 4-S 2,S 6-S 4为等比数列,∴S 2=k ,S 4-S 2=2k ,S 6-S 4=4k ,∴S 6=7k ,∴S 6S 4=7k 3k =73.3.设数列{a n }是等比数列,公比q =2,前n 项和为S n ,则S 4a 3的值为( )A.154B.152C.74D.72解析:选A 根据等比数列的公式,得S 4a 3=a 1(1-q 4)1-q a 1q 2=1-q 4(1-q )q 2=1-24(1-2)×22=154. 4.已知等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16,则数列{a n }的前2 018项的和为( )A .8 064B .4C .-4D .0解析:选D ∵等比数列{a n }的公比q ≠1,且a 3+a 5=8,a 2a 6=16, ∴a 3a 5=a 2a 6=16,∴a 3,a 5是方程x 2-8x +16=0的两个根, 解得a 3=a 5=4, ∴4q 2=4,∵q ≠1,∴q =-1,∴a 1=a 3q 2=4,∴数列{a n }的前2 018项的和为 S 2 018=4[1-(-1)2 018]1-(-1)=0.5.(2018·信阳调研)已知等比数列{a n }的公比q >0,且a 5·a 7=4a 24,a 2=1,则a 1=( ) A.12 B.22C. 2D .2解析:选B 因为{a n }是等比数列,所以a 5a 7=a 26=4a 24,所以a 6=2a 4,q 2=a 6a 4=2,又q >0, 所以q =2,a 1=a 2q =22.[清易错]1.S n ,S 2n -S n ,S 3n -S 2n 未必成等比数列(例如:当公比q =-1且n 为偶数时,S n ,S 2n-S n ,S 3n -S 2n 不成等比数列;当q ≠-1或q =-1且n 为奇数时,S n ,S 2n -S n ,S 3n -S 2n 成等比数列),但等式(S 2n -S n )2=S n ·(S 3n -S 2n )总成立.2.在运用等比数列的前n 项和公式时,必须注意对q =1与q ≠1分类讨论,防止因忽略q =1这一特殊情形而导致解题失误.1.设数列{a n }为等比数列,前n 项和为S n ,已知S 3=8,S 6=7,则a 7+a 8+a 9等于( ) A.18 B .-18C.578D.558解析:选A 因为a 7+a 8+a 9=S 9-S 6,且S 3,S 6-S 3,S 9-S 6也成等比数列,即8,-1,S 9-S 6成等比数列,所以8(S 9-S 6)=1,即S 9-S 6=18.所以a 7+a 8+a 9=18.2.设数列{a n }是等比数列,前n 项和为S n ,若S 3=3a 3,则公比q =________. 解析:当q ≠1时,由题意,a 1(1-q 3)1-q =3a 1q 2,即1-q 3=3q 2-3q 3,整理得2q 3-3q 2+1=0,解得q =-12.当q =1时,S 3=3a 3,显然成立. 故q =-12或1.答案:-12或1一、选择题1.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3da 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 2.(2018·江西六校联考)在等比数列{a n }中,若a 3a 5a 7=-33,则a 2a 8=( ) A .3 B.17 C .9D .13解析:选A 由a 3a 5a 7=-33,得a 35=-33,即a 5=-3,故a 2a 8=a 25=3.3.在数列{a n }中,已知a 1=2,a 2=7,a n +2等于a n a n +1(n ∈N *)的个位数,则a 2 018=( ) A .8 B .6 C .4D .2解析:选D 由题意得a 3=4,a 4=8,a 5=2,a 6=6,a 7=2,a 8=2,a 9=4,a 10=8.所以数列中的项从第3项开始呈周期性出现,周期为6,故a 2 018=a 335×6+8=a 8=2.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2,n ∈N *),则a 7=( ) A .53 B .54 C .55D .109解析:选C a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.设数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ∈N *),则S 6=( ) A .44 B .45 C.13×(46-1) D.14×(45-1) 解析:选B 由a n +1=3S n ,得a 2=3S 1=3.当n ≥2时,a n =3S n -1,则a n +1-a n =3a n ,n ≥2,即a n +1=4a n ,n ≥2,则数列{a n }从第二项起构成等比数列,所以S 6=a 73=3×453=45.6.等差数列{a n }和{b n }的前n 项和分别为S n ,T n ,对一切自然数n ,都有S n T n=n n +1,则a 5b 5等于( )A.34B.56C.910D.1011解析:选C ∵S 9=9(a 1+a 9)2=9a 5,T 9=9(b 1+b 9)2=9b 5, ∴a 5b 5=S 9T 9=910. 7.已知数列{a n }是首项为1的等比数列,S n 是其前n 项和,若5S 2=S 4,则log 4a 3的值为( )A .1B .2C .0或1D .0或2 解析:选C 由题意得,等比数列{a n }中,5S 2=S 4,a 1=1, 所以5(a 1+a 2)=a 1+a 2+a 3+a 4, 即5(1+q )=1+q +q 2+q 3,q 3+q 2-4q -4=0,即(q +1)(q 2-4)=0, 解得q =-1或±2,当q =-1时,a 3=1,log 4a 3=0. 当q =±2时,a 3=4,log 4a 3=1. 综上所述,log 4a 3的值为0或1.8.设数列{a n }是公差为d (d >0)的等差数列,若a 1+a 2+a 3=15,a 1a 2a 3=80,则a 11+a 12+a 13=( )A .75B .90C .105D .120解析:选C 由a 1+a 2+a 3=15得3a 2=15,解得a 2=5,由a 1a 2a 3=80,得(a 2-d )a 2(a 2+d )=80,将a 2=5代入,得d =3(d =-3舍去),从而a 11+a 12+a 13=3a 12=3(a 2+10d )=3×(5+30)=105.二、填空题9.若数列{a n }满足a 1+3a 2+32a 3+…+3n -1a n =n 3,则数列{a n }的通项公式为________.解析:当n ≥2时,由a 1+3a 2+32a 3+…+3n -1a n =n 3,得a 1+3a 2+32a 3+…+3n -2a n -1=n -13, 两式相减得3n -1a n =n 3-n -13=13,则a n =13n .当n =1时,a 1=13满足a n =13n ,所以a n =13n .答案:a n =13n10.数列{a n }的前n 项和为S n ,若S n =2a n -1,则a n =________. 解析:∵S n =2a n -1,① ∴S n -1=2a n -1-1(n ≥2),② ①-②得a n =2a n -2a n -1, 即a n =2a n -1.∵S 1=a 1=2a 1-1,即a 1=1,∴数列{a n }为首项是1,公比是2的等比数列, 故a n =2n -1.答案:2n -111.已知数列{a n }中,a 2n =a 2n -1+(-1)n ,a 2n +1=a 2n +n ,a 1=1,则a 20=________. 解析:由a 2n =a 2n -1+(-1)n ,得a 2n -a 2n -1=(-1)n , 由a 2n +1=a 2n +n ,得a 2n +1-a 2n =n ,故a 2-a 1=-1,a 4-a 3=1,a 6-a 5=-1,…,a 20-a 19=1. a 3-a 2=1,a 5-a 4=2,a 7-a 6=3,…,a 19-a 18=9. 又a 1=1,累加得:a 20=46. 答案:4612.数列{a n }为正项等比数列,若a 3=3,且a n +1=2a n +3a n -1(n ≥2,n ∈N *),则此数列的前5项和S 5=________.解析:设公比为q (q >0),由a n +1=2a n +3a n -1,可得q 2=2q +3,所以q =3,又a 3=3,则a 1=13,所以此数列的前5项和S 5=13×(1-35)1-3=1213.