重庆市第一中学2017-2018学年高二下学期期中考试数学(文)试题(解析版)

合集下载

2017-2018学年高二下学期期末考试数学(文)试题 (2)

2017-2018学年高二下学期期末考试数学(文)试题 (2)

第Ⅰ卷(选择题,共60分)一、选择题(本大题有12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(原创)已知集合{0,1}M =,则下列关系式中,正确的是( ) A .{0}M ∈B .{0}M ∉C .0M ∈D .0M ⊆2.(原创)已知函数()y f x =在1x =处的切线与直线30x y +-=垂直,则(1)f '=( ) A .2B . 0C .1D .-13.(原创)设i 为虚数单位,则复数221i i+=+( ) A .iB .i -C .2i +D .2i -4.(原创)以复平面的原点为极点,实轴的正半轴为极轴建立极坐标系,则在极坐标系下的点(2,)3π在复平面内对应的复数为( )A.1+B.1-Ci + Di5.(改编)已知a b c R ∈、、,则下列命题中,正确的是( ) A .若a b >,则ac bc > B .若a b >,c d >,则a c b d ->-C .若0ab >,a b >,则11a b < D .若a b >,c d >,则a bc d> 6.某学校举办科技节活动,有甲、乙、丙、丁四个团队参加“智能机器人”项目比赛.该项目只设置一等奖一个,在评奖揭晓前,小张、小王、小李、小赵四位同学对这四个参赛团队获奖结果预测如下:小张说:“甲或乙团队获得一等奖”; 小王说:“丁团队获得一等奖”; 小李说:“乙、丙两个团队均未获得一等奖”; 小赵说:“甲团队获得一等奖”. 若这四位同学中只有两位预测结果是对的,则获得一等奖的团队是( ) A .甲B .乙C .丙D .丁7.(改编)现在,很多人都喜欢骑“共享单车”,但也有很多市民并不认可.为了调查人们对这种交通方式的认可度,某同学从交通拥堵不严重的A 城市和交通拥堵严重的B 城市分别随机调查了20名市民,得到了一个市民是否认可的样本,具体数据如下22⨯列联表:附:22()()()()()n ad bc k a b c d a c b d -=++++,d c b a n +++=.根据表中的数据,下列说法中,正确的是( )A .没有95% 以上的把握认为“是否认可与城市的拥堵情况有关”B .有99% 以上的把握认为“是否认可与城市的拥堵情况有关”C .可以在犯错误的概率不超过0.01的前提下认为“是否认可与城市的拥堵情况有关”D .可以在犯错误的概率不超过0.025的前提下认为“是否认可与城市的拥堵情况有关” 8.《算法统宗》是中国古代数学名著,由明代数学家程大位所著,该书完善了珠算口诀,确立了算盘用法,完成了由筹算到珠算的彻底转变,对我国民间普及珠算和数学知识起到了很大的作用.如图所示的程序框图的算法思路源于该书中的“李白沽酒”问题,执行该程序框图,若输入的a 值为5,则输出的值为( ) A .19 B .35 C .67D .1989.(原创)函数()f x =a 的取值范围是( ) A .0a ≥ B .0a > C .0a ≤D .0a <10.(原创)函数()sin ([2,2])2xf x x x ππ=-∈-的大致图象为( )A .B .C .D .11.(改编)若正实数a b c 、、满足22ab bc ac a ++=-,则2a b c ++的最小值为( )A .2B .1CD .12.(改编)函数()y f x =是定义在[0,)+∞上的可导函数,且()()x f x f x '+<,则对任意正实数a ,下列式子恒成立的是( ) A .()(0)af a e f <B .()(0)af a e f >C .()(0)a e f a f <D .()(0)a e f a f >第II 卷(非选择题,共90分)二、填空题(本大题有4个小题,每小题5分,共20分)13.(原创)已知命题“p :30,3x x x ∀>>”,则p ⌝为__________. 14.(原创)设i 是虚数单位,若复数z 满足3z i i +=-,则z =______.15.我们称形如以下形式的等式具有“穿墙术”:=,===,….按照以上规律,若=“穿墙术”,则n =_______. 16.(改编)若存在实数(0)a a ≠满足不等式2211ax a a a +≤--+,则实数x 的取值范围是________.三、解答题(本大题有6个小题,共70分.解答应写出文字说明、证明过程或演算步骤) (一)必考题:共60分.17.(原创)(12分)已知集合{|3}A x x =>,2{|560}B x x x =--≤,求: (1)AB ;(2)()R C A B .18.(原创)(12分)已知命题p :“24x -<<”是“(2)()0x x a ++<”的充分不必要条件;命题q :关于x 的函数224y x ax =++在[2,)+∞上是增函数. 若p q ∨是真命题,且p q ∧为假命题,求实数a 的取值范围.19.(改编)(12分)某小区新开了一家“重庆小面”面馆,店主统计了开业后五天中每天的营业额(单位:百元),得到下表中的数据,分析后可知y 与x 之间具有线性相关关系. (1)求营业额y 关于天数x 的线性回归方程; (2)试估计这家面馆第6天的营业额. 附:回归直线方程y bx a =+中,1122211()()()nnii i ii i nniii i xx y y x ynx yb xx xnx ====---⋅==--∑∑∑∑ ,a y bx =-.20.(原创)(12分)已知函数2()ln f x x ax bx =+-. (1)若函数()y f x =在2x =处取得极值1ln 22-,求()y f x =的单调递增区间; (2)当18a =-时,函数()()g x f x bxb =++在区间[1,3]上的最小值为1,求()y g x =在该区间上的最大值.21.(原创)(12分)已知函数2()(2)f x x m x n =+++(,m n 为常数). (1)当1n =时,讨论函数()()x g x e f x =的单调性;(2)当2n =时,不等式()22x f x e x m ≤+++在区间(1,)+∞上恒成立,求m 的取值范围.(二)选考题,共10分.请考生在第22、23两题中任选一题作答,如果多做,则按所做的第一题计分.22.(原创)(10分)在直角坐标系xOy 中,曲线1C的参数方程为1212x t y ⎧=⎪⎪⎨⎪=-+⎪⎩(t 为参数);以直角坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C的极坐标方程为ρθ=.(1)求1C 的普通方程和2C 的直角坐标方程; (2)若1C 与2C 交于点A B 、,求线段AB 的长.23.(原创)(10分)(1)求关于x 的不等式125x x ++-<的解集;(2)若关于x 的不等式221x x m --≥在x R ∈时恒成立,求实数m 的取值范围.2017—2018学年度第二学期期末七校联考高二数学(文科)答案1—5 CCBAC6—10 DDCDA 11—12 DA13.03000,3xx x ∃>≤ 14 15.120 16.[2,1]- 17.解:{|||3}{|33}A x x x x x =>=<->或 ………3分2{|560}{|16}B x x x x x =--≤=-≤≤ ………6分(1){|36}A B x x =<≤ ……… 8分(2){|33}R C A x x =-≤≤………10分 (){|36}R C A B x x ∴=-≤≤………12分18.解:1)若p 为真,则{|24}x x -<<≠⊂{|(2)()0}x x x a ++<4a ∴->即4a <-………3分 2)若q 为真,则24a-≤即8a ≥- ………6分3) p q ∨为真且p q ∧为假,p q ∴一真一假………7分 ①若p 真q 假,则488a a a <-⎧⇒<-⎨<-⎩………9分②若p 假q 真,则448a a a ≥-⎧⇒≥-⎨≥-⎩………11分 综上所述,8a <-或4a ≥-………12分19.(1)3x =,5y =, 1.8b =,0.4a =-,所以回归直线为 1.80.4y x =-.………8分(2)当6x =时,10.4y =,即第6天的营业额预计为10.4(百元). ………12分 20.(1)1()2(0)f x ax b x x'=+->.由已知,得11(2)402810(2)ln 242ln 22f a b a b f a b ⎧'=+-=⎧⎪=-⎪⎪⇒⎨⎨⎪⎪==+-=-⎩⎪⎩………4分1(2)(2) () (0)44x x x f x x x x-+'∴=-=> 由 ()002f x x '>⇒<<∴ 函数的单调递增区间为(0,2) ………6分 (2)当18a =-时,21()ln 8g x x x b =-+,1(2)(2)()44x x x g x x x-+'=-=. (1,2)x ∈时,()0g x '>;(2,3)x ∈时,()0g x '<∴ ()g x 在[1,2]单增,在[2,3]单减 ………8分∴ max 1()(2)ln 22g x g b ==-+ 又1(1)8g b =-+,9(3)ln 38g b =-+,(3)(1)ln310g g -=->;∴ min 1()(1)18g x g b ==-+=∴ 98b =∴ 5(2)l n 28g =+ ∴ 函数()g x 在区间[1,3]上的最大值为5(2)ln 28g =+ ………12分21.(1)当1n =时,2()[(2)1]x g x e x m x =+++.2()[(4)(3)](1)[(3)]x x g x e x m x m e x x m '=++++=+++;令()0g x '=,解得1x =-或(3)x m =-+.∴当1(3)m -<-+,即2m <-时,增区间为(,1),(3,)m -∞---+∞,减区间为(1,3)m ---;当1(3)m -=-+,即2m =-时,增区间为(,)-∞+∞,无减区间;当1(3)m ->-+,即2m >-时,增区间为(,3),(1,)m -∞---+∞,减区间为(3,1)m ---.………6分(2)当2n =时,不等式化为2(2)222x x m x e x m +++≤+++;即21x e x m x -≤-在区间(1,)+∞上恒成立.令2()(1)1x e x h x x x -=>-,则2(2)()()(1)x x e x h x x --'=-. 令()x k x e x =-,则()10x k x e '=->在区间(1,)+∞上恒成立. 所以()(1)10k x k e >=->.∴ 当12x <<时,()0h x '<,()y h x =单减; 当2x >时,()0h x '>,()y h x =单增; ∴2()(2)4h x h e ≥=-.∴ 24m e ≤-.………12分22.(1)1:C 1y =-,2:C 220x y +-=. (6)分(2)圆2C 的圆心为,半径为r =2C 到直线1C 的距离为1d =.所以||AB ==………10分23.(1)原不等式化为:①1125x x x <-⎧⎨---+<⎩ 或 ②12125x x x -≤≤⎧⎨+-+<⎩ 或③2125x x x >⎧⎨++-<⎩.解得21x -<<-或12x -≤≤或23x <<.∴ 原不等式的解集为{|23}x x -<< (6)分(2)令2()|21|f x x x =--,则只须min ()m f x ≤即可.①当12x ≥时,22()21(1)0f x x x x =-+=-≥(1x =时取等); ②当12x <时,22()21(1)22f x x x x =+-=+-≥-(1x =-时取等).∴ 2m ≤-.………10分。

福建省上杭县第一中学2017-2018学年高二下学期第二次月考(6月)数学(文)试题(解析版)

福建省上杭县第一中学2017-2018学年高二下学期第二次月考(6月)数学(文)试题(解析版)

