2012年数高考学一轮复习 直线与圆的位置关系
高三理科数学第一轮复习§8.4:直线、圆的位置关系

解析
第八章:平面解析几何 §8.4:直线、圆的位置关系
解析
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
解析
第八章:平面解析几何 §8.4:直线、圆的位置关系
解析
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
解析
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
第八章:平面解析几何 §8.4:直线、圆的位置关系
8.4直线与圆圆与圆的位置关系课件高三数学一轮复习2

(3)若一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切, 则反射光线所在直线的斜率为___-__43_或__-__34____.
3.若圆x2+y2=r2(r>0)上恒有4个点到直线l:x-y-2=0的距离为1,则实数r的
取值范围是( A )
A.( 2+1,+∞) C.(0, 2-1)
B.( 2-1, 2+1) D.(0, 2+1)
解析
计算得圆心到直线
l
的距离为
2= 2
2>1,如图.
直线l:x-y-2=0与圆相交,l1,l2与l平行,且与直线l
(2)求m=45时两圆的公共弦所在直线的方程和公共弦的长.
解 两圆的标准方程分别为
(x-1)2+(y-3)2=11,(x-5)2+(y-6)2=61-m, 圆心分别为M(1,3),N(5,6),
半径分别为 11和 61-m. 两圆的公共弦所在直线的方程为
(x2+y2-2x-6y-1)-(x2+y2-10x-12y+45)=0,即4x+3y-23=0.
2.直线被圆截得的弦长的求法 (1)几何法:运用弦心距 d、半径 r 和弦长的一半构成的直角三角形,计算弦长|AB| =2 r2-d2. (2)代数法:设直线 y=kx+m 与圆 x2+y2+Dx+Ey+F=0 相交于点 M,N,将 直线方程代入圆的方程中,消去 y,得关于 x 的一元二次方程,求出 xM+xN 和 xM·xN,则|MN|= 1+k2· (xM+xN)2-4xM·xN.
_x_=__2__或__4_x_-__3__y_+__4_=__0__.
高考数学一轮复习必备:第59课时:第七章直线与圆的方程直线与圆的位置关系

高考数学一轮复习必备:第59课时:第七章直线与圆的方程直线与圆的位置关系课题:直线与圆的位置关系一.复习目标:1.把握圆的标准方程及一样式方程,明白得圆的参数方程及参数θ的意义,能依照圆的方程熟练地求出圆的圆心和半径;能熟练地对圆的方程的各种形式进行相互转化。
2.把握直线与圆的位置关系,会求圆的切线方程,公共弦方程及等有关直线与圆的咨询题。
3.渗透数形结合的数学思想方法,充分利用圆的几何性质优化解题过程。
二.要紧知识: 1.圆的标准方程: ;圆的一样方程: ;圆的参数方程: 。
2.直线与圆的位置关系判定的两种方法: 代数方法: ;几何方法: ;3.弦长的运算方法:代数方法: ;几何方法: ;1.方程2222210x y ax ay a a +++++-=表示圆,那么a 的取值范畴是〔 〕()A 2a <- ()B 203a -<< ()C 20a -<< ()D 223a -<< 2.直线y x m =-+与圆221x y +=在第一象限内有两个不同交点,那么m 的取值范畴是〔 〕()A 0m <<()B 1m << ()C 1m ≤≤()D m <<3.圆222690x y x y +--+=关于直线250x y ++=对称的圆的方程是〔 〕()A 22(7)(1)1x y +++= ()B 22(7)(2)1x y +++=()C 22(6)(2)1x y +++= ()D 22(6)(2)1x y ++-=4.设M 是圆22(5)(3)9x y -+-=上的点,那么M 点到直线3420x y +-=的最短距离是 。
5.假设曲线1y =(22)x -≤≤与直线(2)4y k x =-+有两个交点时,那么实数k 的取值范畴是____ __。
四.例题分析:例1.求满足以下各条件圆的方程:〔1〕以)9,4(A ,)3,6(B 为直径的圆;〔2〕与,x y 轴均相切且过点(1,8)的圆;〔3〕求通过)2,5(A ,)2,3(-B 两点,圆心在直线32=-y x 上的圆的方程。
高考数学一轮复习人教A必修2精品学案2直线与圆的位置关系

.