答案:1213三、解答题13.已知在等差数列{a n }中,a 3=5,a 1+a 19=-18. (1)求公差d 及通项a n ;(2)求数列{a n }的前n 项和S n 及使得S n 取得最大值时n 的值. 解:(1)∵a 3=5,a 1+a 19=-18,∴⎩⎪⎨⎪⎧ a 1+2d =5,2a 1+18d =-18,∴⎩⎪⎨⎪⎧a 1=9,d =-2,∴a n =11-2n . (2)由(1)知,S n =n (a 1+a n )2=n (9+11-2n )2=-n 2+10n =-(n -5)2+25, ∴n =5时,S n 取得最大值.14.已知数列{a n }满足a 12+a 222+a 323+…+a n2n =n 2+n .(1)求数列{a n }的通项公式;(2)若b n =(-1)n a n2,求数列{b n }的前n 项和S n .解:(1)∵a 12+a 222+a 323+…+a n2n =n 2+n ,∴当n ≥2时,a 12+a 222+a 323+…+a n -12n -1=(n -1)2+n -1,两式相减得a n 2n =2n (n ≥2),∴a n =n ·2n +1(n ≥2).又∵当n =1时,a 12=1+1,∴a 1=4,满足a n =n ·2n +1.∴a n =n ·2n +1.(2)∵b n =(-1)n a n 2=n (-2)n ,∴S n =1×(-2)1+2×(-2)2+3×(-2)3+…+n ×(-2)n .-2S n =1×(-2)2+2×(-2)3+3×(-2)4+…+(n -1)×(-2)n +n (-2)n +1,∴两式相减得3S n =(-2)+(-2)2+(-2)3+(-2)4+…+(-2)n -n (-2)n+1=-2[1-(-2)n ]1-(-2)-n (-2)n +1=-(-2)n +1-23-n (-2)n +1=-(3n +1)(-2)n +1+23,∴S n =-(3n +1)(-2)n +1+29.高考研究课(一) 等差数列的3考点——求项、求和及判定 [全国卷5年命题分析][典例] (1)设S n n 1S n +2-S n =36,则n =( )A .5B .5C .7D .8(2)(2016·全国卷Ⅱ)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =[lg a n ],其中[x ]表示不超过x 的最大整数,如[0.9]=0,[lg 99]=1.①求b 1,b 11,b 101;②求数列{b n }的前1 000项和.[解析] (1)法一:由等差数列前n 项和公式可得S n +2-S n =(n +2)a 1+(n +2)(n +1)2d -⎣⎡⎦⎤na 1+n (n -1)2d =2a 1+(2n +1)d =2+4n +2=36, 解得n =8.法二:由S n +2-S n =a n +2+a n +1=a 1+a 2n +2=36,因此a 2n +2=a 1+(2n +1)d =35,解得n =8.答案:D(2)①设数列{a n }的公差为d , 由已知得7+21d =28,解得d =1. 所以数列{a n }的通项公式为a n =n .b 1=[lg 1]=0,b 11=[lg 11]=1,b 101=[lg 101]=2. ②因为b n=⎩⎪⎨⎪⎧0,1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893. [方法技巧]等差数列运算的解题思路由等差数列的前n 项和公式及通项公式可知,若已知a 1,d ,n ,a n ,S n 中三个便可求出其余两个,即“知三求二”,“知三求二”的实质是方程思想,即建立方程组求解.[即时演练]1.已知数列{a n }是公差为1的等差数列,S n 为{a n }的前n 项和,若S 6=4S 3,则a 10=( ) A.172 B.192 C.910D.89解析:选B ∵S 6=4S 3,公差d =1. ∴6a 1+6×52×1=4×⎝⎛⎭⎫3a 1+3×22×1,解得a 1=12.∴a 10=12+9×1=192.2.已知公差不为0的等差数列{a n }满足a 1,a 3,a 4成等比数列,S n 为数列{a n }的前n 项和,则S 4-S 2S 5-S 3的值为( )A .-2B .-3C .2D .3解析:选D 设{a n }的公差为d ,因为a 1,a 3,a 4成等比数列, 所以(a 1+2d )2=a 1(a 1+3d ),可得a 1=-4d , 所以S 4-S 2S 5-S 3=a 3+a 4a 4+a 5=-3d-d=3. 3.(2018·大连联考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.(1)求d 及S n;(2)求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:(1)由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5.因为d >0,所以d =2.从而a n =2n -1,S n =n 2(n ∈N *).(2)由(1)得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1,故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.[典例] 已知{a n 11n 2n ,且b 4=17. (1)求证:数列{b n }是以-2为公差的等差数列; (2)设数列{b n }的前n 项和为S n ,求S n 的最大值.[思路点拨] (1)利用等比数列以及对数的运算法则,转化证明数列{b n }是以-2为公差的等差数列;(2)求出数列的和,利用二次函数的性质求解最大值即可. [解] (1)证明:设等比数列{a n }的公比为q , 则b n +1-b n =log 2a n +1-log 2a n =log 2a n +1a n =log 2q ,因此数列{b n }是等差数列.又b 11=log 2a 11=3,b 4=17, 所以等差数列{b n }的公差d =b 11-b 47=-2, 故数列{b n }是以-2为公差的等差数列. (2)由(1)知,b n =25-2n ,则S n =n (b 1+b n )2=n (23+25-2n )2=n (24-n )=-(n -12)2+144,于是当n =12时,S n 取得最大值,最大值为144. [方法技巧]等差数列判定与证明的方法1.(2016·浙江高考)如图,点列{A n },{B n }分别在某锐角的两边上,且|A n A n +1|=|A n +1A n+2|,A n ≠A n +2,n ∈N *,|B n B n +1|=|B n +1B n +2|,B n ≠B n +2,n ∈N *(P ≠Q 表示点P 与Q 不重合).若d n =|A n B n |,S n 为△A n B n B n +1的面积,则( )A .{S n }是等差数列B .{S 2n }是等差数列C .{d n }是等差数列D .{d 2n }是等差数列解析:选A 由题意,过点A 1,A 2,A 3,…,A n ,A n +1,…分别作直线B 1B n +1的垂线,高分别记为h 1,h 2,h 3,…,h n ,h n +1,…,根据平行线的性质,得h 1,h 2,h 3,…,h n ,h n +1,…成等差数列,又S n =12×|B n B n +1|×h n ,|B n B n +1|为定值,所以{S n }是等差数列.故选A.2.(2017·全国卷Ⅰ)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解:(1)设{a n }的公比为q .由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6. 解得⎩⎪⎨⎪⎧a 1=-2,q =-2.故{a n }的通项公式为a n =(-2)n . (2)由(1)可得S n =(-2)×[1-(-2)n ]1-(-2)=-23+(-1)n 2n +13. 由于S n +2+S n +1=-43+(-1)n2n +3-2n +23=2⎣⎡⎦⎤-23+(-1)n 2n +13=2S n ,故S n +1,S n ,S n +2成等差数列.[典例] (1)n 3610a 13=32,若a m =8,则m 的值为( )A .8B .12C .6D .4(2)已知数列{a n },{b n }为等差数列,前n 项和分别为S n ,T n ,若S n T n =3n +22n ,则a 7b 7=( )A.4126 B.2314 C.117D.116(3)(2018·天水模拟)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________.