2017-2018学年度上杭一中6月月考高二(文)数学试卷第Ⅰ卷一、选择题(共12题,每题5分,共60分.)1. 已知命题:,,则为()A. ,B. ,C. ,D. ,【答案】B【解析】分析:根据全称命题的否定的原则::换量词,否结论,不变条件,写出否定形式即可.详解:根据全称命题的否定原则得到为,.故答案为:B.点睛:全称命题的否定式特称命题,原则是:换量词,否结论,不变条件,特称命题的否定式全称命题,否定形式如上.2. 若为实数,且,则()A. B. C. D.【答案】B【解析】由已知得,所以,解得,故选B.考点:复数的运算.视频3. 若全集,,则()A. B. C. D.【答案】A【解析】分析:根据集合的补集运算得到结果即可.详解:全集,=,.故答案为:A.点睛:这个题目考查的是集合的补集运算,也考查到了二次不等式的计算,较为简单.4. 下列三句话按“三段论”模式排列顺序正确的是()①是三角函数;②三角函数是周期函数;③是周期函数.A. ①②③B. ②①③C. ②③①D. ③②①【答案】B【解析】试题分析:②是一个一般性的结论,是大前提;①说明是一个三角函数,是一个特殊性的结论,是小前提;③即是结论.故选B.考点:三段论.5. 已知定义在上的奇函数,当时,恒有,且当时,,则()A. B. C. D.【答案】D【解析】分析:求出函数的周期,利用函数的奇偶性以及已知函数的解析式,转化求解即可.详解:当x≥0时,恒有f(x+2)=f(x),可知函数f(x)的周期为2.所以f(2017)=f(1),f(2018)=f(0)又f(x)为奇函数,所以f(﹣2017)=﹣f(2017)而当x∈[0,1]时f(x)=e x﹣1,所以f(﹣2017)+f(2018)=﹣f(2017)+f(2018)=﹣f(1)+f(0)=﹣(e1﹣1)+(e0﹣1)=1﹣e,故选:D.点睛:此题考察了函数的周期性、奇偶性及其运用,对于抽象函数,且要求函数值的题目,一般是研究函数的单调性和奇偶性,通过这些性质将要求的函数值转化为已知表达式的区间上,将转化后的自变量代入解析式即可.6. ①已知,是实数,若,则且,用反证法证明时,可假设且;②设为实数,,求证与中至少有一个不少于,用反证法证明时,可假设,且.则()A. ①的假设正确,②的假设错误B. ①的假设错误,②的假设正确C. ①与②的假设都错误D. ①与②的假设都正确【答案】B【解析】分析:根据反证法的概念判断正误即可.详解:已知,是实数,若,则且,用反证法证明时,可假设或,故选项不合题意;②设为实数,,求证与中至少有一个不少于,用反证法证明时,可假设,且,是正确的.故答案为:B.点睛:这个题目考查了反证法的原理,反证法即将原命题的结论完全推翻,假设时取原命题结论的补集即可,注意在假设时将或变为且,且变为或,不都变为全都.7. 已知条件::,条件:直线与圆相切,则是的()A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:由题意求得直线与圆相切时的k值,据此可得是的充分不必要条件详解:圆的标准方程为:,直线与圆相切,则圆心到直线的距离为1,即:,解得:,据此可得:是的充分不必要条件.本题选择A选项.点睛:处理直线与圆的位置关系时,若两方程已知或圆心到直线的距离易表达,则用几何法;若方程中含有参数,或圆心到直线的距离的表达较繁琐,则用代数法.8. 下列函数中,既是偶函数又是上的增函数的是()A. B. C. D.【答案】B【解析】分析:根据奇偶性的定义和单调性的定义可判断选项,进行排除得到结果.详解:根据题意,依次分析选项:对于A,y=x3为幂函数,为奇函数,不符合题意,对于B,y=2|x|,有f(﹣x)=2|﹣x|=2|x|=f(x),为偶函数,且当x∈(0,+∞),f(x)=2|x|=2x,在(0,+∞)上为增函数,符合题意;对于C,函数的定义域为[0,+∞),定义域关于原点不对称,故得到函数非奇非偶,不合题意;D,是偶函数,但是是周期函数在上不单调.故答案为:B.点睛:这个题目考查了函数奇偶性和单调性的判断,函数奇偶性的判断,先要看定义域是否关于原点对称,接着再按照定义域验证和的关系,函数的单调性,一般小题直接判断函数在所给区间内是否连续,接着再判断当x变大时y的变化趋势,从而得到单调性.9. 执行如图所示的程序框图,为使输出的值大于,则输入正整数的最小值为()A. B. C. D.【答案】D【解析】分析:由题意结合流程图试运行所给的程序框图,结合S值的变化即可求得最终结果.详解:结合所给的流程图执行程序:首先初始化数据:,第一次循环,应满足,执行,,;第二次循环,应满足,执行,,;第三次循环,,此时之后程序即可跳出循环,据此可得输入正整数的最小值为.本题选择D选项.点睛:识别、运行程序框图和完善程序框图的思路:(1)要明确程序框图的顺序结构、条件结构和循环结构.(2)要识别、运行程序框图,理解框图所解决的实际问题.(3)按照题目的要求完成解答并验证.10. 函数的大致图象为()A. B. C. D.【答案】B【解析】分析:根据f(0),f(2)和f(x)在(0,+∞)上是否单调结合选项得出答案.详解:∵f(0)=1,故A错误;当x>0时,f(x)=-e x+2x2,f′(x)=-e x+4x.∴f′(1)=-e+4>0,f′(3)=-e3+12<0,∴f(x)在(0,+∞)上不单调,故C,D错误;故选:B.点睛:本题考查函数的图象的判断与应用,考查转化思想以及数形结合思想的应用.对于已知函数表达式选图像的题目,可以通过表达式的定义域和值域进行排除选项,可以通过表达式的奇偶性排除选项;也可以通过极限来排除选项.11. 我国古代著名的数学著作有《周髀算经》、《九章算术》、《孙子算经》、《五曹算经》、《夏侯阳算经》、《孙丘建算经》、《海岛算经》、《五经算术》、《缀术》、《缉古算机》等部算书,被称为“算经十字”.某校数学兴趣小组甲、乙、丙、丁四名同学对古代著名的数学著作产生深厚的兴趣.一天,他们根据最近对这十部书的阅读本数情况说了这些话,甲:“乙比丁少”;乙:“甲比丙多”;丙:“我比丁多”;丁:“丙比乙多”,有趣的是,他们说的这些话中,只有一个人说的是真实的,而这个人正是他们四个人中读书本数最少的一个(他们四个人对这十部书阅读本数各不相同).甲、乙、丙、丁按各人读书本数由少到多的排列是()A. 乙甲丙丁B. 甲丁乙丙C. 丙甲丁乙D. 甲丙乙丁【答案】D【解析】分析:由四人所说话列出表格,再由四个选项依次分析是否满足只有一人说话为真且此人阅读数最少。

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017—2018学年第二学期高二年级期中考试数学(理)试卷解析版

2017~2018学年第二学期高二年级期中考试数学(理)试卷一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在复平面内,复数ii+310对应的点的坐标为( A )A .)3,1(B .)1,3(C .)3,1(-D .)1,3(-2.已知随机变量ξ服从正态分布),(2σμN ,若15.0)6()2(=>=<ξξP P ,则=<≤)42(ξP ( B )A .0.3B .0.35C .0.5D .0.7 3.设)(x f 在定义域内可导,其图象如图所示,则导函数)('x f 的图象可能是( B )4.用反证法证明命题:“若0)1)(1)(1(>---c b a ,则c b a ,,中至少有一个大于1”时,下列假设中正确的是( B )A .假设c b a ,,都大于1B .假设c b a ,,都不大于1C .假设c b a ,,至多有一个大于1D .假设c b a ,,至多有两个大于15.用数学归纳法证明3)12(12)1()1(2122222222+=+++-++-+++n n n n n 时,从)(*N k k n ∈=到1+=k n 时,等式左边应添加的式子是( B )A .222)1(k k +- B .22)1(k k ++ C .2)1(+k D.]1)1(2)[1(312+++k k6.3名志愿者完成4项工作,每人至少1项,每项由1人完成,则不同的安排方式共有( D )A .12种B .18种C .24种D .36种 7.在62)12(xx -的展开式中,含7x 的项的系数是( D ) A .60 B .160 C .180 D .2408.函数xe xf x2)(=的导函数是( C )A .xe xf 2'2)(= B .x e x f x 2'2)(= C .22')12()(x e x x f x -= D .22')1()(x e x x f x -=9.已知函数223)(a bx ax x x f +++=在1=x 处的极值为10,则数对),(b a 为( C )A .)3,3(-B .)4,11(-C .)11,4(-D .)3,3(-或)11,4(-10.若等差数列}{n a 公差为d ,前n 项和为n S ,则数列}{n S n 为等差数列,公差为2d.类似,若各项均为正数的等比数列}{n b 公比为q ,前n 项积为n T ,则等比数列}{n n T 公比为( C )A.2q B .2q C.q D.n q 11.将3颗骰子各掷一次,记事件A 表示“三个点数都不相同”,事件B 表示“至少出现一个3点”,则概率=)|(B A P ( C )A.21691 B.185 C.9160 D.2112.定义在R 上的偶函数)(x f 的导函数为)('x f ,若对任意实数x ,都有2)()(2'<+x xf x f 恒成立,则使1)1()(22-<-x f x f x 成立的实数x 的取值范围为( B )A .}1|{±≠x xB .),1()1,(+∞--∞C .)1,1(-D .)1,0()0,1( - 二、填空题(本大题共4小题,每小题5分,共20分)13.设),(~p n B ξ,若有4)(,12)(==ξξD E ,则=p 2/3 14.若函数32)1(21)(2'+--=x x f x f ,则=-)1('f -1 15.如图所示,阴影部分的面积是 32/316.已知函数)(x f 的定义域为]5,1[-,部分对应值如下表,)(x f 的导函数)('x f y =的图象如图所示,给出关于)(x f 的下列命题:②函数)(x f 在]1,0[是减函数,在]2,1[是增函数; ③当21<<a 时,函数a x f y -=)(有4个零点;④如果当],1[t x -∈时,)(x f 的最大值是2,那么t 的最小值为0. 其中所有正确命题是 ①③④ (写出正确命题的序号).三、解答题(本大题共6小题,共70分) 17.(本小题满分10分)设复数i m m m m z )23()32(22+++--=,试求实数m 的取值,使得 (1)z 是纯虚数; (2)z 对应的点位于复平面的第二象限. 解:(1)复数是一个纯虚数,实部等于零而虚部不等于0分5302303222 =∴⎪⎩⎪⎨⎧≠++=--m m m m m (2)当复数对应的点在第二象限时,分103102303222<<-∴⎪⎩⎪⎨⎧>++<--m m m m m 18.(本小题满分12分) 在数列}{n a 中,已知)(13,2*11N n a a a a n nn ∈+==+(1)计算432,,a a a 的值,并猜想出}{n a 的通项公式; (2)请用数学归纳法证明你的猜想. 解:(1)72123213112=+⨯=+=a a a ,19213,132********=+==+=a a a a a a于是猜想出分5562-=n a n (2)①当1=n 时,显然成立;②假设当)(*N k k n ∈=时,猜想成立,即562-=k a k 则当1+=k n 时,5)1(6216215623562131-+=+=+-⨯-=+=+k k k k a a a k k k , 即当1+=k n 时猜想也成立. 综合①②可知对于一切分12562,*-=∈n a N n n 19.(本小题满分12分)“莞马”活动中的α机器人一度成为新闻热点,为检测其质量,从一生产流水线上抽取20件该产品,其中合格产品有15件,不合格的产品有5件.(1)现从这20件产品中任意抽取2件,记不合格的产品数为X ,求X 的分布列及数学期望; (2)用频率估计概率,现从流水线中任意抽取三个机器人,记ξ为合格机器人与不合格机器人的件数差的绝对值,求ξ的分布列及数学期望. 解:(1)随机变量X 的可能取值为0,1,23821)0(22021505===C C C X P ,3815)1(22011515===C C C X P , 191)2(22001525===C C C X P , 所以随机变量X 的分布列为:分62192381380 =⨯+⨯+⨯=∴EX(2)合格机器人的件数可能是0,1,2,3,相应的不合格机器人的件数为3,2,1,0.所以ξ的可能取值为1,3,有题意知:1122213331319(1)()()()()444416P C C ξ==+=,3333331317(3)()()()()444416P C C ξ==+= 所以随机变量ξ的分布列为:分128163161)( =⨯+⨯=∴ξE 20.(本小题满分12分)编号为5,4,3,2,1的五位学生随意入座编号为5,4,3,2,1的五个座位,每位学生坐一个座位.设与座位编号相同的学生人数是X .(1)试求恰好有3个学生与座位编号相同的概率)3(=X P ; (2)求随机变量X 的分布列及均值.解:(1)恰好有3个学生与座位编号相同,这时另两个学生与座位编号不同,所以分412112010)3(5525 ====A C X P(2)随机变量X 的一切可能值为0,1,2,3,4,5. 且121)3(,00)4(,120112011)5(5555=========X P A X P A X P ; 83120459)1(,61120202)2(55155525========A C X P A C X P301112044)]5()4()3()2()1([1)0(===+=+=+=+=-==X P X P X P X P X P X P 随机变量X 的分布列为故分1211205041236281300)( =⨯+⨯+⨯+⨯+⨯+⨯=X E 21.(本小题满分12分)已知函数)(ln )(R a x ax x f ∈+=(1)若2=a ,求曲线)(x f y =在1=x 处的切线方程; (2)求)(x f 的单调区间;(3)设22)(2+-=x x x g ,若对任意),0(1+∞∈x ,均存在]1,0[2∈x ,使得)()(21x g x f <,求a 的取值范围. 解:(1)2),0(1)('=>+=a x x a x f )0(12)('>+=∴x xx f , 3)1('=∴f , 3=∴k又切点)2,1(,所以切线方程为)1(32-=-x y ,即:013=--y x 故曲线)(x f y =在1=x 处切线的切线方程为分4013 =--y x(2))0(11)('>+=+=x xax x a x f ①当0≥a 时,0)('>x f ,所以)(x f 的单调递增区间为分6),0( +∞②当0<a 时,由0)('=x f ,得ax 1-= 在区间)1,0(a -上0)('>x f ,在区间),1(+∞-a上,0)('<x f . 所以,函数)(x f 的单调递增区间为)1,0(a -,单调递减区间为分8),1( +∞-a(3)由已知,转化为]1,0[,1)1()(,)()(2max max ∈+-=<x x x g x g x f ,2)(max =∴x g 由(2)知,当0≥a 时,)(x f 在),0(+∞上单调递增,值域为R ,故不符合题意. (或者举出反例:存在23)(33>+=ae e f ,故不符合题意.)当0<a 时,)(x f 在)1,0(a -上单调递增,在),1(+∞-a上单调递减, 故)(x f 的极大值即为最大值,)ln(1)1()(max a af x f ---=-=, 所以2)ln(1<---a ,解得31e a -< 综上:分1213 ea -< 22.(本小题满分12分) 已知函数2()ln(1)f x ax x =++ (1)当14a =-时,求函数()f x 的极值; (2)若函数()f x 在区间[1)+∞,上为减函数,求实数a 的取值范围 (3)当[0)x ∈+∞,时,不等式()f x x ≤恒成立,求实数a 的取值范围. 解:(1))1()1(2)1)(2(1121)('->+-+-=++-=x x x x x x x f 令0)('>x f 得11<<-x ,令0)('<x f 得1>x .)(x f ∴在)1,1(-上是增函数,在),1(+∞上是减函数. 2ln 41)1()(+-==∴f x f 极大值,)(x f 无极小值分4(2)因为函数)(x f 在区间[1)+∞,上为减函数, 所以0112)('≤++=x ax x f 对任意的),1[+∞∈x 恒成立, 即)1(21+-≤x x a 对任意的),1[+∞∈x 恒成立,4121)211(2121)21(21)1(2122-=-+-≥-+-=+-x x x分841-≤∴a(3)因为当[0)x ∈+∞,时,不等式()f x x ≤恒成立, 即0)1ln(2≤-++x x ax 恒成立,令)0()1ln()(2≥-++=x x x ax x g , 转化为0)(max ≤x g 即可.1)]12(2[1112)('+-+=-++=x a ax x x ax x g 当0=a 时,1)('+-=x x x g ,0>x ,0)('<∴x g 即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 当0>a 时,令0)('=x g 得,0=x 或121-=ax 若0121≤-a 即21≥a 时,),0(+∞∈x 有0)('>x g , 则)(x g 在),0[+∞上单调递增,0)0()(=≥g x g ,不满足题设; 若0121>-a 即210<<a 时,)121,0(-∈a x 有0)('<x g ,),121(+∞-∈ax 有0)('>x g , 则)(x g 在)121,0(-a 上单调递减,在),121(+∞-a上单调递增,无最大值,不满足题设; 当0<a 时,0>x ,0)('<∴x g即)(x g 在),0[+∞上单调递减,故0)0()(=≤g x g 成立. 综上:实数a 的取值范围为分12]0,( -∞。