(2)Δ=0
.
(3)Δ<0
.
返回
比较这两种方法,第一种方法从“形”的角度考虑, 比较简单;第二种方法从“数”的角度也就是用代 数的方法去考虑,这种方法在以后我们研究直线与 圆锥曲线的位置关系时会经常用到,但在解有关圆 的问题时,会比较麻烦,计算量较大,不宜采用. 因此,我们常用第一种方法,利用平面几何知识, 这样可以大大地简化思维过程和解题过程.
【评析】虽然有关求弦长的方法很多,但首先要考虑 半径、弦长、弦心距之间的关系以及采用数形结合的 思想方法,这样可以获得比较直观、简捷的解法.
返回
直线经过点P(5,5)且和圆C:x2+y2=25相交,截得弦长为
4 5,求l的方程.
当l的斜率不存在时,方程是x=5,与圆C相切,
∴l的斜率必存在,设为k,则l的方程是kx-y-5k+5=0,
,
E) 到直线x-y=0的距离为
2
|
D 2
2
E 2
|
,
|
D
E
|
2
由已知,得 2 2 ( 7 )2 =r2,
2
即(D-E)2+56=2(D2+E2-4F)
⑤
又圆心在直线3x-y=0上, ∴3D-E=0 ⑥
返回
联立④⑤⑥解得 D=-2,E=-6,F=1或D=2,E=6,F=1. 故所求圆的方程为 x2+y2-2x-6y+1=0或x2+y2+2x+6y+1=0.
3.过圆上一点,与圆相切的直线有 1 条;
过圆外一点,与圆相切的直线有 2 条.
高中数学高考高三理科一轮复习资料第8章 8.4 直线与圆、圆与圆的位置关系

题型探究 题型一 直线和圆相交 例 1 已知圆 C:(x-1)2+(y-2)2=25,直线 l:(2m+1)x +(m+1)y-7m-4=0(m∈R). (1)证明:无论 m 取何实数,直线 l 与圆恒交于两点; (2)求直线 l 被圆 C 截得的线段的最短长度以及此时直线 l 的方程.
高中数学
8.4 直线与圆、圆与圆的位置关系
考纲点击 1.能根据给定直线、圆的方程判断直线与圆的位置关系; 能根据给定两个圆的方程判断两圆的位置关系. 2.能用直线和圆的方程解决一些简单的问题. 3.初步了解用代数方法处理几何问题的思想.
说基础
课前预习读教材
考点梳理 一、直线与圆的位置关系 1.直线与圆的位置关系有三种:相离、相切、相交. 判断直线与圆的位置关系常见的有两种方法: (1)代数法:利用判别式 Δ>0⇔① 判别式 Δ=0⇔② ――→ 2 Δ=b -4ac Δ<0⇔③ (2)几何法: 利用圆心到直线的距离 d 和圆半径 r 的大小关 系 d<r⇔④______;d=r⇔⑤______;d>r⇔⑥______.
说考点
拓展延伸串知识
疑点清源 一、圆的切线方程的求法 1.求过圆上的一点(x0,y0)的切线方程 先求切点与圆心连线的斜率 k,由垂直关系知切线斜率为 1 - k ,由点斜式方程可求切线方程.若切线斜率不存在,则由 图形写出切线方程 x=x0.