[解析] (1)由a 3+a 6+a 10+a 13=32,得(a 3+a 13)+(a 6+a 10)=32,得4a 8=32,即a 8=8,m =8.(2)因为{a n },{b n }为等差数列,且S n T n=3n +22n ,所以a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=13(a 1+a 13)213(b 1+b 13)2=S 13T 13=3×13+22×13=4126.(3)∵S 10,S 20-S 10,S 30-S 20成等差数列, ∴2(S 20-S 10)=S 10+S 30-S 20, ∴40=10+S 30-30,∴S 30=60. [答案] (1)A (2)A (3)60 [方法技巧]等差数列的性质(1)项的性质在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n =d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1); ②S 2n -1=(2n -1)a n . [即时演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.(2018·广州模拟)已知等比数列{a n }的各项都为正数,且a 3,12a 5,a 4成等差数列,则a 3+a 5a 4+a 6的值是( )A.5-12B.5+12C.3-52D.3+52解析:选A 设等比数列{a n }的公比为q ,由a 3,12a 5,a 4成等差数列可得a 5=a 3+a 4,即a 3q 2=a 3+a 3q ,故q 2-q -1=0,解得q =1+52或q =1-52(舍去),所以a 3+a 5a 4+a 6=a 3+a 3q 2a 4+a 4q 2=a 3(1+q 2)a 4(1+q 2)=1q =25+1=5-12. 3.若两个等差数列{a n }和{b n }的前n 项和分别是S n ,T n ,已知S n T n =7n n +3,则a 10b 9+b 12+a 11b 8+b 13=________.解析:∵数列{a n }和{b n }都是等差数列,∴a 10b 9+b 12+a 11b 8+b 13=a 10+a 11b 9+b 12=a 10+a 11b 10+b 11=S 20T 20=7×2020+3=14023. 答案:14023等差数列前n 项和的最值等差数列的通项a n 及前n 项和S n 均为n 的函数,通常利用函数法或通项变号法解决等差数列前n 项和S n 的最值问题.[典例] 等差数列{a n n 1311n n 的值为________.[解析] 法一:用“函数法”解题 由S 3=S 11,可得3a 1+3×22d =11a 1+11×102d ,即d =-213a 1.从而S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n =-a 113(n -7)2+4913a 1, 因为a 1>0,所以-a 113<0. 故当n =7时,S n 最大. 法二:用“通项变号法”解题 由法一可知,d =-213a 1. 要使S n 最大,则有⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎨⎧a 1+(n -1)⎝⎛⎭⎫-213a 1≥0,a 1+n ⎝⎛⎭⎫-213a 1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大. [答案] 7 [方法技巧]求等差数列前n 项和S n 最值的2种方法(1)函数法利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)通项变号法①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .[即时演练]1.(2018·潍坊模拟)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( )A .S 15B .S 16C .S 15或S 16D .S 17解析:选A ∵a 1=29,S 10=S 20, ∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225.∴当n =15时,S n 取得最大值.2.已知{a n }是等差数列,a 1=-26,a 8+a 13=5,当{a n }的前n 项和S n 取最小值时,n 的值为( )A .8B .9C .10D .11解析:选B 设数列{a n }的公差为d , ∵a 1=-26,a 8+a 13=5,∴-26+7d -26+12d =5,解得d =3, ∴S n =-26n +n (n -1)2×3=32n 2-552n =32⎝⎛⎭⎫n -5562-3 02524, ∴{a n }的前n 项和S n 取最小值时,n =9.3.已知{a n }是各项不为零的等差数列,其中a 1>0,公差d <0,若S 10=0,则数列{a n }的前n 项和取最大值时,n =________.解析:由S 10=10(a 1+a 10)2=5(a 5+a 6)=0, 可得a 5+a 6=0,∴a 5>0,a 6<0,即数列{a n }的前5项和为最大值,∴n =5. 答案:51.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.2.(2016·全国卷Ⅰ)已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A .100 B .99 C .98D .97解析:选C 法一:∵{a n }是等差数列,设其公差为d , ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.又∵a 10=8,∴⎩⎪⎨⎪⎧ a 1+4d =3,a 1+9d =8,∴⎩⎪⎨⎪⎧a 1=-1,d =1.∴a 100=a 1+99d =-1+99×1=98. 法二:∵{a n }是等差数列, ∴S 9=92(a 1+a 9)=9a 5=27,∴a 5=3.在等差数列{a n }中,a 5,a 10,a 15,…,a 100成等差数列,且公差d ′=a 10-a 5=8-3=5. 故a 100=a 5+(20-1)×5=98.3.(2014·全国卷Ⅰ)已知数列{a n }的前n 项和为S n ,a 1=1,a n ≠0,a n a n +1=λS n -1,其中λ为常数.(1)证明:a n +2-a n =λ;(2)是否存在λ,使得{a n }为等差数列?并说明理由. 解:(1)证明:由题设,a n a n +1=λS n -1, a n +1a n +2=λS n +1-1.两式相减得a n +1(a n +2-a n )=λa n +1. 由于a n +1≠0,所以a n +2-a n =λ.(2)由题设,a 1=1,a 1a 2=λS 1-1,可得a 2=λ-1. 由(1)知,a 3=λ+1. 令2a 2=a 1+a 3,解得λ=4.故a n +2-a n =4,由此可得{a 2n -1}是首项为1,公差为4的等差数列,a 2n -1=4n -3;{a 2n }是首项为3,公差为4的等差数列,a 2n =4n -1.所以a n =2n -1,a n +1-a n =2.因此存在λ=4,使得数列{a n }为等差数列.4.(2013·全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.解:(1)设{a n }的公差为d .由题意,a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ), 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),或d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .一、选择题1.(2018·厦门一中测试)已知数列{a n }中,a 2=32,a 5=98,且⎩⎨⎧⎭⎬⎫1a n -1是等差数列,则a 7=( )A.109 B.1110 C.1211D.1312解析:选D 设等差数列⎩⎨⎧⎭⎬⎫1a n -1的公差为d ,则1a 5-1=1a 2-1+3d ,即198-1=132-1+3d ,解得d =2,所以1a 7-1=1a 2-1+5d =12,解得a 7=1312.2.