:重庆市第一中学2020-2021学年八年级下学期第一次月考数学试题(解析版)

:重庆市第一中学2020-2021学年八年级下学期第一次月考数学试题(解析版)
【详解】解:不等式组整理得: ,
由解集为x>7,得到2﹣a≤7,
解得ห้องสมุดไป่ตู้≥﹣5,
分式方程去分母得:ay+5﹣y+3=﹣4,
解得:y= ,
∵y为正整数解,且y≠3,
∴a=0,﹣1,﹣2,﹣5,﹣11,
又∵a≥﹣5,
∴a=0,﹣1,﹣2,﹣5,
∴满足条件的整数a的和为﹣8.
故选:C.
【点睛】此题考查了分式方程的解,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键.
A 48B.49C.50D.51
【答案】A
【解析】
【分析】由于图②平行四边形有8个=3+2+1+2+1﹣1,图③平行四边形有15个=4+3+2+1+3+2+1﹣1,则第⑥个图有7+6+5+4+3+2+1+6+5+4+3+2+1﹣1个平行四边形,由此即可求出答案.
【详解】解:∵图②平行四边形有8个=3+2+1+2+1﹣1,
①a=22.5;
②刚出发时,小新的速度为80米/分;
③图象中线段DE表示小新和小达两人停止了运动;
④公园入口到湖心亭的距离为2250米,其中正确说法的个数是()
A.1B.2C.3D.4
【答案】C
【解析】
【分析】根据函数图像,可知公园入口和银杏林相距1800米,小新到达银杏林时,他们两人一共走了:1800+1350=3150米,小达的速度为:1800×2÷60=60(米/分),当小新到达银杏林时,小达距离银杏林1350米,进而求出a的值,由DE∥BG,可知小新变慢后的速度和小达的速度相等,即60米/分,进而即可判断④.

重庆市重庆一中2017-2018学年高一下学期期末考试试题 数学 Word版含答案

重庆市重庆一中2017-2018学年高一下学期期末考试试题 数学 Word版含答案

重庆一中2017-2018学年高一下期期末考试数 学 试 题 卷数学试题共4页。

满分150分。

考试时间120分钟。

注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

第I 卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{|(2)(3)0}A x x x =+-<,{1,0,1,2,3}B =-错误!未找到引用源。

,则错误!未找到引用源。

(A ){0,1} (B ){0,1,2}(C ){1,0,1}- (D ){1,0,1,2}-(2)设a =(2,)k k +,b =(3,1),若a ⊥b ,则实数k 的值等于(A )-32 (B )-53 (C )53 (D )32(3)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18等于(A )20 (B )60 (C )90 (D )100(4)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为(A )内切 (B )相交 (C )外切 (D )相离(5)已知变量x ,y 满足约束条件⎪⎩⎪⎨⎧≤-≥+≤112y x y x y ,则z =3x +y 的最大值为(A )12 (B )11 (C )3 (D )-1(6)已知等比数列{a n }中,a 1=1,q =2,则T n =1a 1a 2+1a 2a 3+…+1a n a n +1的结果可化为(A )1-14n (B )1-12n (C )23(1-14n )(D )23(1-12n )(7)“m =1”是“直线20mx y +-=与直线10x my m ++-=平行”的(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D )既不充分也不必要条件(8)阅读右面的程序框图,运行相应的程序,输出S 的值为 (A )15(B )105 (C )245(D )945(9)现有两组卡片,第一组卡片上分别写有数字“2,3,4”,第二组卡片上分别写有数字“3,4,5”,现从每组卡片中各随机 抽出一张,用抽取的第一组卡片上的数字减去抽取的第二组卡片上 的数字,差为负数的概率为(A )13 (B )49 (C )59 (D )23(10)在平行四边形ABCD 中,AD =2,∠BAD =60°,E 为CD 的中点,若AD →BE →=1,则AB 的长为(A ) 6 (B )4 (C )5 (D )6(11)(原创)已知函数21()221,1x f x x mx m x ≤=-+-+>⎪⎩,且对于任意实数(0,1)a ∈关于x 的方程()0f x a -=都有四个不相等的实根1234x x x x ,,,,则1234+x x x x ++的取值范围是 (A )(2,4](B )(,0][4,)-∞+∞ (C )[4+∞,)(D )(2+)∞,(12)(原创)已知集合{(,)|240}M x y x y =+-=,22{(,)|220}N x y x y mx ny =+++=,若MN φ≠,则22m n +的最小值(A )45 (B )34 (C )(6-25) (D )54第II 卷二、填空题:本大题共4小题,每小题5分(13)某学校高一、高二、高三年级的学生人数之比为334::,现用分层抽样的方法从该校高中三个年级的学生中抽取容量为50的样本,则应从高一年级抽取 名学生.(14)(原创)在ABC ∆中,角,,A B C 所对边长分别为,,a b c ,若3,,c o s64a B A π===, 则b =___________.(15)已知点P ,Q 为圆C :x 2+y 2=25上的任意两点,且|PQ |<6,若PQ 中点组成的区域为M ,在圆C 内任取一点,则该点落在区域M 上的概率为__________ .(16)(原创)点C 是线段..AB 上任意一点,O 是直线AB 外一点,OC xOA yOB =+, 不等式22(1)(2)(2)(1)x y y x k x y +++>++对满足条件的x ,y 恒成立, 则实数k 的取值范围_______.三、解答题:解答应写出文字说明,证明过程或演算步骤.(17)(本小题满分10分)已知ABC ∆的面积是3,角,,A B C 所对边长分别为,,a b c ,4cos 5A =. (Ⅰ)求AB AC ; (Ⅱ)若2b =,求a 的值.(18)(本小题满分12分)已知圆C :4)4()3(22=-+-y x ,直线l 过定点(1,0)A . (Ⅰ)若l 与圆C 相切,求直线l 的方程;(Ⅱ)若l 与圆C 相交于P 、Q 两点,且PQ =l 的方程.(19)(本小题满分12分)某校从高一年级学生中随机抽取40名学生,将他们的期中考试数学成绩(满分100分,成绩均为不低于40分的整数)分成六段:[40,50),[50,60),…,[90,100]后得到如图所示的频率分布直方图.(Ⅰ)若该校高一年级共有学生640名,试估计 该校高一年级期中考试数学成绩不低于60分的人数;(Ⅱ)若从数学成绩在[40,50)与[90,100]两个分数 段内的学生中随机选取2名学生,求这2名学生的数学 成绩之差的绝对值不大于10的概率.(20)(本小题满分12分)已知数列{a n }满足111,n n a a a n -=-=(其中2n n N ≥∈且).(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设24nn na b n =⨯,其前n 项和是T n ,求证:T n<79 .(21)(原创)(本小题满分12分) 已知动点(,)P x y 满足方程1(0)xy x =>.(Ⅰ)求动点P到直线:20l x y +=距离的最小值;(Ⅱ)设定点(,)A a a ,若点P A ,之间的最短距离为22,求满足条件的实数a 的取值.(22)(本小题满分12分)已知函数2()ax bf x x +=为奇函数,且(1)1f =.(Ⅰ)求实数a 与b 的值;(Ⅱ)若函数1()()f x g x x-=,设{}n a 为正项数列,且当2n ≥时,2112211[()()]n n n n n n n a a g a g a a q a a ---+-⋅+⋅=⋅,(其中2016q ≥),{}n a 的前n 项和为n S , 11ni n i iSb S +==∑,若2017n b n ≥恒成立,求q 的最小值.人:付 彦审题人:邹发明2016年重庆一中高2018级高一下期期末考试数 学 答 案 2016.7一、 选择题:1—5 DACBB 6—10 CCBDD 11—12 CA二、 填空题:15,2,925,1()4-∞,三、 解答题:(17)解:由4cos 5A =,得3sin 5A =.又1sin 302bc A =,1sin 32bc A =∴10bc = (Ⅰ)cos 8AB AC bc A ==(Ⅱ)2,5b c =∴=,2222cos a b c bc A =+-=13∴a =.(18) 解:(Ⅰ)当斜率不存在时,方程x=1满足条件; 当L 1斜率存在时,设其方程是y=k(x-1),则214k 32=+--k k ,解得43=k , 所以所求方程是x =1和3x -4y -3=0;(Ⅱ)由题意,直线斜率存在且不为0,设其方程是y =k (x -1),则圆心到直线的距离d=14k 22+-k ,224d d -=∴=k =1或k =7, 所以所求直线方程是10x y --=或770x y --=.(19)解:(Ⅰ)根据频率分布直方图,成绩不低于60分的频率为1-10×(0.005+0.01)=0.85.由于该校高一年级共有学生640名,利用样本估计总体的思想,可估计该校高一年级期中考试数学成绩不低于60分的人数约为640×0.85=544.(Ⅱ)成绩在[40,50)分数段内的人数为40×0.05=2,成绩在[90,100]分数段内的人数为40×0.1=4,则记在[40,50)分数段的两名同学为A 1,A 2,在[90,100]分数段内的同学为B 1,B 2,B 3,B 4.若从这6名学生中随机抽取2人,则总的取法共有15种.如果2名学生的数学成绩都在[40,50)分数段内或都在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定不大于10;如果一个成绩在[40,50)分数段内,另一个成绩在[90,100]分数段内,那么这2名学生的数学成绩之差的绝对值一定大于10.则所取2名学生的数学成绩之差的绝对值不大于10的取法有(A 1,A 2),(B 1,B 2),(B 1,B 3),(B 1,B 4),(B 2,B 3),(B 2,B 4),(B 3,B 4)共7种取法,所以所求概率为P =715.(20)解:(Ⅰ)解:121321()()()n n n a a a a a a a a -=+-+-++-(1)1232n n n +=++++=(Ⅱ)证明:(1)144n nn n n n b n ++==⨯, 其前n 项和T n =24+342+…+n +14n ,14T n =242+343+…+n 4n +n +14n +1, ∴T n -14T n =24+142+143+…+14n -n +14n +1=14+14(1-14n )1-14-n +14n +1=712-3n +73×4n +1, ∴T n =79-3n +79×4n <79.(21)解:(Ⅰ)2|x d +==≥当且仅当x =(Ⅱ)设点)1,(xx P (0>x ),则222222)1(2)1()1()(a x x a x x a x a x d ++-+=-+-=设t x x =+1(2≥t ),则21222-=+t xx 2)(22-+-=a a t d ,设2)()(22-+-=a a t t f (2≥t )对称轴为a t = 分两种情况:(1)2≤a 时,)(t f 在区间[)+∞,2上是单调增函数,故2=t 时,)(t f 取最小值 ∴222)2(22min =-+-=a a d ,∴0322=--a a ,∴1-=a (3=a 舍) (2)a >2时,∵)(t f 在区间[]a ,2上是单调减,在区间[)+∞,a 上是单调增, ∴a t =时,)(t f 取最小值∴222)(22min =-+-=a a a d ,∴10=a (10-=a 舍) 综上所述,1-=a 或10(22)解:(Ⅰ)因为()f x 为奇函数,22ax b ax bx x -++=-, 得0b =,又(1)1f =,得1a =(Ⅱ)由1()f x x =,得21()x g x x -=,且2112211[()()]n n n n n n n a a g a g a a q a a ---+-⋅+⋅=⋅,∴1(2)nn a q n a -=≥1(1)1n n a q S q -∴=-,∴1111n n n n S q S q ++-=- 。