2.求过圆外一点(x0,y0)的圆的切线方程 (1)几何方法 当斜率存在时,设为 k,切线方程为 y-y0=k(x-x0),即 kx-y+y0-kx0=0.由圆心到直线的距离等于半径, 即可得出切 线方程. (2)代数方法 设切线方程为 y-y0=k(x-x0),即 y=kx-kx0+y0,代入 圆方程,得一个关于 x 的一元二次方程,由 Δ=0,求得 k,切 线方程即可求出. 【说明】 过圆外一点作圆的切线有两条, 若在解题过程中, 只解出一个答案,说明另一条直线的斜率不存在.
2012届高考数学(文)一轮复习课件:8-4第四节 直线与圆、圆与圆的位置关系(北师大版)

理几何问题的思想.
现解答题,难度中等.
第八章
平面解析几何
北 师 大 版 数 学 文
第八章
平面解析几何
北 师 大 版 数 学 文
1.直线与圆的位置关系
相离、相切、相交. (1)直线与圆的位置关系有三种:
判断直线与圆的位置关系常见的有两种方法:
①代数法:利用判别式Δ
第八章
平面解析几何
北 师 大 版 数 学 文
程.
[思路分析] 本题求解的关键是由“圆C1 与圆C2 交于A,
B两点且这两点平分圆C2的周长”得到|C1C2|2+r22=r12.
第八章
平面解析几何
北 师 大 版 数 学 文
[听课记录]
(1)由已知,圆 C1 的圆心为(an,-an+1),半
径为 r1= an2+an+12+1,圆 C2 的圆心为(-1,-1),半径为 r2=2. 又圆 C1 与圆 C2 交于 A,B 两点且这两点平分圆 C2 的周 长,所以|C1C2|2+r22=r12,所以(an+1)2+(-an+1+1)2+4= an +an+12+1,所以
|-1+2-a| 由 = 2,得|a-1|=2,即 a=-1,或 a=3. 2 ∴直线方程为 x+y+1=0,或 x+y-3=0. 综上,圆的切线方程为 y=(2+ 6)x,或 y=(2- 6)x, 或 x+y+1=0,或 x+y-3=0.
第八章
平面解析几何
北 师 大 版 数 学 文
(2)由|PO|=|PM|,得x12+y12=(x1+1)2+(y1-2)2-2⇒2x1 -4y1+3=0.
第八章
平面解析几何
北 师 大 版 数 学 文
第八章
平面解析几何
北 师 大 版 数 学 文
第67讲 直线与圆、圆与圆的位置关系
第67讲 直线与圆、圆与圆的位置关系【考点解读】1.能根据给定直线、圆的方程.判断直线与圆的位置关系;2.能根据给定两个圆的方程,判断两圆的位置关系.3.能用直线和圆的方程解决一些简单的问题.4.初步了解用代数方法处理几何问题的思想.【知识扫描】1.直线与圆的位置关系判断直线与圆的位置关系有两种方法:①几何法:通过圆心到直线的距离与半径的大小比较来判断,设圆心到直线的距离为d ,圆半径为r ,若直线与圆相离,则r d >;若直线与圆相切,则r d =;若直线与圆相交,则r d < ②代数法:通过直线与圆的方程联立的方程组的解的个数来判断,即通过判别式来判断,若0>∆,则直线与圆相离;若0=∆,则直线与圆相切;若0<∆,则直线与圆相交。
2.两圆的的位置关系:(1)设两圆半径分别为12,r r ,圆心距为d ,若两圆相外离,则r R d +> ,公切线条数为4; 若两圆相外切,则r R d +=,公切线条数为3; 若两圆相交r R d r R +<<-,则,公切线条数为2;若两圆内切,则r R d -=,公切线条数为1;若两圆内含,则r R d -<,公切线条数为0。
(2) 设两圆0:111221=++++F y E x D y x C ,0:222222=++++F y E x D y x C ,若两圆相交,则两圆的公共弦所在的直线方程是0)()()(212121=-+-+-F F y E E x D D 3. 圆的切线问题⑴利用圆心到切线的距离等于半径列方程求解;⑵利用圆心、切点连线的斜率与切线的斜率的乘积为-1;⑶利用直线与圆的方程联立的方程组的解只有一个,即0=∆来求解。