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”意思是:“现有一根金箠,长五尺,一头粗,一头细,在粗的一端截下1尺,重4斤,在细的一端截下1尺,重2斤,问依次每一尺各重多少斤?”根据上题的已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为( )A .6斤B .9斤C .9.5斤D .12斤解析:选A 依题意,金箠由粗到细各尺的重量构成一个等差数列,设首项a1=4,则a5=2.由等差数列的性质得a2+a4=a1+a5=6,所以第二尺与第四尺的重量之和为6斤.3.(2018·银川一中月考)在等差数列{a n}中,首项a1>0,公差d≠0,前n项和为S n(n∈N*),有下列命题:①若S3=S11,则必有S14=0;②若S3=S11,则必有S7是S n中的最大项;③若S7>S8,则必有S8>S9;④若S7>S8,则必有S6>S9.其中正确命题的个数是()A.1 B.2C.3 D.4解析:选D对于①,若S11-S3=4(a1+a14)=0,即a1+a14=0,则S14=14(a1+a14)2=0,所以①正确;对于②,当S3=S11时,易知a7+a8=0,又a1>0,d≠0,所以a7>0>a8,故S7是S n中的最大项,所以②正确;对于③,若S7>S8,则a8<0,那么d<0,可知a9<0,此时S9-S8<0,即S8>S9,所以③正确;对于④,若S7>S8,则a8<0,S9-S6=a7+a8+a9=3a8<0,即S6>S9,所以④正确.故选D.4.(2018·大同模拟)在等差数列{}a n中,a1+a2+a3=3,a18+a19+a20=87,则此数列前20项的和等于()A.290 B.300C.580 D.600解析:选B由a1+a2+a3=3a2=3,得a2=1.由a18+a19+a20=3a19=87,得a19=29,所以S20=20(a1+a20)2=10(a2+a19)=300.5.设等差数列{a n}的前n项和为S n,且S9=18,a n-4=30(n>9),若S n=336,则n的值为()A.18 B.19C.20 D.21解析:选D因为{a n}是等差数列,所以S9=9a5=18,a5=2,S n=n(a1+a n)2=n(a5+a n-4)2=n 2×32=16n =336,解得n =21. 6.设{a n }是等差数列,d 是其公差,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( )A .d <0B .a 7=0C .S 9>S 5D .当n =6或n =7时S n 取得最大值解析:选C 由S 5<S 6,得a 1+a 2+a 3+a 4+a 5<a 1+a 2+a 3+a 4+a 5+a 6,即a 6>0.同理由S 7>S 8,得a 8<0.又S 6=S 7,∴a 1+a 2+…+a 6=a 1+a 2+…+a 6+a 7,∴a 7=0,∴B 正确;∵d =a 7-a 6<0,∴A 正确;而C 选项,S 9>S 5,即a 6+a 7+a 8+a 9>0,可得2(a 7+a 8)>0,由结论a 7=0,a 8<0,知C 选项错误;∵S 5<S 6,S 6=S 7>S 8,∴结合等差数列前n 项和的函数特性可知D 正确.故选C.7.等差数列{a n }的前n 项和为S n ,若公差d >0,(S 8-S 5)(S 9-S 5)<0,则( )A .|a 7|>|a 8|B .|a 7|<|a 8|C .|a 7|=|a 8|D .|a 7|=0解析:选B 因为(S 8-S 5)(S 9-S 5)<0,所以(a 6+a 7+a 8)(a 6+a 7+a 8+a 9)<0,因为{a n }为等差数列,所以a 6+a 7+a 8=3a 7,a 6+a 7+a 8+a 9=2(a 7+a 8),所以a 7(a 7+a 8)<0,所以a 7与(a 7+a 8)异号.又公差d >0,所以a 7<0,a 8>0,且|a 7|<|a 8|,故选B.二、填空题8.在数列{a n }中,a n +1=a n 1+3a n,a 1=2,则a 20=________. 解析:由a n +1=a n 1+3a n,a 1=2, 可得1a n +1-1a n=3, 所以⎩⎨⎧⎭⎬⎫1a n 是以12为首项,3为公差的等差数列. 所以1a n=12+3(n -1),即a n =26n -5,所以a 20=2115. 答案:21159.数列{a n }满足:a 1=1,a n +1=2a n +2n ,则数列{a n }的通项公式为________. 解析:∵a 1=1,a n +1=2a n +2n ,∴a n +12n +1=a n 2n +12, ∴数列⎩⎨⎧⎭⎬⎫a n 2n 是首项为a 12=12,公差d =12的等差数列, 故a n 2n =12+(n -1)×12=12n , 即a n =n ·2n -1. 答案:a n =n ·2n -1 10.设S n 是等差数列{a n }的前n 项和,若S 4≠0,且S 8=3S 4,S 12=λS 8,则λ=________. 解析:当S 4≠0,且S 8=3S 4,S 12=λS 8时,由等差数列的性质得:S 4,S 8-S 4,S 12-S 8成等差数列,∴2(S 8-S 4)=S 4+(S 12-S 8),∴2(3S 4-S 4)=S 4+(λ·3S 4-3S 4),解得λ=2.答案:2三、解答题11.已知数列{a n }是等差数列,且a 1,a 2,a 5成等比数列,a 3+a 4=12.(1)求a 1+a 2+a 3+a 4+a 5;(2)设b n =10-a n ,数列{b n }的前n 项和为S n ,若b 1≠b 2,则n 为何值时,S n 最大?S n 最大值是多少?解:(1)设{a n }的公差为d ,∵a 1,a 2,a 5成等比数列,∴(a 1+d )2=a 1(a 1+4d ),解得d =0或d =2a 1.当d =0时,∵a 3+a 4=12,∴a n =6,∴a 1+a 2+a 3+a 4+a 5=30;当d ≠0时,∵a 3+a 4=12,∴a 1=1,d =2,∴a 1+a 2+a 3+a 4+a 5=25.(2)∵b 1≠b 2,b n =10-a n ,∴a 1≠a 2,∴d ≠0,由(1)知a n =2n -1,∴b n =10-a n =10-(2n -1)=11-2n ,S n =10n -n 2=-(n -5)2+25. ∴当n =5时,S n 取得最大值,最大值为25.12.(2018·沈阳质检)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5.(1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式. 解:(1)设等差数列{a n }的公差为d ,由题意知⎩⎪⎨⎪⎧ 2a 1+7d =4,5a 1+5×42d =-5,解得⎩⎪⎨⎪⎧a 1=-5,d =2, 故a n =2n -7(n ∈N *).(2)由a n =2n -7<0,得n <72,即n ≤3, 所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0. 由(1)知S n =n 2-6n ,所以当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18.故T 5=13,T n =⎩⎪⎨⎪⎧6n -n 2,n ≤3,n 2-6n +18,n ≥4. 13.已知数列{a n }中,a 1=4,a n =a n -1+2n -1+3(n ≥2,n ∈N *). (1)证明数列{a n -2n }是等差数列,并求{a n }的通项公式;(2)设b n =a n 2n ,求b n 的前n 项和S n . 解:(1)证明:当n ≥2时,a n =a n -1+2n -1+3=a n -1+2n -2n -1+3, ∴a n -2n -(a n -1-2n -1)=3. 又a 1=4,∴a 1-2=2,故数列{a n -2n }是以2为首项,3为公差的等差数列,∴a n -2n =2+(n -1)×3=3n -1,∴a n =2n +3n -1.(2)b n =a n 2n =2n +3n -12n =1+3n -12n , ∴S n =⎝⎛⎭⎫1+22+⎝⎛⎭⎫1+522+…+⎝⎛⎭⎫1+3n -12n =n +⎝⎛⎭⎫22+522+…+3n -12n , 令T n =22+522+…+3n -12n ,①则12T n =222+523+…+3n -12n +1,② ①-②得,12T n =1+322+323+…+32n -3n -12n +1, =1+3×14⎣⎡⎦⎤1-⎝⎛⎭⎫12n -11-12-3n -12n +1=52-3n +52n +1, ∴S n =n +5-3n +52n.