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期初二数学期末试题和答案

2017-2018学年第一学期期末测试卷初二数学一、选择题(每小题2分,本题共16分)1.剪纸是古老的汉族民间艺术,剪纸的工具材料简便普及,技法易于掌握,有着其他艺术门类 不可替代的特性,因而,这一艺术形式从古到今,几乎遍及我国的城镇乡村,深得人民群 众的喜爱.请你认真观察下列四幅剪纸图案, 其中不是..轴对称图形的是A .B .C .D .2. 若代数式4xx -有意义,则实数x 的取值范围是 A .0x = B .4x = C .0x ≠ D .4x ≠3. 实数9的平方根是A .3B .±3C.3± D .814. 在下列事件中,是必然事件的是A .买一张电影票,座位号一定是偶数B .随时打开电视机,正在播新闻C .通常情况下,抛出的篮球会下落D .阴天就一定会下雨5. 下列变形中,正确的是A. (23)2=2×3=6B.2)52(-=-52C.169+=169+ D. )4()9(-⨯-=49⨯6. 如果把yx y322-中的x 和y 都扩大5倍,那么分式的值A .扩大5倍B .不变C .缩小5倍D .扩大4倍7. 如图,将ABC △放在正方形网格图中(图中每个小正方形的边长均为1),点A ,B ,C 恰好在网格图中的格点上,那么ABC △中BC 边上的高是A. B. C. D.8. 如图所示,将矩形纸片先沿虚线按箭头方向向右对折,对折后的纸片沿虚线向下对折,然后剪下一个小三角形,再将纸片打开,则打开后的展开图是A. B. C. D.二、填空题(每小题2分,本题共16分)9. 写出一个比3大且比4小的无理数:______________.10. 如图,AE =DF ,∠A =∠D ,欲证ΔACE ≌ΔDBF ,需要添加条件 ____________,证明全等的理由是________________________;AE P BCD11. 一个不透明的盒子中装有6张生肖邮票,其中有3张“猴票”,2张“鸡票”和1张“狗票”,这些邮票除了画面内容外其他都相同,从中随机摸出一张邮票,恰好是“鸡票”的可能性为 .12. 已知等腰三角形的两条边长分别为2和5,则它的周长为______________. 13.mn =______________. 14. 小明编写了一个如下程序:输入x →2x →立方根→倒数→算术平方根→21, 则x 为 .15. 如图,等边△ABC 的边长为6,AD 是BC 边上的中线,点E 是AC 边上的中点. 如果点P 是AD 上的动点,那么EP+CP 的最小值 为______________.16. 如图,OP =1,过P 作OP PP ⊥1且11=PP ,根据勾股定理,得21=OP ;再过1P 作121OP P P ⊥且21P P =1,得32=OP ;又过2P 作232OP P P ⊥且132=P P ,得 =3OP 2;…依此继续,得=2018OP , =n OP (n 为自然数,且n >0)三、解答题(本大题共9小题,17—25小题,每小题5分,共45分) 17.计算:238)3(1230-+----π18. 计算:1)P 4P 3P 2PP 1O19. 如图,点A 、F 、C 、D 在同一条直线上. AB ∥DE ,∠B =∠E ,AF=DC. 求证:BC =EF .20. 解分式方程:3x 3x 211x x +=-+21. 李老师在黑板上写了一道题目,计算:23311x x x---- .小宇做得最快,立刻拿给李老 师看,李老师看完摇了摇头,让小宇回去认真检查. 请你仔细阅读小宇的计算过程,帮 助小宇改正错误.23311x x x ----=()()33111x x x x --+-- (A ) =()()()()()3131111x x x x x x +--+-+- (B ) = 33(1)x x --+ (C ) = 26x -- (D )(1) 上述计算过程中, 哪一步开始..出现错误? ;(用字母表示) (2) 从(B )到(C )是否正确? ;若不正确,错误的原因是 ; (3) 请你写出此题完整正确的解答过程.D22.如图:在△ABC 中,作AB 边的垂直平分线,交AB 于点E ,交BC 于点F ,连结AF (1(2)你的作图依据是 .(3)若AC=3,BC=5,则△ACF 的周长是23. 先化简,再求值:121112++÷⎪⎭⎫ ⎝⎛+-a a aa ,其中13-=a .24. 如图,在△ABC 中,∠C=90°,AD 平分∠BAC 交BC 于 DE ⊥AB 于E, 当时,求DE 的长。

精品解析:重庆市第一中学2020-2021学年高二10月月考化学试题(解析版)

重庆一中高2022级高二上期10月月考化学试题卷注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

本卷出题人根哥告诉你,可能用到的相对原子质量:H-1 C-12 O-16 Fe-56 Cu-64 Zn-65 Ag-108一、选择题:本题共16小题,每小题3分,共48分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1. 观察如图装置,下列说法正确的是A. a、b接电流表,该装置为原电池B. a、b接直流电源,该装置为电解池C. a、b接直流电源,铁可能不易被腐蚀D. a、b接电流表或接直流电源,铁都可能是负极【答案】C【解析】【详解】A、如果液体c为乙醇等非电解质,则不符合构成原电池的条件,故A错误;B、如果液体c为乙醇等非电解质,该电路为断路,不能构成电解池,故B错误;C、连接直流电源,如果让铁作阴极,按照电解原理,铁不被腐蚀,故C正确;D、如果接电流表,构成原电池,铁作负极,如果接直流电源,构成电解池,两极的名称为阴阳极,故D错误。

2. 将两根铁钉分别缠绕铜丝和铝条,放入滴有混合溶液的容器中,如图所示,下列叙述错误的是()A. a中铁钉附近产生蓝色沉淀B. b中铁钉附近呈现红色C. a中铜丝附近有气泡产生D. b中发生吸氧腐蚀【答案】B【解析】【详解】A.a中Fe电极发生反应Fe-2e-=Fe2+,亚铁离子和铁氰酸钾反应生成蓝色沉淀,所以a中铁钉附近出现蓝色沉淀,A正确;B.b中Fe作正极被保护,Fe不参加反应,没有铁离子生成,所以铁钉附近不呈现红色,B错误;C.a中Fe为负极,Cu为正极,在强酸性条件下的腐蚀为析氢腐蚀,在Cu电极上H+得到电子变为H2逸出,因此铜丝附近有气泡产生,C正确;D.b中Fe为正极,Al作负极,电解质溶液显中性,发生吸氧腐蚀,D正确;故合理选项是B。

人教版高二第一章三角函数单元测试精选(含答案)1

人教版高二第一章三角函数单元测试精选(含答案)学校:___________姓名:___________班级:___________考号:___________一、单选题1.tan 600o =( )A .B .-C D .【来源】甘肃省平凉市静宁县第一中学2017-2018学年高一下学期期末考试数学(文)试题 【答案】C2.函数tan sin tan sin y x x x x =+--在区间(2π,32π)内的图象是( )A .B .C .D .【来源】2008年高考江西卷理科数学试题 【答案】D3.要得到函数y =cos 23x π⎛⎫+ ⎪⎝⎭的图象,只需将函数y =cos2x 的图象( )A .向左平移π个单位长度 B .向左平移π个单位长度C .向右平移6π个单位长度 D .向右平移3π个单位长度 【来源】浙江省金华十校2017-2018学年高一上学期期末调研考试数学试题 【答案】B4.已知0>ω,函数()sin()4f x x πω=+在(,)2ππ上单调递减,则ω的取值范围是( ) A .15[,]24B .13[,]24C .1(0,]2D .(0,2]【来源】2012年全国普通高等学校招生统一考试理科数学(课标卷带解析) 【答案】A5.已知cos cos θθ=,tan tan θθ=-|,则2θ的终边在( ) A .第二、四象限B .第一、三象限C .第一、三象限或x 轴上D .第二、四象限或x 轴上【来源】辽宁省营口市2017-2018学年高一4月月考数学试题 【答案】D6.记0cos(80)k -=,那么0tan100=( )A .B .C D .【来源】2010年普通高等学校招生全国统一考试(全国Ⅰ)理科数学全解全析 【答案】B7.在ABC ∆中,tan tan tan A B A B ++=,则C 等于( )A .6π B .4π C .3π D .23π 【来源】广西宾阳县宾阳中学2017-2018学年高一5月月考数学试题 【答案】C8.若扇形的面积为38π、半径为1,则扇形的圆心角为( ) A .32π B .34π C .38π D .316π 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B9.如图,在平面直角坐标系xOy 中,质点M N ,间隔3分钟先后从点P ,绕原点按逆时针方向作角速度为6π弧度/分钟的匀速圆周运动,则M 与N 的纵坐标之差第4次达到最大值时,N 运动的时间为( )A .37.5分钟B .40.5分钟C .49.5分钟D .52.5分钟【来源】福建省福州格致中学2017-2018学年高一下学期第四学段质量检测数学试题 【答案】A10.函数sin(2)3y x π=+图象的对称轴方程可能是( )A .6x π=-B .12x π=-C .6x π=D .12x π=【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷) 【答案】D11.函数y =的定义域是( )A .()2,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦B .()22,233k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .()2,266k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦D .()222,233k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦【来源】2019年一轮复习讲练测 4.3三角函数的图象与性质 【答案】D12.设函数2()sin sin f x x b x c =++,则()f x 的最小正周期 A .与b 有关,且与c 有关 B .与b 有关,但与c 无关 C .与b 无关,且与c 无关 D .与b 无关,但与c 有关【来源】2019高考备考一轮复习精品资料 专题十八 三角函数的图象和性质 教学案 【答案】B象关于y 轴对称,则m 的最小值是( ) A .6π B .3π C .23π D .56π 【来源】2011届江西省湖口二中高三第一次统考数学试卷 【答案】C14.若tan 3α=,4tan 3β=,则tan()αβ-= A .3B .3-C .13D .13-【来源】北京市清华附中2017-2018学年高三数学十月月考试题(文) 【答案】C 15.若sin cos 1sin cos 2αααα+=-,则tan 2α等于( )A .34-B .34C .43-D .43【来源】2012年全国普通高等学校招生统一考试文科数学(江西卷带解析) 【答案】B16.函数()sin()f x x ωϕ=+(其中2πϕ<)的图象如图所示,为了得到()sin g x xω=的图象,则只要将()f x 的图象A .向右平移个单位长度B .向右平移个单位长度C .向左平移个单位长度D .向左平移个单位长度【来源】2015届福建省八县(市)一中高三上学期半期联考文科数学试卷(带解析) 【答案】A17.曲线sin (0,0)y A x a A ωω=+>>在区间2π0,ω⎡⎤⎢⎥⎣⎦上截直线2y =及1y =-所得的弦长相等且不为0,则下列对A ,a 的描述正确的是( ). A .12a =,32A >B .12a =,32A ≤ C .1a =,1A ≥ D .1a =,1A ≤【来源】广东省华南师范大学附属中学2016-2017学年高一上学期期末考试数学试题 【答案】A价y (单位:元/平方米)与第x 季度之间近似满足关系式:()()500sin 95000y x ωϕω=++>.