九年级数学(2)(圆概念+切线+两圆)

合集下载

人教版数学九年级上册24.1《圆(2)》说课稿

人教版数学九年级上册24.1《圆(2)》说课稿

人教版数学九年级上册24.1《圆(2)》说课稿一. 教材分析人教版数学九年级上册24.1《圆(2)》这一节的内容是在学生已经掌握了圆的基本概念、圆的周长和面积的基础上进行进一步学习的。

本节内容主要包括圆的方程、圆的切线、圆与圆的位置关系以及圆的轴对称性质。

这些内容在高中数学学习中占有重要地位,对于培养学生的空间想象能力和逻辑思维能力具有重要作用。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于圆的基本概念和性质有所了解。

但是,对于圆的方程、切线、位置关系以及轴对称性质等高级性质的理解还需要加强。

此外,学生对于实际应用题的解决能力也亟待提高。

三. 说教学目标1.知识与技能目标:使学生掌握圆的方程、切线、位置关系以及轴对称性质,能够运用所学知识解决实际问题。

2.过程与方法目标:通过自主学习、合作交流等方法,培养学生的空间想象能力和逻辑思维能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神,使学生树立正确的数学学习观念。

四. 说教学重难点1.教学重点:圆的方程、切线、位置关系以及轴对称性质的推导和理解。

2.教学难点:圆的切线和圆与圆位置关系的理解,以及如何运用所学知识解决实际问题。

五. 说教学方法与手段1.教学方法:采用自主学习、合作交流、教师讲解等方法,引导学生主动探究,提高学生的学习兴趣和参与度。

2.教学手段:利用多媒体课件、黑板、粉笔等传统教学工具,结合数学软件和实物模型等现代教育技术手段,增强学生的直观感受,提高教学效果。

六. 说教学过程1.导入:通过复习圆的基本概念和性质,引出本节课的内容,激发学生的学习兴趣。

2.自主学习:学生自主探究圆的方程、切线、位置关系以及轴对称性质,教师给予适当的引导和帮助。

3.合作交流:学生分组讨论,分享自己的学习心得和解决问题的方法,教师总结并给予评价。

4.教师讲解:教师针对学生的学习情况,讲解圆的方程、切线、位置关系以及轴对称性质的重点和难点,引导学生深入理解。

九年级数学圆知识点总结

九年级数学圆知识点总结

九年级数学圆知识点总结在九年级数学学习的过程中,我们接触到了许多关于圆的知识。

圆是几何学中的重要概念之一,它有着特殊的性质和应用价值。

接下来,本文将对九年级数学中的圆知识点进行总结。

一、圆的定义与性质1. 圆的定义:圆是由平面上所有到一个给定点距离相等的点组成的图形。

这个给定点称为圆心,到圆心的距离称为半径。

2. 相关性质:- 圆的直径是圆上任意两点之间的最长距离,直径的长度是半径长度的两倍。

- 圆的半径相等,且平行于任意切线。

- 圆的弦是连接圆上任意两点的线段,直径是最长的弦。

- 相等弧所对的圆心角相等,且圆心角大于它所对的弧上任意角。

二、圆的周长与面积1. 周长:- 弧长:圆的周长也被称为圆的周长,用C表示。

弧长是圆上一段弧的长度,计算公式为:C = 2πr,其中r是圆的半径。

- 弧度制:弧度制是角度的一种衡量方式,常用的单位是弧度(radian)。

一个完整的圆周对应的弧度数为2π。

2. 面积:- 圆的面积:用A表示,计算公式为:A = πr^2,其中r是圆的半径。

三、圆的位置关系1. 内切与外切:- 内切:当一个圆的圆心与另一个圆的圆心重合,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为内切圆。