已知数列{a n }的前n 项和为S n ,a 1=3,a n +1=2a n +2n +1-1(n ∈N *). (1)求a 2,a 3;(2)求实数λ使⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列,并由此求出a n 与S n ; (3)求n 的所有取值,使S n a n∈N *,说明你的理由. 解:(1)∵a 1=3,a n +1=2a n +2n +1-1, ∴a 2=2×3+22-1=9,a 3=2×9+23-1=25.(2)∵a 1=3,a n +1=2a n +2n +1-1, ∴a n +1-1=2(a n -1)+2n +1, ∴a n +1-12n +1-a n -12n =1, 故λ=-1时,数列⎩⎨⎧⎭⎬⎫a n +λ2n 成等差数列,且首项为a 1-12=1,公差d =1. ∴a n -12n =n ,即a n =n ·2n +1. ∴S n =(1×2+2×22+3×23+…+n ×2n )+n ,设T n =1×2+2×22+3×23+…+n ×2n ,①则2T n =1×22+2×23+3×24+…+n ×2n +1,② ①-②得,-T n =2+22+23+…+2n -n ×2n +1=(1-n )·2n +1-2, ∴T n =(n -1)·2n +1+2, ∴S n =T n +n =(n -1)·2n +1+2+n . (3)S n a n =(n -1)·2n +1+n +2n ·2n +1=2+n -2n +1n ·2n +1, 结合y =2x 及y =12x 的图象可知2n >n 2恒成立, ∴2n +1>n ,即n -2n +1<0,∵n ·2n +1>0,∴S n a n<2.当n =1时,S n a n =S 1a 1=1∈N *; 当n ≥2时,∵a n >0且{a n }为递增数列,∴S n >0且S n >a n ,∴S n a n >1,即1<S n a n <2,∴当n ≥2时,S n a n∉N *. 综上可得n =1.高考研究课(二)等比数列的3考点——基本运算、判定和应用[全国卷5年命题分析][典例] (1)已知等比数列{a n }的前n 项和为S n ,且a 1+a 3=52,a 2+a 4=54,则S n a n =( ) A .4n -1 B .4n -1C .2n -1 D .2n -1 (2)(2017·全国卷Ⅱ)已知等差数列{a n }的前n 项和为S n ,等比数列{b n }的前n 项和为T n ,a 1=-1,b 1=1,a 2+b 2=2.①若a 3+b 3=5,求{b n }的通项公式;②若T 3=21,求S 3.[解析] (1)设{a n }的公比为q ,∵⎩⎨⎧a 1+a 3=52,a 2+a 4=54,∴⎩⎨⎧ a 1+a 1q 2=52, (ⅰ)a 1q +a 1q 3=54, (ⅱ)由(ⅰ)(ⅱ)可得1+q 2q +q3=2,∴q =12,代入(ⅰ)得a 1=2, ∴a n =2×⎝⎛⎭⎫12n -1=42n ,∴S n =2×⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12=4⎝⎛⎭⎫1-12n , ∴S n a n=4⎝⎛⎭⎫1-12n 42n=2n -1. 答案:D(2)设{a n }的公差为d ,{b n }的公比为q ,则a n =-1+(n -1)d ,b n =q n -1. 由a 2+b 2=2得d +q =3.(ⅰ)①由a 3+b 3=5得2d +q 2=6.(ⅱ)联立(ⅰ)(ⅱ)解得⎩⎪⎨⎪⎧ d =3,q =0(舍去)或⎩⎪⎨⎪⎧d =1,q =2. 因此{b n }的通项公式为b n =2n -1. ②由b 1=1,T 3=21,得q 2+q -20=0,解得q =-5或q =4.当q =-5时,由(ⅰ)得d =8,则S 3=21.当q =4时,由(ⅰ)得d =-1,则S 3=-6.[方法技巧]解决等比数列有关问题的常用思想方法(1)方程的思想等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求关键量a 1和q ,问题可迎刃而解.(2)分类讨论的思想等比数列的前n 项和公式涉及对公比q 的分类讨论,当q =1时,{a n }的前n 项和S n =na 1;当q ≠1时,{a n }的前n 项和S n =a 1(1-q n )1-q =a 1-a n q 1-q. [即时演练]1.已知数列{a n }是首项a 1=14的等比数列,其前n 项和为S n ,S 3=316,若a m =-1512,则m 的值为( )A .8B .10C .9D .7解析:选A 设数列{a n }的公比为q ,若q =1,则S 3=34≠316,不符合题意,∴q ≠1. 由⎩⎨⎧a 1=14,S 3=a 1(1-q 3)1-q =316,得⎩⎨⎧ a 1=14q =-12,∴a n =14·⎝⎛⎭⎫-12n -1=⎝⎛⎭⎫-12n +1. 由a m =⎝⎛⎭⎫-12m +1=-1512, 得m =8.2.(2017·北京高考)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5.(1)求{a n }的通项公式;(2)求和:b 1+b 3+b 5+…+b 2n -1.解:(1)设等差数列{a n }的公差为d .因为⎩⎪⎨⎪⎧a 1=1,a 2+a 4=10, 所以2a 1+4d =10,解得d =2,所以a n =2n -1.(2)设等比数列{b n }的公比为q .因为b 1=1,b 2b 4=a 5,所以b 1q ·b 1q 3=9.解得q 2=3.所以b 2n -1=b 1q 2n -2=3n -1. 从而b 1+b 3+b 5+…+b 2n -1=1+3+32+…+3n -1=3n -12.[典例] (1)n 12n +2n +1n N *,对数列{a n }有下列命题:①数列{a n }是等差数列;②数列{a n +1-a n }是等比数列;③当n ≥2时,a n 都是质数;④1a 1+1a 2+…+1a n<2,n ∈N *, 则其中正确的命题有( )A .②B .①②C.③④D.②④(2)设数列{a n}的前n项和为S n,已知a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*).①求a2,a3的值;②求证:数列{S n+2}是等比数列.[解析](1)∵an+2=3a n+1-2a n,∴a n+2-a n+1=2(a n+1-a n),∴数列{a n+1-a n}是以a2-a1=2为首项、2为公比的等比数列,∴a n-a n-1=2n-1,a n-1-a n-2=2n-2,…a2-a1=21,累加得:a n-a1=21+22+…+2n-1=2(1-2n-1)1-2=2n-2,∴a n=2n-2+a1=2n-1.显然①②③中,只有②正确,又∵1a n=12n-1<12n-1(n≥2),∴1a1+1a2+…+1a n<1+12+122+…+12n-1=1-12n1-12<2,故④正确;综上所述,①③错误,②④正确.答案:D(2)[思路点拨]①令n=1,2,3,即可求出结论;②当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)S n-1+2(n-1),与已知式相减,再利用a n=S n-S n-1(n≥2),化简整理,即可得出结论.解:①∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),∴当n=1时,a1=2×1=2;当n=2时,a1+2a2=(a1+a2)+4,∴a2=4;当n=3时,a1+2a2+3a3=2(a1+a2+a3)+6,∴a3=8.②证明:∵a1+2a2+3a3+…+na n=(n-1)S n+2n(n∈N*),(ⅰ)∴当n≥2时,a1+2a2+3a3+…+(n-1)a n-1=(n-2)·S n-1+2(n-1).(ⅱ)(ⅰ)-(ⅱ)得na n=(n-1)S n-(n-2)S n-1+2=n(S n-S n-1)-S n+2S n-1+2=na n-S n+2S n-1+2.∴-S n+2S n-1+2=0,即S n=2S n-1+2,。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测18含解析