已知第一、二季度的平均单价如下表所示:则此楼盘在第三季度的平均单价大约是( ) A .10000B .9500C .9000D .8500【来源】第一章全章训练 【答案】C19.函数5sin(2)2y x π=+的图象的一条对称轴方程是( ) A .2x π=-B .4πx =-C .8x π=D .54x π=【来源】2012-2013学年黑龙江省集贤县第一中学高一上学期期末考试数学试题(带解析) 【答案】A 20.已知-2π<θ<2π,且sin θ+cos θ=a ,其中a ∈(0,1),则关于tan θ的值,在以下四个答案中,可能正确的是( ) A .-3B .3或13C .-13D .-3或-13【来源】浙江省温州中学2016-2017学年高一下学期期中考试数学试题 【答案】C 21.设5sin 7a π=,2cos 7b π=,2tan 7c π=,则( ) A .a b c <<B .a c b <<C .b c a <<D .b a c <<【来源】2008年高考天津卷文科数学试题 【答案】D 22.1cos()2πα+=-,322παπ<<,()sin 2πα-的值为( )A .B .12C .±D .2【来源】江西省上饶市“山江湖”协作体2018-2019学年高一下学期统招班第一次月考【答案】D23.若0<α<β<π4,sinα+cosα=a,sinβ+cosβ=b,则( ).A .a <bB .a >bC .ab <1D .ab >2【来源】河北省石家庄市辛集中学2015-2016学年高一下学期综合练习(三)数学试题 【答案】A24.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,若3a =,7c =,60C =︒,则b = ( ) A .5B .8C .5或-8D .-5或8【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】B25.已知πcos sin 6αα⎛⎫-+= ⎪⎝⎭7sin()6πα+的值是( )A .5-B .5C .45-D .45【来源】广东省广州市执信中学2018-2019学年度上学期高三测试数学(必修模块)试题 【答案】C26.将函数sin 25y x π⎛⎫=+⎪⎝⎭的图象向右平移10π个单位长度,所得图象对应的函数 A .在区间,44ππ⎡⎤-⎢⎥⎣⎦ 上单调递增 B .在区间,04π⎡⎤-⎢⎥⎣⎦ 上单调递减 C .在区间,42ππ⎡⎤⎢⎥⎣⎦上单调递增 D .在区间,2ππ⎡⎤⎢⎥⎣⎦上单调递减 【来源】黑龙江省牡丹江市第一高级中学2017-2018学年高二下学期期末考试数学(文)试题 【答案】A27.若α是第三象限的角, 则2απ-是( )A .第一或第二象限的角B .第一或第三象限的角C .第二或第三象限的角D .第二或第四象限的角【来源】浙江省杭州第二中学三角函数 单元测试题28.已知函数()()0,0,2f x Asin x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,则函数()f x 的解析式为 ( )A .()sin()84f x x ππ=+B .()sin()84f x x ππ=-C .3()sin()84f x x ππ=+D .3()sin()84f x x ππ=-【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】A29.曲线cos 2y x =与直线y =在y轴右侧的交点按横坐标从小到大依次记为1P ,2P ,3P ,4P ,5P ,…,则15PP 等于 ( )A .πB .2πC .3πD .4π【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】B二、填空题30.若sin(+θ)=25,则cos2θ= . 【来源】2017届福建福州外国语学校高三文上学期期中数学试卷(带解析) 【答案】31.已知直线l :mx +y +3m −√3=0与圆x 2+y 2=12交于A ,B 两点,过A ,B 分别作l 的垂线与y 轴交于C ,D 两点,若|AB|=2√3,则|CD|=__________. 【来源】2016年全国普通高等学校招生统一考试理科数学(全国3卷参考版) 【答案】432.已知点P(tan α,cos α)在第三象限,则角α的终边在第________象限.【答案】二33.设定义在R 上的函数()()0,122f x sin x ππωϕωϕ⎛⎫=+>-<<⎪⎝⎭,给出以下四个论断:①()f x 的周期为π; ②()f x 在区间,06π⎛⎫-⎪⎝⎭上是增函数;③()f x 的图象关于点,03π⎛⎫⎪⎝⎭对称;④()f x 的图象关于直线12x π=对称.以其中两个论断作为条件,另两个论断作为结论,写出你认为正确的一个命题(写成“p q ⇒”的形式)______________.(其中用到的论断都用序号表示) 【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】①④⇒②③ 或①③⇒②④ 34.关于下列命题:①若,αβ是第一象限角,且αβ>,则sin sin αβ>; ②函数sin()2y x ππ=-是偶函数;③函数sin(2)3y x π=-的一个对称中心是(,0)6π;④函数5sin(2)3y x π=-+在,]1212π5π[-上是增函数,所有正确命题的序号是_____.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题 【答案】②③ 35.在ABC ∆中,若B a bsin 2=,则A =______.【来源】正余弦定理 滚动习题(三) [ 范围 1 ] 【答案】30o 或150o36.若sin()2cos(2),αππα-=-则sin()5cos(2)3cos()sin()παπαπαα-+----的值为____________.【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】35-37.若函数f (x )=sin 2x+cos 2x ,且函数y=f 2x ϕ⎛⎫+ ⎪⎝⎭(0<φ<π)是一个偶函数,则φ的值等于_____.【答案】π4三、解答题38.已知函数()3sin(2)3f x x π=-,(1)请用“五点作图法”作出函数()y f x =的图象;(2)()y f x =的图象经过怎样的图象变换,可以得到sin y x =的图象.(请写出具体的变换过程)【来源】浙江省杭州第二中学三角函数 单元测试题 【答案】(1)见解析;(2)变换过程见解析.39.在△ABC 中,222a c b +=(1)求B 的大小;(2)求cos A +cos C 的最大值.【来源】浙江省嘉兴市第一中学2017-2018学年高二10月月考数学试题 【答案】(1)π4(2)140.已知A 、B 、C 是△ABC 的三个内角,向量m =(-1,n =(cos A ,sin A ),且m ·n =1. (1)求角A ; (2)若221sin 2cos sin BB B+-=-3,求tan C . 【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3【答案】(1)3π;(2) . 41.已知函数()()()sin 0,0,02f x A x A ωϕωϕπ=+>><<的部分图象如图所示,且()506f f π⎛⎫=⎪⎝⎭.(1)求函数()f x 的最小正周期;(2)求()f x 的解析式,并写出它的单调递增区间. 【来源】第一章全章训练【答案】(1)π;(2)()22sin 23f x x π⎛⎫=+⎪⎝⎭;单调递增区间为7,,1212k k k ππππ⎡⎤--∈⎢⎥⎣⎦Z .42.已知函数()f x =4tan xsin (2x π-)cos (3x π-)-.(Ⅰ)求f (x )的定义域与最小正周期; (Ⅱ)讨论f (x )在区间[,44ππ-]上的单调性.【来源】2017秋人教A 版高中数学必修四:学业质量标准检测3 【答案】(Ⅰ){|,}2x x k k Z ππ≠+∈,π;(Ⅱ)在区间,124ππ⎡⎤-⎢⎥⎣⎦上单调递增, 在区间412ππ⎡⎤--⎢⎥⎣⎦,上单调递减. 43.已知函数()cos(2)2sin()sin()344f x x x x πππ=-+-+ (Ⅰ)求函数()f x 的最小正周期和图象的对称轴方程 (Ⅱ)求函数()f x 在区间[,]122ππ-上的值域 【来源】2008年普通高等学校招生全国统一考试数学文科(安徽卷)【答案】(Ⅰ)见解析(Ⅱ)函数()f x 在区间[,]122ππ-上的值域为[ 44.设函数()sin(2)()3f x A x x R π=+∈的图像过点7(,2)12P π-.(2)已知10()21213f απ+=,02πα-<<,求1cos()sin()2sin cos 221sin cos ππαααααα-++-+++的值; (3)若函数()y g x =的图像与()y f x =的图像关于y 轴对称,求函数()y g x =的单调区间.【来源】浙江省杭州第二中学三角函数 单元测试题【答案】(1)()223f x sin x π⎛⎫=+ ⎪⎝⎭;(2)713-;(3)单减区间为15(,)()1212k k k z ππππ-+∈, 单增区间为511(,)()1212k k k z ππππ++∈. 45.(1)已知角α的终边经过点P (4,-3),求2sin α+cos α的值;(2)已知角α的终边经过点P (4a ,-3a )(a ≠0),求2sin α+cos α的值;(3)已知角α终边上一点P 与x 轴的距离与y 轴的距离之比为3∶4,求2sin α+cos α的值.【来源】第3章章末检测-2018-2019版数学创新设计课堂讲义同步系列(湘教版必修2)【答案】(1)-25(2)见解析(3)见解析 46.是否存在实数a ,使得函数y =sin 2x +acosx +5a 8−32在闭区间[0,π2]上的最大值是1?若存在,求出对应的a 值;若不存在,请说明理由.【来源】重庆市万州二中0910年高一下学期期末考试【答案】f max (t)=f(a 2)=a 42+58a −12=1, 47.A,B 是单位圆O 上的点,点A 是单位圆与x 轴正半轴的交点,点B 在第二象限,记∠AOB =θ,且sinθ=45.(1)求点B 的坐标;(2)求sin (π+θ)+2sin(π2−θ)2tan (π−θ)的值.【来源】2015-2016学年广西钦州港开发区中学高二上第一次月考理科数学试卷(带解析)【答案】(1)(−35,45);(2)−53. 48.已知函数()sin 214f x x π⎛⎫=++ ⎪⎝⎭(1)用“五点法”作出()f x 在7,88x ππ⎡⎤∈-⎢⎥⎣⎦上的简图; (2)写出()f x 的对称中心以及单调递增区间;(3)求()f x 的最大值以及取得最大值时x 的集合.【来源】2018-2019学年高中数学(人教A 版,必修4)第一章《三角函数》测试题【答案】(1)见解析;(2)k ππ,028⎛⎫+ ⎪⎝⎭,k Z ∈,最大值为2,此时,,8x k k ππ=+∈Z . 49.在ABC ∆中,内角A ,B ,C 所对的边分别为a ,b ,c ,已知2a =,5c =,3cos 5B =. (1)求b 的值;(2)求sin C 的值.【来源】正余弦定理 滚动习题(三) [ 范围 1 ]【答案】(1; (2.50.已知函数f (x )=4sin π-3x ⎛⎫ ⎪⎝⎭cos . (1)求函数f (x )的最小正周期和单调递增区间;(2)若函数g (x )=f (x )-m 区间在π0,2⎡⎤⎢⎥⎣⎦上有两个不同的零点x 1,x 2,求实数m 的取值范围,并计算tan(x 1+x 2)的值.【来源】人教A 版2018-2019学年高中数学必修4第三章三角恒等变换测评【答案】(1)T=π,递增区间为π5ππ-,π1212k k ⎡⎤+⎢⎥⎣⎦(k ∈Z).(2) m ∈-3.。