- 外切:当一个圆的圆心与另一个圆的圆心之间的距离等于两个圆的半径之和,并且两个圆唯一的内外切点是同一个时,我们称这两个圆为外切圆。

2. 切线与割线:- 切线:从圆外一点引出的与圆相切的直线称为切线,切线与半径垂直。

- 割线:与圆相交于两点的直线称为割线。

四、圆的常见定理和应用1. 切线定理:如果一条直线与一个圆相切,那么它与半径的垂直角都是直角。

2. 弧长与圆心角关系:弧长等于半径与对应圆心角的乘积。

3. 弧度制与角度制的转换关系:一周的弧度数为360°。

4. 圆心角、弦与弧的关系:圆心角的度数是对应的弧度数的两倍。

5. 弦切角定理:一个弦与切线所夹的角等于被切割的弧所对的圆心角。

九年级数学上册22.2.2圆的切线课件新版北京课改版

九年级数学上册22.2.2圆的切线课件新版北京课改版

预习反馈
1.如图,已知以直角梯形ABCD的腰CD为直径的半圆O与梯形上
底AD、下底BC以及腰AB均相切,切点分别是D,C,E.若半
圆O的半径为2,梯形的腰AB为5,则该梯形的周长是( A )
A.14B.9Fra bibliotekC.10
D.12
预习反馈
2.如图,PA、PB分别是⊙O的切线,A、B为切点,AC是⊙O的直 径,已知∠BAC=35°,∠P的度数为( D )
典例精析
典例精析
典例精析
典例精析
例2、如图所示, ⊙O是△ABC的内切圆,切点分别为E, F,C,AB = 9,BC = 13,AC=10。求AE、BF和CG的长。
典例精析
分析:∵⊙ O是△ABC的内切圆,切点分别为E, F,G, ∴AE=AG,BE=BF,CG=CF 设AE=x,BF=y,CG=z。 ∴ x + y =9,y + z = 13,z + x = 10。 解这个方程组,得 x =3,y = 6,z = 7。 ∴AE = 3,BF = 6, CG = 7。
A. 35° C. 60°
B. 45° D. 70°
预习反馈
3.如图,AB、CD分别为两圆的弦,AC、BD为两圆的公切线且
相交于P点.若PC=2,CD=3,DB=6,则△PAB的周长为何
( D)
A. 6
B. 9
C. 12
D. 14
预习反馈
4.如图,AB、AC是⊙O的两条切线,B、C是切点,若
∠A=70°,则∠BOC的度数为( C )
本课小结
(4)切线长定理包含着一些隐含结论: ①垂直关系三处; ②全等关系三对; ③弧相等关系两对,在一些证明求解问题中经常用到。