课时跟踪检测(十八)[高考基础题型得分练]1.下列与错误!的终边相同的角的表达式中正确的是()A.2kπ+45°(k∈Z)B.k·360°+错误!(k∈Z)C.k·360°-315°(k∈Z)D.kπ+错误!(k∈Z)答案:C解析:与错误!的终边相同的角可以写成2kπ+错误!(k∈Z),但是角度制与弧度制不能混用,所以只有C正确.2.已知角α的终边经过点(-4,3),则cos α=()A。
错误!B。
错误!C.-错误!D.-错误!答案:D解析:由三角函数的定义知,cos α=错误!=-错误!.3.已知点P(tan α,cos α)在第三象限,则角α的终边在()A.第一象限B.第二象限C.第三象限D.第四象限答案:B解析:由题意知,tan α<0,cos α<0,∴α是第二象限角.4.已知圆O:x2+y2=4与y轴正半轴的交点为M,点M沿圆O顺时针运动错误!弧长到达点N,以ON为终边的角记为α,则tan α=()A.-1 B.1C.-2 D.2答案:B解析:圆的半径为2,错误!的弧长对应的圆心角为错误!,故以ON 为终边的角为{α错误!,故tan α=1。
5.已知点P错误!落在角θ的终边上,且θ∈[0,2π),则θ=()A。
错误! B.错误!C。
错误! D.错误!答案:D解析:由sin 错误!>0,cos 错误!<0知,角θ是第四象限的角,∵tan θ=错误!=-1,θ∈[0,2π),∴θ=错误!.6.若α是第三象限角,则y=错误!+错误!的值为()A.0 B.2C .-2D .2或-2答案:A 解析:∵α是第三象限角,∴2k π+π<α<2k π+错误!(k ∈Z ),∴k π+错误!<错误!<k π+错误!(k ∈Z ),∴错误!是第二象限角或第四象限角.当错误!是第二象限角时,y =错误!-错误!=0,当错误!是第四象限角时,y =-错误!+错误!=0,故选A 。
2018-2019学年数学高考(人教A版文科)一轮复习考点规范练:26Word版含解析

考点规范练26平面向量的数量积与平面向量的应用基础巩固1.对任意平面向量a,b,下列关系式中不恒成立的是()A.|a·b|≤|a||b|B.|a-b|≤||a|-|b||C.(a+b)2=|a+b|2D.(a+b)·(a-b)=a2-b22.已知a,b为单位向量,其夹角为60°,则(2a-b)·b=()A.-1B.0C.1D.23.(2017河南新乡二模)已知向量a=(1,2),b=(m,-4),若|a||b|+a·b=0,则实数m等于()A.-4B.4C.-2D.24.(2017河南濮阳一模)若向量=(1,2),=(4,5),且·(λ)=0,则实数λ的值为()A.3B.-C.-3D.-5.在四边形ABCD中,=(1,2),=(-4,2),则该四边形的面积为()A. B.2C.5D.106.在△ABC中,AB边的高为CD,若=a,=b,a·b=0,|a|=1,|b|=2,则=()A.a-bB.a-bC.a-bD.a-b7.(2017河北邯郸二模)已知向量a=(m,2),b=(2,-1),且a⊥b,则等于()A.-B.1C.2D.8.(2017北京,文7)设m,n为非零向量,则“存在负数λ,使得m=λn”是“m·n<0”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件9.设向量a=(x,x+1),b=(1,2),且a⊥b,则x=.10.设e1,e2是夹角为60°的两个单位向量,若a=e1+λe2与b=2e1-3e2垂直,则λ=.11.已知|a|=2,|b|=1,(2a-3b)·(2a+b)=9.(1)求向量a与b的夹角θ;(2)求|a+b|及向量a在a+b方向上的投影.能力提升12.已知非零向量m,n满足4|m|=3|n|,向量m与n的夹角为θ,且cos θ=.若n⊥(t m+n),则实数t 的值为()A.4B.-4C.D.-13.在矩形ABCD中,AB=1,AD=,P为矩形内一点,且AP=,若=λ+μ(λ,μ∈R),则λ+μ的最大值为()A. B. C. D.14.已知,||=,||=t.若点P是△ABC所在平面内的一点,且,则的最大值等于()A.13B.15C.19D.2115.如图,在平行四边形ABCD中,已知AB=8,AD=5,=3=2,则的值是.16.(2017江苏,12)如图,在同一个平面内,向量的模分别为1,1,的夹角为α,且tan α=7,的夹角为45°.若=m+n(m,n∈R),则m+n=.高考预测17.已知非零向量a,b满足|a|=2,且|a+b|=|a-b|,则向量b-a在向量a方向上的投影是.答案:1.B解析:A项,设向量a与b的夹角为θ,则a·b=|a||b|cos θ≤|a||b|,所以不等式恒成立;B项,当a与b同向时,|a-b|=||a|-|b||;当a与b非零且反向时,|a-b|=|a|+|b|>||a|-|b||.故不等式不恒成立;C项,(a+b)2=|a+b|2恒成立;D项,(a+b)·(a-b)=a2-a·b+b·a-b2=a2-b2,故等式恒成立.综上,选B.2.B解析:由已知得|a|=|b|=1,a与b的夹角θ=60°,则(2a-b)·b=2a·b-b2=2|a||b|cos θ-|b|2=2×1×1×cos 60°-12=0,故选B.3.C解析:设a,b的夹角为θ,∵|a||b|+a·b=0,∴|a||b|+|a||b|cos θ=0,。
2019届高考数学人教A版文科一轮复习考点规范练1 精品

考点规范练1集合的概念与运算基础巩固1.下列集合中表示同一集合的是()A.M={(3,2)},N={(2,3)}B.M={2,3},N={3,2}C.M={(x,y)|x+y=1},N={y|x+y=1}D.M={2,3},N={(2,3)}2.(2017全国Ⅲ,文1)已知集合A={1,2,3,4},B={2,4,6,8},则A∩B中元素的个数为()A.1B.2C.3D.43.(2017北京,文1)已知全集U=R,集合A={x|x<-2或x>2},则∁U A=()A.(-2,2)B.(-∞,-2)∪(2,+∞)C.[-2,2]D.(-∞,-2]∪[2,+∞)4.已知集合A={1,2,4},则集合B={(x,y)|x∈A,y∈A}中元素的个数为()A.3B.6C.8D.95.已知数集{x2+x,2x},则x的取值范围是()A.(-∞,+∞)B.(-∞,0)∪(0,+∞)C.(-∞,1)∪(1,+∞)D.(-∞,0)∪(0,1)∪(1,+∞)6.(2017山东,文1)设集合M={x||x-1|<1},N={x|x<2},则M∩N=()A.(-1,1)B.(-1,2)C.(0,2)D.(1,2)7.已知全集U=R,A={x|x(x+3)<0},B={x|x<-1},则图中阴影部分表示的集合为()A.{x|x>0}B.{x|-3<x<0}C.{x|-3<x<-1}D.{x|x<-1}8.已知集合A={1,2,3,4},B={x|x=n2,n∈A},则A∩B=()A.{1,4}B.{2,3}C.{9,16}D.{1,2}9.已知集合U=R,A={x|0<x<4},B={x|x2-3x+2>0},则()A.A⊆BB.B⊆AC.A∪B=RD.A⊆∁R B10.(2017江苏,1)已知集合A={1,2},B={a,a2+3}.若A∩B={1},则实数a的值为.11.已知集合A={x|0<log4x<1},B={x|x≤2},则A∩B=.12.已知集合A,B是全集I={1,2,3,4}的子集,A={1,2},则满足A⊆B的B的个数为.能力提升13.设全集U=R,集合A={x|0≤x≤2},B={y|1≤y≤3},则(∁U A)∪B=()A.(2,3]B.(-∞,1]∪(2,+∞)C.[1,2)D.(-∞,0)∪[1,+∞)14.已知集合A={x|y=},B={y|y-1<0},则A∩B=()A.(-∞,1)B.(-∞,1]C.[0,1)D.[0,1]15.集合A={-1,0,1,2},B={x|x2-2x-3<0},则A∩B=()A.{-1,0}B.{0,1}C.{1,2}D.{0,1,2}16.已知集合A={x|4≤2x≤16},B=[a,b],若A⊆B,则实数a-b的取值范围是.17.已知集合A={x|-2≤x≤7},B={x|m+1<x<2m-1},若B⊆A,则实数m的取值范围是.高考预测18.已知集合A=,集合B={y|y=t-2},则A∩B=()A.(-∞,2]B.(3,+∞)C.[2,3)D.(0,3)答案:1.B解析:选项A中的集合M,N都表示点集,又因为集合M,N中的点不同,所以集合M与N 不是同一个集合;选项C中的集合M,N的元素类型不同,故不是同一个集合;选项D中的集合M是数集,而集合N是点集,故不是同一个集合;由集合元素的无序性,可知选项B中M,N表示同一个集合.2.B解析:由题意可得A∩B={2,4},则A∩B中有2个元素.故选B.3.C解析:因为A={x|x<-2或x>2},所以∁U A={x|-2≤x≤2}.