专题28 事件的相互独立性(解析版)

专题28 事件的相互独立性一、单选题1.2020年1月,教育部出台《关于在部分高校开展基础学科招生改革试点工作的意见》(简称“强基计划”),明确从2020年起强基计划取代原有的高校自主招生方式.如果甲、乙两人通过强基计划的概率分别为43,54,那么两人中恰有一人通过的概率为A.35B.15C.14D.720【试题来源】辽宁省部分重点高中2020-2021学年高二下学期期中考试【答案】D【分析】由题意,甲乙两人通过强基计划是相互独立的事件,可确定甲乙两人中恰有一人通过的事件为甲通过乙不通过和甲不通过乙通过.【解析】由题意,甲乙两人通过强基计划的事件是相互独立的,那么甲乙两人中恰有一人通过的概率为41137545420P=⨯+⨯=.故选D.2.甲、乙两队进行羽毛球决赛,现在的情形是甲队只要再赢一局就获得冠军,乙队需要再赢两局才能得到冠军,若甲队每局获胜的概率为13,则甲队获得冠军的概率为A.49B.59C.23D.79【试题来源】江西省赣州市2021届高三二模【答案】B【分析】由题设知甲、乙两队获胜的概率分别为13、23,甲队要获得冠军,则至少在两局内赢一局,利用概率的乘法和加法公式求概率即可.【解析】由题意知每局甲队获胜的概率为13,乙队获胜的概率为23,所以至少在两局内甲队赢一局,甲队才能获得冠军,当第一局甲队获胜,其概率为13;当第一局甲队输,第二局甲队赢,其概率为212339⨯=. 所以甲队获得冠军的概率为125399+=.故选B. 3.五一放假,甲、乙、丙去厦门旅游的概率分别是13、14、15,假定三人的行动相互之间没有影响,那么这段时间内至少有1人去厦门旅游的概率为 A .5960B .35C .12D .160【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷(新教材人教B 版) 【答案】B【分析】由对立事件为A :三人都不去厦门旅游,求()P A ,应用()1()P A P A =-求概率即可.【解析】记事件A 至少有1人去厦门旅游,其对立事件为A :三人都不去厦门旅游, 由独立事件的概率公式可得1112()(1)(1)(1)3455P A =---=, 由对立事件的概率公式可得3()1()5P A P A =-=,故选B. 4.有两名射手射击同一目标,命中的概率分别为0.8和0.7,若各射击一次,则目标被击中的概率是 A .0.56 B .0.92 C .0.94D .0.96【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册) 【答案】C【分析】利用独立事件和对立事件的概率求解即可.【解析】设事件A 表示:“甲击中”,事件B 表示:“乙击中”.由题意知A ,B 互相独立. 故目标被击中的概率为P =1-P (AB )=1-P (A )P (B )=1-0.2×0.3=0.94.故选C 5.在一次“概率”相关的研究性活动中,老师在每个箱子中装了10个小球,其中9个是白球,1个是黑球,用两种方法让同学们来摸球.方法一:在20箱中各任意摸出一个小球;方法二:在10箱中各任意摸出两个小球.将方法一、二至少能摸出一个黑球的概率分别记为1p 和2p ,则 A .12p p = B .12p p <C .12p p >D .以上三种情况都有可能【试题来源】湖南省2021届高三下学期三模 【答案】B【分析】分别计算1p 和2p ,再比较大小.【解析】方法一:每箱中的黑球被选中的概率为110,所以至少摸出一个黑球的概率2019110p ⎛⎫=- ⎪⎝⎭.方法二:每箱中的黑球被选中的概率为15,所以至少摸出一个黑球的概率102415p ⎛⎫=- ⎪⎝⎭.10201010124948105105100p p ⎛⎫⎛⎫⎛⎫⎛⎫-=-=-< ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,则12p p <.故选B.【名师点睛】概率计算的不同类型: (1)古典概型、几何概型直接求概率;(2)根据事件间的关系利用概率加法、乘法公式求概率; (3)利用对立事件求概率;(4)判断出特殊的分布列类型,直接套公式求概率.6.2020年1月,教育部出台《关于在部分高校开展基础学科招生改革试点工作的意见》(简称“强基计划”),明确从2020年起强基计划取代原有的高校自主招生方式.如果甲、乙、丙三人通过强基计划的概率分别为433,,544,那么三人中恰有两人通过的概率为A .2180 B .2780C .3380D .2740【试题来源】2020-2021学年高二下学期数学选择性必修第三册同步单元AB 卷 【答案】C【分析】根据积事件与和事件的概率公式可求解得到结果.【解析】记甲、乙、丙三人通过强基计划分别为事件,,A B C ,显然,,A B C 为相互独立事件, 则“三人中恰有两人通过”相当于事件ABC ABC ABC ++,且,,ABC ABC ABC 互斥,∴所求概率()()()()P ABC ABC ABC P ABC P ABC P ABC ++=++()()()()()()()()()P A P B P C P A P B P C P A P B P C =++1334134313354454454480=⨯⨯+⨯⨯+⨯⨯=.故选C. 7.甲、乙两名同学相约学习某种技能,该技能需要通过两项考核才能拿到证书,每项考核结果互不影响.已知甲同学通过第一项考核的概率是45,通过第二项考核的概率是12;乙同学拿到该技能证书的概率是13, 那么甲、乙两人至少有一人拿到该技能证书的概率是 A .1315B .1115C .23D .35【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A 基础练 【答案】D【分析】由已知先求得甲取得证书的概率,再求得甲,乙两人都取不到证书的概率,由对立事件的概率公式可得选项.【解析】由已知得甲拿到该技能证书的概率为412525⨯=,则甲,乙两人都没有拿到证书的概率为21211535⎛⎫⎛⎫-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以甲、乙两人至少有一人拿到该技能证书的概率是23155-=,故选D. 【名师点睛】在解决含有“至少”,“至多”等一类问题的概率问题时,正面求解时情况较复杂,可以求其对立事件的概率,再用1减去所求的对立事件的概率,就是所求的概率.8.某班级举办投篮比赛,每人投篮两次.若小明每次投篮命中的概率都是0.6,则他至少投中一次的概率为 A .0.24 B .0.36 C .0.6D .0.84【试题来源】北京市大兴区2020-2021学年度高二上学期期末检测试卷【答案】D【分析】先求出对立事件:一次都未投中的概率,然后可得结论.【解析】由题意小明每次投篮不中的概率是10.60.4-=,再次投篮都不中的概率是20.40.16=,所以他再次投篮至少投中一次的概率为10.160.84-=.故选D.【名师点睛】本题考查相互独立事件同时发生的概率公式,在出现至少、至多等词语时,可先求其对立事件的概率,然后由对立事件概率公式得出结论.9.某单位举行知识竞赛,给每位参赛选手设计了两道题目,已知某单位参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完两道题目后至少答对一题的概率为A.45B.1625C.125D.2425【试题来源】2020-2021高中数学新教材配套提升训练(人教A版必修第二册)【答案】D【分析】根据相互独立事件的概率计算公式,以及对立事件的概率计算公式,由题中条件,可直接得出结果.【解析】因为参赛者答对每道题的概率均为45,且各次答对与否相互独立,则该参赛者答完两道题目后至少答对一题的概率为242411525P⎛⎫=--=⎪⎝⎭.故选D.10.抛掷两枚质地均匀的硬币,设事件A=“第一枚硬币正面朝上”,事件B=“第二枚硬币反面朝上”,则A与B的关系为A.互斥B.相互对立C.相互独立D.相等【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A基础练【答案】C【分析】根据互斥事件、对立事件和独立事件的定义即可判断.【解析】显然事件A和事件B不相等,故D错误,由于事件A与事件B能同时发生,所以不为互斥事件,也不为对立事件,故AB错误;因为事件A 是否发生与事件B 无关,事件B 是否发生也与事件A 无关,故事件A 和事件B 相互独立,故C 正确.故选C.11.袋内有8个白球和2个红球,每次从中随机取出一个球,然后放回1个白球,则第4次恰好取完所有红球的概率为 A .0.0324 B .0.0434 C .0.0528D .0.0562【试题来源】江西省新余市第一中学2020-2021学年高二年级第六次考试 【答案】B【分析】第4次恰好取完所有红球有三种情形,红白白红,白红白红,白白红红,据此由互斥事件的和及相互独立事件同时发生的概率公式求解.【解析】第4次恰好取完所有红球有三种情形,红白白红,白红白红,白白红红, 所以第4次恰好取完所有红球的概率为222918291821()()0.043410101010101010101010⨯⨯+⨯⨯⨯+⨯⨯=,故选B 12.四个人围坐在一张圆桌旁,每个人面前放一枚质地均匀的硬币,所有人同时抛掷自己面前的硬币一次.若硬币正面朝上,则这个人站起来;若硬币正面朝下,则这个人继续坐着,那么,事件“相邻的两个人站起来”没有发生....的概率为 A .12 B .716 C .38D .14【试题来源】重庆市第七中学2021届高三上学期期中 【答案】B【分析】先研究相邻两个人站起来的情况,分为2个人站起来,三个人站起来及四个人站起来,3种情况,一一分析,没有发生的概率即用1减去上面站起来的概率即可. 【解析】由题意可知,四个人抛硬币,一共有4216=种不同的情况,其中有相邻两个人同为正面需要站起来有4种情况,三个人需要站起来有4种情况, 四个人都站起来共有1种情况,所以有相邻的两个人站起来的概率44191616P ++==, 故没有相邻的两个人站起来的概率为9711616P =-=.故选B . 13.某校甲、乙、丙三名教师每天使用1号录播教室上课的概率分别是0.6,0.6,0.8,这三名教师是否使用1号录播教室相互独立,则某天这三名教师中至少有一人使用1号录播教室上课的概率是 A .0.296 B .0.288 C .0.968D .0.712【试题来源】2021年全国高中名校名师原创预测卷新高考数学(第九模拟) 【答案】C【分析】设甲、乙、丙三名教师某天使用1号录播教室上课分别为事件,,A B C ,可得()0.6P A =,()0.6P B =,()0.8P C =,由事件,,A B C 相互独立,再根据对立事件的概率公式代入求解.【解析】甲、乙、丙三名教师某天使用1号录播教室上课分别为事件,,A B C ,则()0.6P A =,()0.6P B =,()0.8P C =,这三名教师是否使用1号录播教室相互独立,则所求事件的概率为()()()()111P ABC P A P B C P P -=-⋅⋅==-0.40.40.20.968⨯⨯=,故选C. 14.某地有A ,B ,C ,D 四人先后感染了传染性肺炎,其中只有A 到过疫区,B 确定是受A 感染的.对于C 因为难以判定是受A 还是受B 感染的,于是假定他受A 和B 感染的概率都是12.同样也假定D 受A ,B 和C 感染的概率都是13.在这种假定下,B ,C ,D 中恰有两人直接受A 感染的概率是 A .16B .13 C .12D .23【试题来源】【新教材精创】4.1.3独立性与条件概率的关系B 提高练 【答案】C【分析】根据题意得出:因为直接受A 感染的人至少是B ,而C 、D 二人也有可能是由A 感染的,B ,C ,D 中恰有两人直接受A 感染为事件CD CD +.由此可计算出概率. 【解析】设,,B C D 直接受A 感染为事件B 、C 、D , 则事件B 、C 、D 是相互独立的,()1P B =,1()2P C =,1()3P D =, 表明除了B 外,,C D 二人中恰有一人是由A 感染的, 所以12111()()()23232P CD CD P CD P CD +=+=⨯+⨯=,所以B 、C 、D 中直接受A 传染的人数为2的概率为12,故选C. 15.一个袋中装有6个大小形状完全相同的小球,其中有4个白球,2个黑球,现随机从袋中摸出一球,记下颜色,放回袋中后,再从袋中随机摸出一球,记下颜色,则两次摸出的球中至少有一个黑球的概率为A .49 B .59 C .35D .815【试题来源】备战2021年新高考数学一轮复习考点一遍过 【答案】B【分析】由题意利用相互独立事件概率的乘法公式,先求出两次摸到的全是白球的概率,再利用对立事件的概率公式即可求解.【解析】记每次摸出白球为事件A ,每次摸出黑球为事件B ,则()4263P A ==,()2163P B ==, 两次摸出的球中至少有一个黑球包括两次黑球和一次白球一次黑球, 其对立事件为两次摸到的都是白球, 两次摸到的都是白球概率为224339⨯=, 所以两次摸出的球中至少有一个黑球的概率为45199-=,故选B 【名师点睛】本题的关键点是第一次摸出球后又放回去,所以每次摸出白球和黑球的概率都不变,求出这两个概率,每次摸球是相互独立的,所以可以利用概率的乘法公式求出两次摸到的全是白球的概率,即可求出其对立事件至少有一个黑球的概率.16.已知一个古典概型的样本空间Ω和事件A ,B 如图所示. 其中()12,()6,()4,()8n n A n B n AB Ω====,则事件A 与事件BA .是互斥事件,不是独立事件B .不是互斥事件,是独立事件C .既是互斥事件,也是独立事件D .既不是互斥事件,也不是独立事件【试题来源】北京市丰台区2020-2021学年度高二上学期期中考试 【答案】B 【分析】由()4n A B =可判断事件是否为互斥事件,由()()()P AB P A P B =可判断事件是否为独立事件.【解析】因为()12,()6,()4,()8n n A n B n A B Ω====,所以()2n AB =,()4n AB =,()8n B =,所以事件A 与事件B 不是互斥事件, 所以()41123P AB ==,()()68112123P A P B =⨯=, 所以()()()P AB P A P B =,所以事件A 与事件B 是独立事件.故选B.17.甲、乙两个气象站同时作气象预报,如果甲站、乙站预报的准确率分别为0.8和0.7,那么在一次预报中两站恰有..一次准确预报的概率为 A .0.8 B .0.7 C .0.56D .0.38【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷 【答案】D【分析】利用相互独立事件概率乘法公式和互斥事件概率加法公式运算即可得解.【解析】因为甲、乙两个气象站同时作气象预报,甲站、乙站预报的准确率分别为0.8和0.7, 所以在一次预报中两站恰有一次准确预报的概率为0.8(10.7)(10.8)0.70.38P =⨯-+-⨯=.故选D .18.甲射击命中目标的概率是12,乙命中目标的概率是13,丙命中目标的概率是14.现在三人同时射击目标,则目标被击中的概率为 A .12B .34 C .23D .14【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷 【答案】B【分析】先由相互独立事件的概率乘法公式,求出目标不被击中的概率,再由对立事件概率公式,即可得解.【解析】由于甲、乙、丙射击一次命中目标的概率分别为12,13,14, 三人同时射击目标一次,则目标不被击中的概率为11111112344⎛⎫⎛⎫⎛⎫-⨯-⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,由对立事件的概率公式可得目标被击中的概率为13144-=.故选B. 19.某普通高校招生体育专业测试合格分数线确定为60分,甲、乙、丙三名考生独立参加测试,他们能达到合格的概率分别是0.9,0.8,0.75,则三人中至少有一人达标的概率为 A .0.015 B .0.005 C .0.985D .0.995【试题来源】2020-2021学年高二数学课时同步练(人教B 版2019选择性必修第二册) 【答案】D【分析】设出每一个每一个考生达标的事件,并求其对立事件的概率,根据相互独立事件的概率的和事件求解出答案.