特殊地,已知切点),(00y x P ,圆222r y x =+的切线方程为200r y y x x =+, 圆222)()(r b y a x =-+-的切线方程为200))(())((r b y b y a x a x =--+--。
高考数学一轮复习第八章第二节第1课时系统知识__圆的方程直线与圆的位置关系圆与圆的位置关系讲义含解析
第二节圆与方程第1课时系统知识——圆的方程、直线与圆的位置关系、圆与圆的位置关系1.圆的定义及方程点M(x0,y0),圆的标准方程(x-a)2+(y-b)2=r2.[提醒] 不要把形如x2+y2+Dx+Ey+F=0的结构都认为是圆,一定要先判断D2+E2-4F的符号,只有大于0时才表示圆.[谨记常用结论]若x2+y2+Dx+Ey+F=0表示圆,则有:当F=0时,圆过原点.当D=0,E≠0时,圆心在y轴上;当D≠0,E=0时,圆心在x轴上.当D=F=0,E≠0时,圆与x轴相切于原点;E=F=0,D≠0时,圆与y轴相切于原点.当D2=E2=4F时,圆与两坐标轴相切.[小题练通]1.[人教A版教材P124A组T4]圆C的圆心在x轴上,并且过点A(-1,1)和B(1,3),则圆C的方程为____________.答案:(x-2)2+y2=102.[教材改编题]经过点(1,0),且圆心是两直线x=1与x+y=2的交点的圆的方程为________________.答案:(x -1)2+(y -1)2=13.[教材改编题]圆心为(1,1)且过原点的圆的方程是________. 答案:(x -1)2+(y -1)2=24.[易错题]已知圆的方程为x 2+y 2+ax +2y +a 2=0,一定点为A (1,2),要使过定点A 的圆的切线有两条,则a 的取值范围是________.答案:⎝ ⎛⎭⎪⎫-233,2335.若坐标原点在圆(x -m )2+(y +m )2=4的内部,则实数m 的取值范围是________. 答案:(-2,2)6.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为________________. 答案:x 2+y 2-2x =01.直线与圆的位置关系(半径r ,圆心到直线的距离为d )2.圆的切线(1)过圆上一点的圆的切线①过圆x 2+y 2=r 2上一点M (x 0,y 0)的切线方程是x 0x +y 0y =r 2.②过圆(x -a )2+(y -b )2=r 2上一点M (x 0,y 0)的切线方程是(x 0-a )(x -a )+(y 0-b )(y -b )=r 2.(2)过圆外一点的圆的切线过圆外一点M (x 0,y 0)的圆的切线求法:可用点斜式设出方程,利用圆心到直线的距离等于半径求出斜率k ,从而得切线方程;若求出的k 值只有一个,则说明另一条直线的斜率不存在,其方程为x =x 0.(3)切线长①从圆x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0)外一点M (x 0,y 0)引圆的两条切线,切线长为 x 20+y 20+Dx 0+Ey 0+F .②两切点弦长:利用等面积法,切线长a 与半径r 的积的2倍等于点M 与圆心的距离d 与两切点弦长b 的积,即b =2ard.[提醒] 过一点求圆的切线方程时,要先判断点与圆的位置关系,以便确定切线的条数. 3.圆的弦问题直线和圆相交,求被圆截得的弦长通常有两种方法:(1)几何法:因为半弦长L2、弦心距d 、半径r 构成直角三角形,所以由勾股定理得L =2r 2-d 2.(2)代数法:若直线y =kx +b 与圆有两交点A (x 1,y 1),B (x 2,y 2),则有: |AB |=1+k 2|x 1-x 2|= 1+1k2|y 1-y 2|.