故选C.4.D解析:集合B中的元素有(1,1),(1,2),(1,4),(2,1),(2,2),(2,4),(4,1),(4,2),(4,4),共9个.5.D解析:由集合中元素的互异性,可得在集合{x2+x,2x}中,x2+x≠2x,即x≠0,x≠1,故x的取值范围是(-∞,0)∪(0,1)∪(1,+∞),故选D.6.C解析:由|x-1|<1,得-1<x-1<1,即0<x<2.所以M={x|0<x<2},所以M∩N=(0,2).7.C解析:题图中阴影部分表示的集合是A∩B,而A={x|-3<x<0},故A∩B={x|-3<x<-1}.8.A解析:∵B={x|x=n2,n∈A}={1,4,9,16},∴A∩B={1,4}.9.C解析:∵x2-3x+2>0,∴x>2或x<1.∴B={x|x>2或x<1}.∵A={x|0<x<4},∴A∪B=R,故选C.10.1解析:由已知得1∈B,2∉B,显然a2+3≥3,所以a=1,此时a2+3=4,满足题意,故答案为1.11.(1,2]解析:∵0<log4x<1,∴log41<log4x<log44,即1<x<4,∴A={x|1<x<4}.又B={x|x≤2},∴A∩B={x|1<x≤2}.12.4解析:因为集合A,B是全集I={1,2,3,4}的子集,且A={1,2},A⊆B,所以B={1,2}或B={1,2,3}或B={1,2,4}或B={1,2,3,4},即所求集合B的个数为4.13.D解析:因为∁U A={x|x>2或x<0},B={y|1≤y≤3},所以(∁U A)∪B=(-∞,0)∪[1,+∞)14.C解析:因为A={x|y=}={x|x(1-x)≥0}=[0,1],B={y|y-1<0}=(-∞,1),所以A∩B=[0,1).故选C.15.D解析:∵x2-2x-3<0,∴(x+1)(x-3)<0.∴B={x|-1<x<3}.∵在-1<x<3中的整数有0,1,2,∴A∩B={0,1,2}.16.(-∞,-2]解析:集合A={x|4≤2x≤16}={x|22≤2x≤24}={x|2≤x≤4}=[2,4].因为A⊆B,所以a≤2,b≥4.所以a-b≤2-4=-2,即实数a-b的取值范围是(-∞,-2].17.(-∞,4]解析:当B=⌀时,有m+1≥2m-1,可得m≤2.当B≠⌀时,若B⊆A,如图,则解得2<m≤4.综上,m的取值范围为(-∞,4].18.B解析:由<1,得>0,即x>3或x<0,即A=(-∞,0)∪(3,+∞).设m=≥0,则t=m2+3,故y=m2+3-2m=(m-1)2+2,因此B=[2,+∞).所以A∩B=(3,+∞),故选B.。
【高考数学】2018-2019学年数学高考(人教A版文科)一轮复习考点规范练:55Word版含解析

考点规范练55几何概型基础巩固1.若在区间[-1,4]内取一个数x,则2x-2x2≥4的概率是()A. B. C. D.2.若将一个质点随机地投入到如图所示的长方形ABCD中,其中AB=2,BC=1,则质点落在以AB 为直径的半圆内的概率是()A. B. C. D.3.北宋欧阳修在《卖油翁》中写道:“(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.因曰:‘我亦无他,唯手熟尔.’”可见技能都能通过反复苦练而达到熟能生巧之境.若铜钱是半径为1 cm的圆,中间有边长为0.5 cm的正方形孔,随机向铜钱上滴一滴油,则油(油滴的大小忽略不计)正好落入孔中的概率为()A. B. C. D.4.已知地铁列车每10 min(含在车站停车时间)一班,在车站停1 min,则乘客到达站台立即乘上车的概率是()A. B. C. D.5.已知在△ABC中,∠ABC=60°,AB=2,BC=6,在BC上任取一点D,则使△ABD为钝角三角形的概率为()A. B. C. D.6.有一个长、宽分别为50 m,30 m的游泳池,一名工作人员在池边巡视,某时刻出现在池边任一位置的可能性相同.一人在池中心(对角线的交点)处呼唤工作人员,其声音可传出15 m,则工作人员能及时听到呼唤(出现在声音可传到区域)的概率是()A. B.C. D.7.若在区间[-1,1]上随机取一个数x,则sin的值介于-之间的概率为()A. B. C. D.8.(2017江苏,7)记函数f(x)=的定义域为D.在区间[-4,5]上随机取一个数x,则x∈D的概率是.9.记集合A={(x,y)|x2+y2≤4}和集合B={(x,y)|x+y-2≤0,x≥0,y≥0}表示的平面区域分别为Ω1和Ω2,若在区域Ω1内任取一点M(x,y),则点M落在区域Ω2的概率为.10.在区间[0,5]上随机地选择一个数p,则关于x的方程x2+2px+3p-2=0有两个负根的概率为.能力提升11.(2017山东临沂一模)在区间[-1,1]上随机取一个数k,使直线y=kx+与圆x2+y2=1不相交的概率为()A. B. C. D.12.在区间[-π,π]内随机取出两个数分别记为a,b,则函数f(x)=x2+2ax-b2+π2有零点的概率为()。
【高考】2018-2019学年数学高考(人教A版文科)一轮复习考点规范练:3
考点规范练3命题及其关系、充要条件基础巩固1.已知a,b,c∈R,命题“若a+b+c=3,则a2+b2+c2≥3”的否命题是()A.若a+b+c≠3,则a2+b2+c2<3B.若a+b+c=3,则a2+b2+c2<3C.若a+b+c≠3,则a2+b2+c2≥3D.若a2+b2+c2≥3,则a+b+c=32.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”3.设原命题:若a+b≥2,则a,b中至少有一个不小于1.则原命题与其逆命题的真假情况是()A.原命题真,逆命题假B.原命题假,逆命题真C.原命题与逆命题均为真命题D.原命题与逆命题均为假命题4.已知直线a,b分别在两个不同的平面α,β内,则“直线a和直线b相交”是“平面α和平面β相交”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件5.下列命题中为真命题的是()A.命题“若x>y,则x>|y|”的逆命题B.命题“若x>1,则x2>1”的否命题C.命题“若x=1,则x2+x-2=0”的否命题D.命题“若x2>0,则x>1”的逆否命题6.若x∈R,则“1<x<2”是“|x-2|<1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件7.(2017广东六校联考)“不等式x2-x+m>0在R上恒成立”的一个必要不充分条件是()A.m>B.0<m<1C.m>0D.m>18.下列结论错误的是()A.命题“若x2-3x-4=0,则x=4”的逆否命题为“若x≠4,则x2-3x-4≠0”B.“x=4”是“x2-3x-4=0”的充分不必要条件C.命题“若m>0,则关于x的方程x2+x-m=0有实根”的逆命题为真命题D.命题“若m2+n2=0,则m=0,且n=0”的否命题是“若m2+n2≠0,则m≠0或n≠0”9.若a,b都是不等于1的正数,则“3a>3b>3”是“log a3<log b3”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测31含解析
课时跟踪检测(三十一)[高考基础题型得分练]1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n等于( )A.错误! B.cos 错误!C.cos 错误!πD.cos 错误!π答案:D解析:令n=1,2,3,…,逐一验证四个选项,易得D正确.2.设a n=-3n2+15n-18,则数列{a n}中的最大项的值是()A.错误!B.错误!C.4 D.0答案:D解析:∵a n=-3错误!2+错误!,由二次函数的性质,得当n=2或3时,a n最大,最大值为0。
3.已知数列{a n},a1=-错误!,a n=-错误!(n>1),则当a n=-错误!时,n的值可以为( )A.14 B.15C.16 D.17答案:C解析:由题意,得a1=-错误!,a2=-错误!,a3=3,a4=-错误!,…,则a3m-2=-错误!(m∈N*),a16=-错误!,故选C.4.[2017·河北保定调研]在数列{a n}中,已知a1=1,a n+1=2a n+1,则其通项公式为a n=()A.2n-1 B.2n-1+1C.2n-1 D.2(n-1)答案:A解析:解法一:由a n+1=2a n+1,可求a2=3,a3=7,a4=15,…,验证可知a n=2n-1。
解法二:由题意知a n+1+1=2(a n+1),∴数列{a n+1}是以2为首项,2为公比的等比数列,∴a n+1=2n,∴a n=2n-1。