【解析】设 “甲考生达标” 为事件A , “乙考生达标” 为事件B , “丙考生达标” 为事件C ,则()0.9P A =,()0.8P B =,()0.75P C =,()10.90.1P A =-=,()10.80.2P B =-=,()10.750.25P C =-=,设 “三人中至少有一人达标” 为事件D ,则()()110.10.20.2510.0050.995P D P ABC =-=-⨯⨯=-=,故选D.【名师点睛】本题以实际问题为背景考查相互独立事件的概念及其发生的概率的计算,考查分析问题和解决问题的能力,属于中档题.20.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是 A .0.16 B .0.24 C .0.96D .0.04【试题来源】内蒙古通辽市奈曼旗实验中学2018-2019学年高二下学期期末考试 【答案】C【分析】先求三人中至少有一人达标的对立事件的概率,再求其概率.【解析】至少有1人达标的对立事件是一个人也没达标,概率为()()()10.810.610.50.04---=,所以三人中至少有一人达标的概率为10.040.96-=.故选C【名师点睛】本题考查对立事件,属于基础题型.二、多选题1.下列各对事件中,为相互独立事件的是A .掷一枚骰子一次,事件M “出现偶数点”;事件N “出现3点或6点”B .袋中有3白、2黑共5个大小相同的小球,依次有放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到白球”C .袋中有3白、2黑共5个大小相同的小球,依次不放回地摸两球,事件M “第一次摸到白球”,事件N “第二次摸到黑球”D .甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组中各选1名同学参加演讲比赛,事件M “从甲组中选出1名男生”,事件N “从乙组中选出1名女生”【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册)【答案】ABD【分析】利用相互独立事件的定义一一验证即可.【解析】在A 中,样本空间{}1,2,3,4,5,6Ω=,事件{}2,4,6M =,事件{}3,6N =,事件{6}MN =, 所以31()62P M ==,21()63P N ==,111()236P MN =⨯=, 即()()()P MN P M P N =,故事件M 与N 相互独立,A 正确.在B 中,根据事件的特点易知,事件M 是否发生对事件发生的概率没有影响,故M 与N 是相互独立事件,B 正确;在C 中,由于第1次摸到球不放回,因此会对第2次摸到球的概率产生影响,因此不是相互独立事件,C 错误;在D 中,从甲组中选出1名男生与从乙组中选出1名女生这两个事件的发生没有影响,所以它们是相互独立事件,D 正确.故选ABD.【名师点睛】判断两个事件是否相互独立的方法:(1)直接法:利用生活常识进行判断;(2)定义法:利用()()()P MN P M P N =判断. 2.已知,A B 是随机事件,则下列结论正确的是A .若,AB 是互斥事件,则()()()P AB P A P B =B .若事件,A B 相互独立,则()()()P A B P A P B +=+C .若,A B 是对立事件,则,A B 是互斥事件D .事件,A B 至少有一个发生的概率不小于,A B 恰好有一个发生的概率【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A 基础练【答案】CD【分析】根据互斥事件加法公式、独立事件乘法公式、对立事件的定义即可求解.【解析】对于A , 若,A B 是互斥事件,则()()()P A B P A P B +=+,故A 错误; 对于B , 若事件,A B 相互独立,则()()()P AB P A P B =,故B 错误;对于C ,根据对立事件的定义, 若,A B 是对立事件,则,A B 是互斥事件,故C 正确; 对于D , 所有可能发生的情况有:只有A 发生、只有B 发生、AB 都发生、AB 都不发生四种情况,,A B 至少有一个发生包括:只有A 发生、只有B 发生、AB 同时发生三种情况, 故其概率是75%;而恰有一个发生很明显包括只有A 发生或只有B 发生两种情况,故其概率是50%, 故事件,A B 至少有一个发生的概率不小于,A B 恰好有一个发生的概率,故D 正确.故选CD. 3.分别抛掷两枚质地均匀的硬币,设事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,则A .A 与B 互斥B .A 与B 相互独立C .3()4P A B =D .()()P A P B =【试题来源】2020-2021高中数学新教材配套提升训练(人教A 版必修第二册)【答案】BCD【分析】根据互斥事件、相互独立事件的概念以及事件的概率求法逐一判断即可.【解析】根据题意事件A =“第一枚硬币正面朝上”,事件B =“第二枚硬币反面朝上”,可知两事件互不影响,即A 与B 相互独立,故B 正确,A 不正确;由()12P A =,()12P B =, 所以()()3()1-4P A B P A P B ==,且()()P A P B =,故D 正确,C 正确.故选BCD 4.分别抛掷两枚质地均匀的骰子(六个面上的点数分别为1,2,3,4,5,6),设事件M =“第一枚骰子的点数为奇数”,事件N =“第二枚骰子的点数为偶数”,则A .M 与N 互斥B .M 与N 不对立C .M 与N 相互独立D .()34P M N = 【试题来源】2020-2021高中数学新教材配套提升训练(人教A 版必修第二册)【答案】BCD【分析】相互独立事件,互斥事件,对立事件,利用定义即可以逐一判断四个选项正误.【解析】对于选项A :事件M 与N 是可能同时发生的,故M 与N 不互斥,选项A 不正确; 对于选项B :事件M 与N 不互斥,不是对立事件,选项B 正确;对于选项C :事件M 发生与否对事件N 发生的概率没有影响,M 与N 相互独立.对于选项D :事件M 发生概率为1()2P M = ,事件N 发生的概率1()2P N =,()1131()()1224P M N P M P N =-=-⨯=,选项D 正确.故选BCD 【名师点睛】本题主要考查了相互独立事件,互斥事件,对立事件,以及随机事件的概率,属于基础题.5.甲罐中有3个红球、2个白球,乙罐中有4个红球、1个白球,先从甲罐中随机取出1个球放入乙罐,分别以1A ,2A 表示由甲罐中取出的球是红球、白球的事件,再从乙罐中随机取出1个球,以B 表示从乙罐中取出的球是红球的事件,下列命题正确的是A .23()30PB = B .事件B 与事件1A 相互独立C .事件B 与事件2A 相互独立D .1A ,2A 互斥 【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册)【答案】AD【分析】先画出树状图,然后求得()1P A , ()2P A ,()P B 的值,得A 正确;利用 ()()11()P A B P A P B ≠判断B 错误,同理C 错误;由1A ,2A 不可能同时发生得D 正确.【解析】根据题意画出树状图,得到有关事件的样本点数:因此()1183305P A ==,()2122305P A ==,15823()3030P B +==,A 正确; 又()11530P A B =,因此()()11()P A B P A P B ≠,B 错误; 同理可以求得()()22()P A B P A P B ≠,C 错误;1A ,2A 不可能同时发生,故彼此互斥,故D 正确,故选AD .【名师点睛】本题主要考查互斥事件、相互独立事件的判断及其概率,意在考查学生的数学抽象的学科素养,属基础题.三、填空题1.在某道路A ,B ,C 三处设有交通灯,这三盏灯在一分钟内开放绿灯的时间分别为25秒、35秒、45秒,某辆车在这个道路上匀速行驶,则三处都不停车的概率为________.【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册) 【答案】35192【分析】利用相互独立事件的概率乘法公式求解即可. 【解析】由题意可知,每个交通灯开放绿灯的概率分别为512,712,34.在这个道路上匀速行驶,则三处都不停车的概率为512×712×34=35192. 故答案为351922.11分制乒乓球比赛,每赢一球得1分,当某局打成10:10后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时乙得分的概率为0.6,各球的结果相互独立.在某局打成10:10后,甲先发球,乙以13:11获胜的概率为________.【试题来源】【新教材精创】4.1.3独立性与条件概率的关系A 基础练【答案】0.15【分析】依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,根据相互独立事件的概率公式计算可得;【解析】依题意还需进行四场比赛,其中前两场乙输一场、最后两场乙赢,其中发球方分别是甲、乙、甲、乙;所以乙以13:11获胜的概率()()10.50.60.50.610.60.50.50.60.15P =-⨯⨯⨯+-⨯⨯⨯= 故答案为0.153.A ,B ,C ,D 四人之间进行投票,各人投自己以外的人1票的概率都是13(个人不投自己的票),则仅A 一人是最高得票者的概率为________.【试题来源】安徽省六安市舒城中学2021届高三下学期仿真模拟(二) 【答案】527【分析】根据A 的票数为3,2分类讨论,再根据互斥事件的概率加法公式即可求出.【解析】若仅A 一人是最高得票者,则A 的票数为3,2.若A 的票数为3,则1111133327P =⨯⨯=; 若A 的票数为2,则BCD 三人中有两人投给A ,剩下的一人与A 不能投同一个人,213111242333327P C ⎛⎫=⨯⨯⨯⨯⨯= ⎪⎝⎭; 所以仅A 一人是最高得票者的概率为12145272727P P P =+=+=. 故答案为527. 【名师点睛】本题解题关键是根据A 的得票数进行分类讨论,当A 的票数为3时,容易求出1127P =,当A 的票数为2时,要考虑如何体现A 的票数最高,分析出四人投票情况,是解题的难点,不妨先考虑BC 投给A ,则D 投给B (C ),A 就投给C 或D (B 或D ),即可容易解出.4.暑假期间,甲外出旅游的概率是14,乙外出旅游的概率是15,假定甲乙两人的行动相互之间没有影响,则暑假期间两人中至少有一人外出旅游的概率是________.【试题来源】2020-2021学年高一数学一隅三反系列(人教A 版2019必修第二册)【答案】25【分析】设“暑假期间两人中至少有一人外出旅游”为事件A ,则其对立事件A 为“暑假期间两人都未外出旅游”,先求得()P A ,再求解即可.【解析】设“暑假期间两人中至少有一人外出旅游”为事件A ,则其对立事件 A 为“暑假期间两人都未外出旅游”,则()11311455P A ⎛⎫⎛⎫=-⨯-= ⎪ ⎪⎝⎭⎝⎭, 所以()()321155P A P A =-=-=.故答案为25. 5.事件,,A B C 互相独立,若()()()111,688P A B P B C P A B C ⋅=⋅=⋅⋅=,,则()P B =__________.【试题来源】2020-2021学年高一数学必修第二册同步单元AB 卷(新教材人教B 版) 【答案】12【分析】根据独立事件的乘法公式和对立事件的概率公式解方程组可得结果.【解析】因为事件,,A B C 互相独立,所以1()()61()()81()()()8P A P B P B P C P A P B P C ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩, 所以()()11()()8111()68P B P C P C ⎧-=⎪⎪⎨⎪-=⎪⎩,所以1()4P C =,1()2P B =.故答案为12 【名师点睛】根据独立事件的乘法公式和对立事件的概率公式求解是解题关键.四、解答题1.已知在某次1500米体能测试中,甲、乙、丙3人各自通过测试的概率分别为25,34,13.求: (1)3人都通过体能测试的概率;(2)只有2人通过体能测试的概率;(3)只有1人通过体能测试的概率.【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册)【答案】(1)110;(2)2360;(3)512.【分析】设事件A=“甲通过体能测试”,事件B=“乙通过体能测试”,事件C=“丙通过体能测试”(1)利用相互独立事件的概率乘法公式即可求解.(2)只有2人通过体能测试为AB C+A B C+A BC,利用相互独立事件的概率乘法公式即可求解.(3)只有1人通过体能测试为A B C+A B C+A B C,利用相互独立事件的概率乘法公式即可求解.【解析】设事件A=“甲通过体能测试”,事件B=“乙通过体能测试”,事件C=“丙通过体能测试”,由题意有:P(A)=25,P(B)=34,P(C)=13.(1)设事件M1=“甲、乙、丙3人都通过体能测试”,即事件M1=ABC,由事件A,B,C相互独立可得P(M1)=P(ABC)=P(A)·P(B)·P(C)=25×34×13=110.(2)设事件M2=“甲、乙、丙3人中只有2人通过体能测试”,则M2=AB C+A B C+A BC,由于事件A,B,C,A,B,C均相互独立,并且事件AB C,A B C,A BC两两互斥,因此P(M2)=P(A)·P(B)·P(C)+P(A)·P(B)·P(C)+P(A)·P(B)·P(C)=25×34×113⎛⎫-⎪⎝⎭+25×314⎛⎫-⎪⎝⎭×13+215⎛⎫-⎪⎝⎭×34×13=2360.(3)设事件M3=“甲、乙、丙3人中只有1人通过体能测试”,则M3=A B C+A B C+A B C,由于事件A,B,C,A,B,C均相互独立,并且事件A B C,A B C,A B C两两互斥,因此P(M3)=P(A)·P(B)·P(C)+P(A)·P(B)·P(C)+P(A)·P(B)·P(C)=25×314⎛⎫-⎪⎝⎭×113⎛⎫-⎪⎝⎭+215⎛⎫-⎪⎝⎭×34×113⎛⎫-⎪⎝⎭+215⎛⎫-⎪⎝⎭×314⎛⎫-⎪⎝⎭×13=512.2.已知A,B,C为三个独立事件,若事件A发生的概率是12,事件B发生的概率是23,事件C发生的概率是34,求下列事件的概率:(1)事件A,B,C只发生两个的概率;(2)事件A,B,C至多发生两个的概率.【试题来源】2020-2021学年下学期高一数学同步精品课堂(新教材人教版必修第二册)【答案】(1)1124;(2)34.【分析】(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况,利用互斥事件概率的加法公式和相互独立事件的概率乘法公式可得答案;(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况,利用互斥事件概率的加法公式计算即可.【解析】(1)记“事件A,B,C只发生两个”为A1,则事件A1包括三种彼此互斥的情况:AB C,A B C,A BC,由互斥事件概率的加法公式和相互独立事件的概率乘法公式,得P(A1)=P(AB C)+P(A B C)+P(A BC)=112+18+14=1124,所以事件A,B,C只发生两个的概率为11 24.(2)记“事件A,B,C至多发生两个”为A2,则包括彼此互斥的三种情况:事件A,B,C一个也不发生,记为A3,事件A,B,C只发生一个,记为A4,事件A,B,C只发生两个,记为A5,故P(A2)=P(A3)+P(A4)+P(A5)=124+624+1124=34.所以事件A,B,C至多发生两个的概率为34.3.甲、乙两人独立破译一个密码,他们译出的概率分别为13和1.4求:(1)两人都译出的概率;。