[谨记常用结论]过直线Ax +By +C =0和圆x 2+y 2+Dx +Ey +F =D 2+E 2-4F >交点的圆系方程为x 2+y 2+Dx +Ey +F +λAx +By +C =0.,[小题练通]1.[教材改编题]若直线x -y +1=0与圆(x -a )2+y 2=2有公共点,则实数a 的取值范围是( )A .[-3,-1]B .[-1,3]C .[-3,1]D .(-∞,-3]∪[1,+∞)答案:C2.[教材改编题]直线y =ax +1与圆x 2+y 2-2x -3=0的位置关系是( ) A .相切 B .相交C .相离D .随a 的变化而变化解析:选B ∵直线y =ax +1恒过定点(0,1),又点(0,1)在圆(x -1)2+y 2=4的内部,故直线与圆相交.3.[教材改编题]已知点M (a ,b )在圆O :x 2+y 2=1外,则直线ax +by =1与圆O 的位置关系是________.解析:由题意知点M 在圆外,则a 2+b 2>1,圆心到直线的距离d =1a 2+b 2<1,故直线与圆相交.答案:相交4.[易错题]过点(2,3)且与圆(x -1)2+y 2=1相切的直线的方程为________________. 解析:当切线的斜率存在时,设圆的切线方程为y =k (x -2)+3,由圆心(1,0)到切线的距离为1,得k =43,所以切线方程为4x -3y +1=0;当切线的斜率不存在时,易知直线x=2是圆的切线,所以所求的直线方程为4x -3y +1=0或x =2.答案:x =2或4x -3y +1=05.以M (1,0)为圆心,且与直线x -y +3=0相切的圆的方程是________. 答案:(x -1)2+y 2=86.直线y =x +1与圆x 2+y 2+2y -3=0交于A ,B 两点,则|AB |=________. 解析:由x 2+y 2+2y -3=0,得x 2+(y +1)2=4.∴圆心C (0,-1),半径r =2.圆心C (0,-1)到直线x -y +1=0的距离d =|1+1|2=2,∴|AB |=2r 2-d 2=24-2=2 2. 答案:2 2圆与圆的位置关系(两圆半径为r 1,r 2,d =|O 1O 2|)[提醒] 涉及两圆相切时,没特别说明,务必要分内切和外切两种情况进行讨论.[谨记常用结论]圆C 1:x 2+y 2+D 1x +E 1y +F 1=0与C 2:x 2+y 2+D 2x +E 2y +F 2=0相交时:将两圆方程直接作差,得到两圆公共弦所在直线方程; 两圆圆心的连线垂直平分公共弦;x 2+y 2+D 1x +E 1y +F 1+λx 2+y 2+D 2x +E 2y +F 2=0表示过两圆交点的圆系方程不包括C 2[小题练通]1.[人教A 版教材P133A 组T9]圆x 2+y 2-4=0与圆x 2+y 2-4x +4y -12=0的公共弦的长为________.答案:2 22.[教材改编题]若圆x 2+y 2=1与圆(x +4)2+(y -a )2=25相切,则实数a =________.答案:±25或03.[教材改编题]圆x2+y2=r2与圆(x-3)2+(y+1)2=r2外切,则半径r=________.解析:由题意,得2r=32+-2,所以r=10 2.答案:10 24.[易错题]若两圆x2+y2=m和x2+y2+6x-8y-11=0有公共点,则实数m的取值范围是________.答案:[1,121]5.若圆C1:x2+y2=1与圆C2:x2+y2-6x-8y+m=0外切,则m=( )A.21 B.19C.9 D.-11解析:选C 圆C1的圆心为C1(0,0),半径r1=1,因为圆C2的方程可化为(x-3)2+(y -4)2=25-m,所以圆C2的圆心为C2(3,4),半径r2=25-m(m<25).从而|C1C2|=32+42=5.由两圆外切得|C1C2|=r1+r2,即1+25-m=5,解得m=9,故选C.6.与圆C1:x2+y2-6x+4y+12=0,C2:x2+y2-14x-2y+14=0都相切的直线有( ) A.1条 B.2条C.3条 D.4条解析:选A 两圆分别化为标准形式为C1:(x-3)2+(y+2)2=1,C2:(x-7)2+(y-1)2=36,则两圆圆心距|C1C2|=7-32+[1--2]2=5,等于两圆半径差,故两圆内切.所以它们只有一条公切线.故选A.。