5.数列{a n}的前n项和为S n,若a1=1,a n+1=3S n(n≥1),则a6=()A.3×44B.3×44+1C.45 D.45+1答案:A解析:当n≥1时,a n+1=3S n,则a n+2=3S n+1,∴a n+2-a n+1=3S n-3S n=3a n+1,即a n+2=4a n+1,∴该数列从第2项开始是以4为公+1比的等比数列.又a2=3S1=3a1=3,∴a n=错误!∴a6=3×46-2=3×44,故选A.6.[2016·云南一模]在数列{a n}中,a1=错误!,a2=错误!,a n a n+2=1,则a2 016+a2 017=( )A。
2018版高考数学(人教A版文科)一轮复习课时跟踪检测24含解析
课时跟踪检测(二十四)[高考基础题型得分练]1.[2017·黑龙江哈尔滨模拟]在△ABC中,AB=错误!,AC=1,B =30°,△ABC的面积为错误!,则C=( )A.30°B.45°C.60°D.75°答案:C解析:解法一:∵S△ABC=错误!|AB||AC|sin A=错误!,即错误!×错误!×1×sin A=错误!,∴sin A=1,∴A=90°,∴C=60°,故选C。
解法二:由正弦定理,得错误!=错误!,即错误!=错误!,∴C=60°或C=120°。
当C=120°时,A=30°,S△ABC=错误!≠错误!(舍去).而当C=60°时,A=90°,S△ABC=错误!,符合条件,故C=60°。
故选C。
2.在△ABC中,A=60°,BC=错误!,D是AB边上不同于A,B的任意一点,CD=2,△BCD的面积为1,则AC的长为()A.2错误!B。
错误! C.错误! D.错误!答案:D解析:由S△BCD=1,可得错误!×CD×BC×sin∠DCB=1,即sin∠DCB=错误!,所以cos∠DCB=错误!,或cos∠DCB=-错误!,又∠DCB〈∠ACB =180°-A -B =120°-B 〈120°,所以cos ∠DCB >-错误!,所以cos ∠DCB =-错误!舍去.在△BCD 中,cos ∠DCB =错误!=错误!,解得BD =2,所以cos ∠DBC =错误!=错误!,所以sin ∠DBC =错误!.在△ABC 中,由正弦定理可得AC =BC sin B sin A=错误!,故选D. 3.[2017·安徽合肥第一次质检]△ABC 的角A ,B ,C 的对边分别为a ,b ,c ,若cos A =错误!,c -a =2,b =3,则a =( )A .2 B.错误! C .3 D 。
2018-2019学年数学高考一轮复习(文科)训练题:天天练 18 Word版含解析
数学
→ AB → → 解析:因为AB=(3,-4),所以与AB同方向的单位向量为 = →| |AB 4 3 ,- . 5 5 4.(2018· 天津红桥区模拟)若向量 a=(2,3),b=(-1,2),则 a+b 的坐标为( ) A.(1,5) B.(1,1) C.(3,1) D.(3,5) 答案:A 解析:∵向量 a=(2,3),b=(-1,2),∴a+b=(1,5).故选 A. 5.(2018· 重庆第八中学适应性考试(一))已知向量 a=(1,m),b =(3,-2),且(a+b)∥b,则 m=( ) 2 2 A.-3 B.3 C.-8 D.8 答案:A 4 m-2 解析: 由题意得 a+b=(4, m-2). 因为(a+b)∥b, 所以3= , -2 2 解得 m=-3.故选 A. 6.(2018· 岳阳质检)在梯形 ABCD 中,已知 AB∥CD,AB=2CD, → =λAM → +μAN →, M, N 分别为 CD, BC 的中点. 若AB 则 λ+μ 的值为( ) 1 1 A.4 B.5 4 5 C.5 D.4 答案:C 1 → → → =λAM → +μAN →, → =λ· 解析: 解法一 连接 AC, 由AB 得AB 2(AD+AC)
数学
天天练 18 平面向量的基本定理及坐标表示 一、选择题 1.如果 e1、e2 是平面 α 内两个不共线的向量,那么下列说法中 不正确的是( ) ①a=λe1+μe2(λ、μ∈R)可以表示平面 α 内的所有向量; ②对于平面 α 内任一向量 a,使 a=λe1+μe2 的实数对(λ,μ)有无 穷多个; λ1 μ1 ③若向量 λ1e1+μ1e2 与 λ2e1+μ2e2 共线,则λ =μ . 2 2 ④若实数 λ、μ 使得 λe1+μe2=0,则 λ=μ=0. A.①② B.②③ C.③④ D.② 答案:B 解析:由平面向量基本定理可知,①④是正确的.对于②,由平 面向量基本定理可知,一旦一个平面的基底确定,那么任意一个向量 在此基底下的实数对是唯一的. 对于③, 当 λ1λ2=0 或 μ1μ2=0 时不一 定成立,应为 λ1μ2-λ2μ1=0.故选 B. 2.(2018· 咸阳一模)下列各组向量中,可以作为基底的是( A.e1=(0,0),e2=(1,-2) B.e1=(-1,2),e2=(5,7) C.e1=(3,5),e2=(6,10) 3 1 D.e1=(2,-3),e2=2,-4 答案:B )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点规范练18同角三角函数的基本关系
及诱导公式
基础巩固
1.已知sin(θ+π)<0,cos(θ-π)>0,则下列不等关系中必定成立的是()
A.sin θ<0,cos θ>0
B.sin θ>0,cos θ<0
C.sin θ>0,cos θ>0
D.sin θ<0,cos θ<0
2.若cos(3π-x)-3cos=0,则tan x等于()
A.-
B.-2
C. D.
3.已知tan(α-π)=,且α∈,则sin=()
A. B.-
C. D.-
4.sin+cos-tan=()
A.0
B.
C.1
D.-
5.若sin,则cos等于()
A.-
B.-
C. D.
6.已知sin(π-α)=-2sin,则sin α·cos α等于()
A. B.-
C.或-
D.-
7.已知cos,且-π<α<-,则cos等于()
A. B.-
C. D.-
8.若tan α=,则cos2α+2sin 2α=()
A. B. C.1 D.
9.已知α∈,sin α=,则tan α=.
10.若f(cos x)=cos 2x,则f(sin 15°)=.
11.已知α为第二象限角,则cos α+sin α=.
12.已知k∈Z,则的值为.
能力提升
13.已知sin(π-α)=log8,且α∈,则tan(2π-α)的值为()
A.-
B.
C.±
D.
14.已知2tan α·sin α=3,-<α<0,则sin α等于()
A. B.-
C. D.-
15.已知角α和β的终边关于直线y=x对称,且β=-,则sin α等于()
A.-
B.
C.-
D.
16.已知cos=a(|a|≤1),则cos+sin的值是.
17.已知函数f(x)=a sin+b tan(a,b为常数,x∈R).若f(1)=1,则不等式f(31)>log2x的解集为.
高考预测
18.已知sin(π+α)=-,则cos等于()
A.-
B.
C.-
D.
答案:
1.B解析:∵sin(θ+π)<0,∴-sin θ<0,即sin θ>0.
∵cos(θ-π)>0,∴-cos θ>0,即cos θ<0.故选B.
2.D解析:∵cos(3π-x)-3cos=0,
∴-cos x+3sin x=0,∴tan x=,故选D.
3.B解析:∵tan(α-π)=,∴tan α=.
又α∈,∴α为第三象限角.
∴sin=cos α=-.
4.A解析:原式=sin+cos-tan=sin+cos-tan-1=0.
5.A解析:∵,
∴sin=sin=cos.
∴cos=2cos2-1=-.
6.B解析:∵sin(π-α)=-2sin,
∴sin α=-2cos α,∴tan α=-2.
∴sin α·cos α==-,故选B.
7.D解析:∵cos=sin,
又-π<α<-,∴-α<.
∴cos=-=-.
8.A解析:(方法1)由tan α=,得cos2α+2sin 2α=.故选A.
(方法2)∵tan α=,∴3cos α=4sin α,即9cos2α=16sin2α.
又sin2α+cos2α=1,
∴9cos2α=16(1-cos2α),∴cos2α=.
∴cos2α+2sin 2α=cos2α+4sin αcos α=cos2α+3cos2α
=4cos2α=4×,故选A.
9.-解析:∵α∈,∴cos α=-=-.
∴tan α==-.
10.-解析:f(sin 15°)=f(cos 75°)=cos 150°=
cos(180°-30°)=-cos 30°=-.
11.0解析:原式=cos α+sin α
=cos α+sin α.
因为α是第二象限角,所以sin α>0,cos α<0,
所以cos α+sin α=-1+1=0,即原式等于0.
12.-1解析:当k=2n(n∈Z)时,
原式=
==-1.
当k=2n+1(n∈Z)时,。