人教版2017-2018学年九年级(上)期中考试数学试卷(含答案)

2017-2018学年上学期期中考试九年级数学试卷(全卷共五个大题,满分150分,考试时间120分钟)注意事项:1.试题的答案书写在答题卡上,不得在试卷上直接作答;2.作答前认真阅读答题卡上的注意事项;3.作图(包括辅助线)请一律用黑色签字笔完成;一、选择题 (本大题共12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A 、B 、C 、D 的四个答案,其中只有一个是正确的,请将答题卡上对应题目的正确答案标号涂黑。

1、在﹣5,0,﹣2,1这四个数中,最小的数是( )A .﹣5B .﹣2C .0D .12、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .3、下列计算正确的是( )A .532x x x =+B .2x ·63x x =C .()532x x =D .235x x x =÷4、下列调査中,适合采用全面调査(普査)方式的是 ( )A .对嘉陵江水质情况的调査B .对端午节期间市场上粽子质量情况的调査C .对某班50名同学体重情况的调査D .对某类烟花爆竹燃放安全情况的调査5、对于二次函数2(1)2y x =-+的图象,下列说法正确的是( ).A .开口向下B .对称轴是1x =-C .顶点坐标是(1,2)D .与x 轴有两个交点 6、若m 是关于x 的一元二次方程02=++m nx x 的根,且m ≠0,则n m +的值为( )A.1-B.1C.21-D.21 7、将抛物线y =(x -4)2+2向右平移1个单位,再向下平移3个单位,则平移后抛物线的 表达式为( )A .y =(x -3)2+5B .y =(x -3)2-1C .y =(x -5)2+5D .y =(x -5)2-18、共享单车为市民出行带来了方便,某单车公司第一个月投放1000辆单车,计划第三个月投放单车数量比第一个月多440辆.设该公司第二、三两个月投放单车数量的月平均增长率为x ,则所列方程正确的为( )A .21000(1)1000440x +=+B .21000(1)440x +=C .2440(1)1000x +=D .1000(12)1000440x +=+9、在同一平面直角坐标系中,函数y =ax 2+bx 与y =bx +a 的图象可能是( )A B C D10、下列图形都是由正方形按一定规律组成的,其中第①个图形中一共有8个正方形,第②个图形中一共有15个正方形,第③个图形中一共有22个正方形,…,按此规律排列,则第⑨个图形中正方形的个数为( )A .50B .60C .64D .7211、如图,在Rt △ABC 中,∠ABC =90°,AB =BC =2,将△ABC 绕点C 逆时针旋转60°,得到△MNC ,连结BM ,则BM 的长是( )A.4B. 13+C. 23+D. 712、在﹣2、﹣1、0、1、2、3这六个数中,随机取出一个数,记为a ,若数 a 使关于x 的分式方程3233ax x x+=---的解是正实数,且使得二次函数y =﹣x 2+(2 a ﹣1)x +1的图象,在x >2时,y 随x 的增大而减小,则满足条件的所有a 之和是( )A .﹣2B .﹣1C .1D .2二、填空题:(本大题共6个小题,每小题4分,共24分)请将每小题的答案直接填在答题卡中对应的横线上13、据报道,西部地区最大的客运枢纽系统﹣﹣重庆西站,一期工程已经完成90%,预计在年内建成投入使用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年重庆一中高2019级高二下期半期考试数学试题卷(文科)第Ⅰ卷(选择题,共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合,则()A. B. C. D.【答案】C【解析】分析:找出两个集合中的公共元素即可.详解:,故选C.点睛:本题考察集合的交运算,属于基础题.2. 已知复数满足,则()A. B. C. D.【答案】B【解析】分析:把复数写成,利用复数的除法化简即可.详解:,故选B.点睛:本题考察复数的四则运算,属于基础题.3. 函数的定义域为()A. B. C. D.【答案】C【解析】分析:解不等式即得函数的定义域.详解:由可以得到,故定义域为,故选C.点睛:本题考察函数的定义域,一般地,函数的定义域须从四个方面考虑:(1)分母不为零;(2)偶次根号下非负;(3)对数的真数大于零,底数大于零且不等于1;(4)零的零次幂没有意义.4. 在等差数列中,,则()A. 6B. 7C. 8D. 9【答案】B【解析】分析:观察下标的特点,因成等差数列,则有成等差数列,故可求的大小.详解:因为,故,故选B.点睛:一般地,如果为等差数列,为其前项和,则有性质:(1)若,则;(2)且;(3)且为等差数列;(4)为等差数列.5. 设,则“”是“”的()A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】分析:若,则根据不等式的性质有成立,但推不出,据此判断充分必要性.详解:当时,,取,则,当,故“”是“”的充分不必要条件,故选A.点睛:充分性与必要性的判断,可以依据命题的真假来判断,若“若则”是真命题,“若则”是假命题,则是的充分不必要条件;若“若则”是真命题,“若则”是真命题,则是的充分必要条件;若“若则”是假命题,“若则”是真命题,则是的必要不充分条件;若“若则”是假命题,“若则”是假命题,则是的既不充分也不必要条件.6. 函数的单调递增区间是()A. B. C. D.【答案】D【解析】分析:先求出函数的定义域,再把函数看成的复合函数,利用同增异减来求给定函数的单调增区间.详解:函数的定义域为,令,在上,是减函数,在上,是增函数,故的单调增区间为,故选C.点睛:求复合函数的单调区间,要先求函数的定义域,再根据“同增异减”求单调区间.7. 若,则双曲线的离心率的取值范围是()A. B. C. D.【答案】C【解析】分析:用含的解析式表示双曲线的离心率,求此函数在上的值域即可.详解:离心率,因为,故,故,故选C.点睛:离心率范围的计算,关键在于构建的不等式关系.此题中为定值,为变量,只需构建离心率与的函数关系并求出函数的值域即可.8. 已知函数,且,则()A. B. C. D.【答案】A【解析】分析:用换元法求出,再解方程即可.详解:,则,故,令,则,故选A.点睛:函数解析式的求法有:(1)换元法;(2)配凑法;(3)待定系数法;(4)函数方程法.注意针对问题的特征选择合适的方法.9. 某几何体的三视图如图所示,则该几何体的体积为()A. B. C. D.【答案】D【解析】分析:根据三视图可以得到几何体为个圆柱和一个三棱锥组合而成,分别计算各自体积即可.详解:几何体为如图所示的组合体,它由个圆柱和一个底面是等腰直角三角形的三棱锥组成,其体积为,故选D.点睛:本题考察三视图,要求依据三视图复原几何体,注意复原前后点、线、面的对应关系.10. 规定:对任意的各位数字不全相同的三位数,若将各位数字按照从大到小、从左到右的顺序排列得到的三位数,称为原三位数的“和谐数”;若将各位数字按照从小到大、从左到右的顺序排列得到的三位数,称为原三位数的“新时代数”.如图,若输入的,则输出的为()A. 2B. 3C. 4D. 5【答案】B【解析】分析:从流程图上看,算法是计算两个数的差,只要两个数的差为就终止循环,输出,因此只要逐步计算差可得的值.详解:执行第一次判断时,;执行第二次判断时,;执行第三次判断时,,此时,故选B.点睛:本题考查流程图,要求能看懂流程图并能进行一些简单的计算,解决此类问题时应注意在流程图中选择一个点(如此题中的判断前),逐步计算各变量在此点处的值,再对照判断条件决定是否终止循环.11. 若直线被圆所截得的弦长为6,则的最小值为()A. B. C. D.【答案】D【解析】分析:先求出圆的半径为,因此直线必过圆心,故,所以,利用基本不等式可求的最小值.详解:圆心为,半径为,因此弦长为,故直线过圆心,所以.又,所以,当且仅当,时等号成立,故的最小值为.故选D.点睛:二元等式或不等式条件下的二元代数式的最值问题,可用基本不等式来求解,但需要对原有代数式适当变形,凑成和为定值或积为定值的代数结构,注意需要验证等号成立的条件是否满足.12. 定义在上的函数满足,对任意的,且,均有.若关于的不等式对任意的恒成立,则实数的取值范围是()A. B. C. D.【答案】A【解析】分析:根据为偶函数可把原不等式化成,再根据得在上是增函数,故在上是减函数,从原不等式可进一步化为在上恒成立,参变分离后得在上恒成立,利用导数分别求两个函数的最大值、最小值即可.详解:因为,故为上的偶函数且原不等式可化为①,又不妨设,则,故在上是增函数,所以在上是减函数,故①可化为在上恒成立,所以在上恒成立,也就是在上恒成立.令,则,当时,,故为增函数;当时,,故为减函数,所以.令,则,当时,,故为减函数,所以.综上,,故选A.点睛:函数的单调性可用不同的代数形式来体现:如在区间上,当,总有(或),则在区间上是增函数.另外,不等式在上恒成立等价于在上恒成立,而在上恒成立等价于在上恒成立或在在上恒成立.第Ⅱ卷(非选择题,共90分)二、填空题:本大题共4个小题,每小题5分,共20分.13. 函数的值域是__________.【答案】【解析】分析:根据自变量的范围求的取值范围即可.详解:因为,所以,故,故的值域为.点睛:本题考察函数值域的求法,属于基础题.14. 函数是定义在上的奇函数,且恒有,则___.【答案】0【解析】分析:根据得到的周期为且,故.详解:,故是周期函数且周期为,故,又,而,所以,故.点睛:一般地,若(),则为周期函数且周期为;若,则为周期函数且周期为.15. 重庆一中开展的“第十届校园田径运动会”中,甲、乙、丙、丁四位同学每人参加了一个项目,且参加的项目各不相同,这个四个项目分别是:跳高、跳远、铅球、跑步.下面是关于他们各自参加的活动的一些判断:①甲不参加跳高,也不参加跳远;②乙不参加跳远,也不参加铅球;③丙不参加跳高,也不参加跳远;④如果甲不参加跑步,则丁也不参加跳远.已知这些判断都是正确的,则乙参加了__________.【答案】跳高【解析】分析:就甲是否参加跑步分类讨论即可.详解:如果甲参加跑步,则乙参加跳高,丙参加铅球,丁参加跳远;如果甲不参加跑步,则甲参加铅球,丙参加跑步,乙参加跳高,丁参加跳远,与④矛盾.故乙参加了跳高.点睛:本题为推理题,分析时应关注关键语句,如本题中的“如果甲不参加跑步,则丁也不参加跳远.”16. 设函数,若函数有且仅有一个零点,则实数的取值范围是__.【答案】【解析】分析:因当时,,故只要考虑在上有一个零点,注意此时为减函数且,故由可得的取值范围.详解:因为当,,故在上没有零点,所以在有且仅有一个零点.又当时,,所以,故.点睛:判断函数的零点个数,应先考虑函数的单调性、函数的极值等,必要时需刻画函数的图像,注意考虑函数图像的渐进线.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤. 第17-21题为必考题,每个试题考生都必须作答,第22、23为选考题,考生根据要求作答.17. 在中,角的对边分别为,其面积为.已知.(1)求;(2)若,求的周长.【答案】(1) (2)【解析】分析:(1)利用余弦定理和面积的计算公式得到的值即可.(2)由面积及(1)的可求得,再根据余弦定理求出后可求周长.详解:(1),∴.又∵,∴.(2),由余弦定理得,,所以,的周长为.点睛:三角形中共有七个几何量(三边三角以及外接圆的半径),一般地,知道其中的三个量(除三个角外),可以求得其余的四个量.(1)如果知道三边或两边及其夹角,用余弦定理;(2)如果知道两边即一边所对的角,用正弦定理(也可以用余弦定理求第三条边);(3)如果知道两角及一边,用正弦定理.18. 我校高二年级共2000名学生,其中男生1200人.为调查学生们的手机使用情况,采用分层抽样的方法,随机抽取100位学生每周平均使用手机上网时间的样本数据(单位:小时).根据这100个数据,得到学生每周平均使用手机上网时间的频率分布直方图(如图所示),其中样本数据分组区间分别为.(1)应收集男生、女生样本数据各多少人?(2)估计我校高二年级学生每周平均使用手机上网时间超过4小时的概率.(3)将平均每周使用手机上网时间在内定义为“长时间使用手机”,在内定义为“短时间使用手机”.在样本数据中,有25名学生不近视.请完成下列2×2列联表,并判断是否有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.附:【答案】(1)60人,40人,(2)0.75(3)有99.5%的把握认为“学生每周使用手机上网时间与近视程度有关”.【解析】分析:(1)高二年级男女生之比为,故按比例抽取的男生人数为,女生人数为.(2)用样本中的频率代替概率,计算上网时间小于4的频率(也就是概率)可得上网时间不少于4小时的概率.(3)根据(2)的概率得到百人中长时间上网的人数为,从而可得表中缺省的各数据.通过计算的值来判断使用手机上网时间与近视的相关程度.详解:(1)男生人数:(人),女生人数:(人);(2)学生每周平均使用手机上网时间超过4小时的概率;(3)由(2)问可知,的人数为75人,的人数为25人.则2×2列联表如下:,故有的把握认为“学生每周使用手机上网时间与近视程度有关”.点睛:(1)分层抽样就是按比例抽样,而系统抽样是先分组再按规则抽取.(2)通过频率分布直方图计算频率时,注意频率是矩形的高与组距的乘积.(3)两类变量的相关程度取决于的大小.19. 如图,在四棱锥中,底面是正方形,面,点为线段上异于的点,连接,并延长和交于点,连接.(1)求证:面面;(2)若三棱锥的体积为2,求的长度.【答案】(1)见解析(2)【解析】分析:(1)由平面可以得到,从而可证平面,由此即得面面垂直.(2),注意到平面的距离为,从而利用体积得到的面积,也就得到了的长度,再根据三角形相似得到的长,在直角三角形中根据勾股定理得到的长.详解:(1)因为面面,所以,又因为四边形是正方形,所以,又,所以面,又面,所以面面;(2)因为.又因为,则,于是在中,.点睛:面面垂直的判定可归结为线面垂直,证明时注意线线垂直、线面垂直及面面垂直关系的转化.三棱锥体积的计算应注意选择合适的底面,以顶点到该面的距离容易计算为宜.20. 已知椭圆的焦距为,且长轴与短轴的比为.(1)求椭圆的标准方程;(2)椭圆的上、下顶点分别为,点是椭圆上异于的任意一点,轴于点,,直线与直线交于点,点为线段的中点,点为坐标原点,求证:恒为定值,并求出该定值.【答案】(1) (2)见解析【解析】分析:(1)根据题设条件直接得到,再根据长短轴的比得到的值.(2)可设,则由得到的坐标,再根据直线的方程得到坐标,通过中点坐标公式得到的坐标,最后计算并利用在椭圆上化简该式可得定值.详解:(1)由题意,所以椭圆方程为;(2)设点,则由题意.因为点在椭圆上,所以,由(1)知,,所以,令,则点.又∵,∴.于是,,所以,恒为定值.点睛:对于圆锥曲线中的定点定值问题,我们可通过设出椭圆上动点的坐标并用它来表示目标关系式,最后利用动点的横纵坐标满足的关系式化简前者得到定点或定值.21. 已知函数.(1)当时,求曲线在点处的切线方程;(2)若函数有两个极值点,且.①求的取值范围;②求证:.【答案】(1) (2)①,②见解析【解析】分析:(1)求出,它是切线的斜率,利用点斜式写出切线方程.(2)根据得有两个极值点等价于在有两个不同的根,利用判断式大于零得到的取值范围.要证明,需证明,但,故只要证明在上恒成立,可令,通过导数讨论其单调性即可.详解:(1)当时,,则,∴,∴在点处的切线方程为,即;(2)①函数的定义域为,且,因为函数有两个极值点,所以有两个不同的正实根,∴有两个不同的正实根,∴,即的取值范围是.②由题意,的两根为,由韦达定理,,其中,于是,令,则在上恒成立,即函数在上为减函数,又因为,所以,即.点睛:曲线的切线的斜率是函数在切点横坐标处的导数.与函数极值的相关的不等式,往往需要利用极值点满足的方程消去不等式中的参数,再通过构建新函数来证明不等式成立.(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22. 【选修4-4:极坐标与参数方程】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)若直线与曲线相交于两点,求的面积.【答案】(1) (2)【解析】分析:(1)把曲线的极坐标方程化成,利用可得其直角坐标方程.(2)把直线的参数方程改写为,利用的几何意义求出的长度,再把直线的参数方程化为普通方程,计算到直线的距离后可计算的面积.详解:(1)因为,所以曲线的直角坐标方程为;(2)将直线的参数方程(为参数)代入曲线的直角坐标方程,得,设两点对应的参数分别为,则,于是,直线的普通方程为,则原点到直线的距离,所以.点睛:极坐标方程转为直角坐标方程的关键是利用公式,必要时需要对极坐标方程变形使得方程中尽量出现.另外在计算弦长时注意利用直线的参数方程(为直线的倾斜角,为参数)来简化计算,因为的几何意义是、之间的距离.23. 【选修4-5:不等式选讲】已知函数,其中.(1)当时,求关于的不等式的解集;(2)若对任意的,都有,使得成立,求实数的取值范围.【答案】(1) (2)【解析】分析:(1)利用零点分段讨论可得不等式的解.(2)因为对任意的,都有,使得成立,故的值域为的子集,故可求得实数的取值范围.详解:(1)当时,,由得或或,解得或,所以,解集为;(2)设,则由题意,又∵,∴,解得,因此,实数的取值范围是.点睛:含绝对值符号的不等式,通常可通过讨论绝对值内代数式的符号来求解不等式(也就是零点分段讨论法).对于形如“对任意的,都有,使得成立”题设条件,要能合理转化两个函数的值域的关系,类似地,还有“对任意的,都有唯一的,使得成立”,它可转化的值域是的值域的子集且是单调函数.。

相关文档
最新文档