高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲
高三数学第一轮复习:圆的方程及直线与圆的位置关系知识精讲【本讲主要内容】圆的方程及直线与圆的位置关系圆的标准方程、圆的一般方程、圆的参数方程、直线和圆的位置关系【知识掌握】 【知识点精析】1. 圆的标准方程:()()222x a y b r -+-=,方程表示圆心为(),C a b ,半径为r 的圆。
2. 圆的一般方程:022=++++F Ey Dx y x⑴当0422>-+F E D 时,表示圆心为,22D E ⎛⎫-- ⎪⎝⎭,的圆; ⑵当2240D E F +-=时,表示一个点,22D E ⎛⎫-- ⎪⎝⎭; ⑶当0422<-+F E D 时,它不表示任何图形。
3. 圆的标准方程与一般方程的比较:圆的标准方程的优点在于它明确地指出了圆心和半径,而一般方程突出了方程形式上的特点:①2x 和2y 的系数相同,都不等于0;②没有xy 这样的二次项。
二元二次方程220Ax Bxy Cy Dx Ey F +++++=表示圆的充要条件是:①2x 和2y 的系数相等且不为零,即0A C =≠;②没有xy 项,即0B =;③0422>-+F E D ,其中①、②是二元二次方程表示圆的必要条件,但不是充分条件。
说明:圆的标准方程和一般方程均含有三个参变量,因此必须有三个独立条件才能确定一个圆;求圆的方程的主要方法为待定系数法。
4. 圆的参数方程:在取定的坐标系中,如果曲线上任意一点的坐标,x y 都是某个变数t 的函数,即()()x f t y g t =⎧⎪⎨=⎪⎩()*,并且对于t 的每一个允许值,由方程组()*所确定的点(),M x y 都在这条曲线上,那么方程组()*就叫做这条曲线的参数方程,联系,x y 之间关系的变数叫做参变数,简称参数。
cos sin x a r y b r θθ=+⎧⎨=+⎩()θ为参数表示圆心为()a ,b ,半径为r 的圆。
5. 直线与圆的位置关系: ⑴点与圆的位置关系:若圆()()222x a y b r -+-=,那么点()000,P x y 在⎪⎪⎩⎪⎪⎨⎧>-+-⇔<-+-⇔=-+-⇔220202202022020)()()()()()(r b y a x r b y a x r b y a x 圆外圆内圆上⑵直线与圆的位置关系:直线与圆的位置关系有三种:相离、相切、相交。
高考数学第一轮单元复习课件 第45讲 直线与圆、圆与圆的位置关系
► 探究点2 圆的切线问题
例 2 已知圆 C:x2+y2+2x-4y+3=0. (1)若 C 的切线在 x 轴,y 轴上的截距的绝对值相等,求 此切线方程; (2)从圆 C 外一点 P(x1,y1)向圆引一条切线,切点为 M, O 为原点,且有|PM|=|PO|,求使|PM|最小的 P 点的坐标.
【思路】 (1)依据截距关系确定切线的斜率,设出直 线方程,利用点到直线的距离等于半径求解;
(2)首先确定P点的轨迹方程,从而确定|PM|最短时点 P的坐标满足的关系式.
【解答】 (1)∵切线在 x 轴,y 轴上的截距的绝对值 相等,∴切线的斜率是±1.设切线的方程为 y=x+b 或 y= -x+b,由点到直线的距离公式解得切线的方程为:x+y -3=0,x+y+1=0,x-y+5=0,x-y+1=0.
变式题 求圆心在直线 x+y=0 上,且过两圆 x2+y2 -2x+10y-24=0,x2+y2+2x+2y-8=0 的交点的圆的 方程.
【思路】 求出两圆的交点坐标,利用圆心到两交点的 距离都相等于半径,求出圆心和半径,也可以利用两交 点连结所得弦的垂直平分线与直线x+y=0的交点,就 是圆心;还可以利用圆系,先设出过两圆点的圆的方程, 再求系数.
①
x d 2 y2 r22 ②
将①②两式联立,研究此方程组的解.
如果方程组有解,且只有两解,这时相应的两 圆 相交于两点 。如图 45-2.
图 45-2
如果方程组有唯一解,这时两圆 相切(外切或内切) 。如 图 45-3.
图 45-3
如果方程组无解,这时两圆 外离或内含 。如图 45-4.
知识梳理
1.直线与圆的位置关系的判定方法 (1)代数法(或 Δ 法):看由直线与圆的方程组成的方程组有 无实数解。 将直线 l 的方程与圆 C 的方程联立,消元后得到关于 x(或 y)的一元二次方程. ①当 Δ>0 时,方程有 两 解,此时方程组也有两组实数 解,说明直线 l 与圆 C 相交 ; ②当 Δ=0 时,方程有唯一 解,此时方程组也有唯一一组 解,说明直线 l 与圆 C 相切 ;
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二讲直线与圆的位置关系
班级________姓名________考号________日期________得分________一、填空题:(本大题共9小题,每小题6分,共54分,把正确答案填在题后的横线上.)
1.已知PA是圆O的切线,切点为A,PA=
2.AC是圆O的直径,PC与圆O交于点B,PB=1,则圆O的半径R=________.
解析:如图,依题意,AO⊥PA,AB⊥PC,PA=2,PB=1,∠P=60°,
答案
2.如图所示,圆O的直径AB=6,C为圆周上一点,BC=
3.过C作圆的切线l,过A作l的垂线AD,AD分别与直线l、圆交于点D、E,则∠DAC=________,线段AE的长为________.
解析:如图所示,∵OC⊥l,AD⊥l,∴AD∥OC.
∵BC=3,
∴△OBC 为等边三角形,∠B=60°.
∴∠CAB=30°.∴∠ACO=30°.
∴∠DAC=30°.∴∠EAO=60°.连接OE,
∴∠OAE 为等边三角形.∴AE=3.
答案:30° 3
3.(2010·广东揭阳3月)如图所示,AC 为⊙O 的直径,BD⊥AC 于P,PC=2,PA=8,则CD 的长为________,cos∠ACB=________.(用数字表示)
解析:由射影定理得CD 2
cos∠ACB=sin∠A=sin∠D=
5
CP CD ==
答案:
4.(2010·广东汕头,3月)如图,已知圆O 从圆O 外一点A 引切线AD 和割线
ABC,圆心O 到AC 则切线AD 的长为________.
解析2
答案5.(2010·广东揭阳)如图,已知P 是⊙O 外一点,PD 为⊙O 的切线,D 为切点,割线PEF 经过
圆心O,若则圆O 的半径长为________,∠EFD 的度数为________.
解析:由切割线定理得PD 2
=PE·PF, ∴PE=216312
PD PF ⨯==4,∴EF=8,OD=4. 又∵OD⊥PD,OD= PO,∠P=30°,
∠POD=60°=2∠E FD,
∴∠EFD=30°.
答案:4 30°
6.如图,PT 切⊙O 于点T,PA 交⊙O 于A 、B 两点,且与直径CT 交于点D,CD=2,AD=3,BD=6,则PB=________.
解析:由相交弦定理得DC·DT=DA·DB,
则DT=9.由切割线定理得PT2=PB·PA,
即(PB+BD)2-DT2=PB(PB+AB).
又BD=6,AB=AD+BD=9,
∴(PB+6)2-92=PB(PB+9),得PB=15.
答案:15
7.如图,AD是⊙O的切线,AC是⊙O的弦,过C作AD的垂线,垂足为B,CB与⊙O相交于点E,AE平分∠CAB,且AE=2,则AB=________,AC=________,BC=________.
解析:∵∠CAE=∠EAB,∠EAB=∠ACB,
∴∠ACB=∠CAE=∠EAB.
又∵CB⊥AD,∴∠ACB=∠CAE=∠EAB=30°.
BC=3.
答案
8.如图,EB、EC是⊙O的两条切线,B、C是切点,A、D是⊙O上两点,如果∠E=46°,∠DCF=32°,则∠A的大小为________.
解析:连接OB,OC,AC,由题意得∠OCE=∠OBE=90°,
∠DCF=∠DAC=32°,
又∵∠E=46°,
∴∠BOC=134°,∠BAC= ∠BOC=67°.
∴∠BAD=∠BAC+∠DAC=99°.
答案:99°
9.如图,PA切⊙O于点A,割线PBC经过圆心O,OB=PB=1,OA绕点O逆时针旋转60°到OD,则PD的长为________.
解析:Rt△OAP中,OP=2OA=2,
∴∠APO=30°.在△POD中,易得OD=1,∠POD=120°,
根据余弦定理,得PD2=12+22-2×1×2cos120°=7,
答案
二、解答题:(本大题共3小题,10、11题14分,12题18分,写出证明过程或推演步骤.)
10.已知弦AB与⊙O半径相等,连接OB并延长使BC=OB.
(1)问AC与⊙O的位置关系是怎样的;
(2)试在⊙O上找一点D,使AD=AC.
分析:(1)判定AC与⊙O的位置关系往往从相切入手分析,满足的条件只需证明OA⊥AC即可.
(2)AD=AC中D点的寻找可借助于等腰三角形中∠C=∠D,通过角之间的关系寻找.
解:(1)∵AB与⊙O半径相等,
∴△OAB为正三角形,
∠OAB=60°=∠OBA,
又∵BC=OB=AB,
∴∠C=∠BAC=30°,故∠OAC=90°,
∴AC与⊙O相切.
(2)延长BO交⊙O于D,则必有AD=AC.
∵∠BOA=60°,OA=OD,
∴∠D=30°,
又∵∠C=30°,
∴∠C=∠D,得AD=AC.
评析:利用圆的切线的判定定理判定直线与圆的位置关系,经过半径的外端且与此半径垂直的直线是圆的切线,从而可转化为证明线线垂直.
11.如图,已知直线MN与以AB为直径的半圆相切于点C,∠CAB=28°.
(1)求∠ACM的度数;
(2)求MN上是否存在一点D,使AB·CD=AC·BC?为什么?
解:(1)∵AB是直径,
∴∠ACB=90°.
又∵∠CAB=28°,
∴∠CBA=62°.
∵MN是切线,C为切点.
∴∠ACM=62°.
(2)在MN上存在符合条件的点D. 证明如下:
过点A作AD⊥MN,垂足为D.如图. 在Rt△ABC和Rt△ACD中,
∵MN切半圆于点C,
∴∠ABC=∠ACD.
∴△ABC∽△ACD,
∴AB BC AC CD
,
∴AB·CD=AC·BC.
同理,过B点向MN作垂线,垂足D′同样符合条件.
12.已知△ABC中,AB=AC,D是△ABC外接圆劣弧 AC上的点(不与点A,C重合),延长BD至
E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为求△ABC外接圆的面积.
解:(1)证明:如图,设F为AD延长线上一点,∵A、B、C、D四点共圆.
∴∠CDF=∠ABC,
又AB=AC,
∴∠ABC=∠ACB,
且∠ADB=∠ACB,
∴∠ADB=∠CDF,
对顶角∠EDF=∠ADB,故∠EDF=∠CDF,
即AD的延长线平分∠CDE,
(2)设O为外接圆圆心,连接AO交BC于H,
则AH⊥BC,
连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,
∴∠OCH=60°,
=得r=2,
设半径为r,则2
∴外接圆面积为4π.。