九年级上册数学第24章《圆》知识点梳理完整版

九年级上册数学第24章《圆》知识点梳理完整版

【学习目标】九年级数学上册第24 章《圆》知识点梳理1.理解圆及其有关概念,理解弧、弦、圆心角的关系,探索并了解点与圆、直线与圆、圆与圆的位置关系,探索并掌握圆周角与圆心角的关系、直径所对的圆周角的特征;2.了解切线的概念,探索并掌握切线与过切点的半径之间的位置关系,能判定一条直线是否为圆的切线,会过圆上一点画圆的切线;3.了解三角形的内心和外心,探索如何过一点、两点和不在同一直线上的三点作圆;4.了解正多边形的概念,掌握用等分圆周画圆的内接正多边形的方法;会计算弧长及扇形的面积、圆锥的侧面积及全面积;5.结合相关图形性质的探索和证明,进一步培养合情推理能力,发展逻辑思维能力和推理论证的表达能力;通过这一章的学习,进一步培养综合运用知识的能力,运用学过的知识解决问题的能力.【知识网络】【要点梳理】要点一、圆的定义、性质及与圆有关的角1.圆的定义(1)线段 OA 绕着它的一个端点 O 旋转一周,另一个端点 A 所形成的封闭曲线,叫做圆.(2)圆是到定点的距离等于定长的点的集合.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.2.圆的性质(1)旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心1 2n是圆心.在同圆或等圆中,两个圆心角,两条弧,两条弦,两条弦心距,这四组量中的任意一组相等,那么它所对应的其他各组分别相等.(2) 轴对称:圆是轴对称图形,经过圆心的任一直线都是它的对称轴.(3)垂径定理及推论:①垂直于弦的直径平分这条弦,并且平分弦所对的两条弧. ②平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧. ③弦的垂直平分线过圆心,且平分弦对的两条弧.④平分一条弦所对的两条弧的直线过圆心,且垂直平分此弦. ⑤平行弦夹的弧相等. 要点诠释:在垂经定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径) 3. 两圆的性质(1) 两个圆是一个轴对称图形,对称轴是两圆连心线.(2) 相交两圆的连心线垂直平分公共弦,相切两圆的连心线经过切点.4. 与圆有关的角(1) 圆心角:顶点在圆心的角叫圆心角.圆心角的性质:圆心角的度数等于它所对的弧的度数. (2)圆周角:顶点在圆上,两边都和圆相交的角叫做圆周角. 圆周角的性质:①圆周角等于它所对的弧所对的圆心角的一半.②同弧或等弧所对的圆周角相等;在同圆或等圆中,相等的圆周角所对的弧相等. ③90°的圆周角所对的弦为直径;半圆或直径所对的圆周角为直角. ④如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形. ⑤圆内接四边形的对角互补;外角等于它的内对角. 要点诠释:(1)圆周角必须满足两个条件:①顶点在圆上;②角的两边都和圆相交. (2)圆周角定理成立的前提条件是在同圆或等圆中.要点二、与圆有关的位置关系 1. 判定一个点 P 是否在⊙O 上设⊙O 的半径为 ,OP= ,则有点 P 在⊙O 外;点 P 在⊙O 上; 点 P 在⊙O 内.要点诠释:点和圆的位置关系和点到圆心的距离的数量关系是相对应的,即知道位置关系就可以确定数量关系;知道数量关系也可以确定位置关系.2. 判定几个点A 、A 、 A 在同一个圆上的方法 当时, 在⊙O 上.3. 直线和圆的位置关系设⊙O 半径为 R ,点 O 到直线 的距离为 .(1)直线和⊙O没有公共点直线和圆相离.(2)直线和⊙O有唯一公共点直线和⊙O相切.(3)直线和⊙O有两个公共点直线和⊙O相交.4.切线的判定、性质(1)切线的判定:①经过半径的外端并且垂直于这条半径的直线是圆的切线.②到圆心的距离等于圆的半径的直线是圆的切线.(2)切线的性质:①圆的切线垂直于过切点的半径.②经过圆心作圆的切线的垂线经过切点.③经过切点作切线的垂线经过圆心.(3)切线长:从圆外一点作圆的切线,这一点和切点之间的线段的长度叫做切线长.(4)切线长定理:从圆外一点作圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角.5.圆和圆的位置关系设的半径为,圆心距.(1) 和没有公共点,且每一个圆上的所有点在另一个圆的外部外离.(2) 和没有公共点,且的每一个点都在内部内含(3) 和有唯一公共点,除这个点外,每个圆上的点都在另一个圆外部外切.(4) 和有唯一公共点,除这个点外,的每个点都在内部内切.(5)和有两个公共点相交.要点三、三角形的外接圆与内切圆、圆内接四边形与外切四边形1.三角形的内心、外心、重心、垂心(1)三角形的内心:是三角形三条角平分线的交点,它是三角形内切圆的圆心,在三角形内部,它到三角形三边的距离相等,通常用“I”表示.(2)三角形的外心:是三角形三边中垂线的交点,它是三角形外接圆的圆心,锐角三角形外心在三角形内部,直角三角形的外心是斜边中点,钝角三角形外心在三角形外部,三角形外心到三角形三个顶点的距离相等,通常用O 表示.(3)三角形重心:是三角形三边中线的交点,在三角形内部;它到顶点的距离是到对边中点距离的 2倍,通常用G 表示.(4)垂心:是三角形三边高线的交点.要点诠释:(1)任何一个三角形都有且只有一个内切圆,但任意一个圆都有无数个外切三角形;(2)解决三角形内心的有关问题时,面积法是常用的,即三角形的面积等于周长与内切圆半径乘积的一半,即(S 为三角形的面积,P 为三角形的周长,r 为内切圆的半径). (3)三角形的外心与内心的区别:名称确定方法图形性质外心(三角形外三角形三边中垂线的(1)OA=OB=OC ;(2)外心不一接圆的圆心) 交点定在三角形内部内心(三角形内三角形三条角平分线(1)到三角形三边距离相等;切圆的圆心) 的交点(2)OA、OB、OC 分别平分∠BAC、∠ABC、∠ACB; (3)内心在三角形内部.2.圆内接四边形和外切四边形(1)四个点都在圆上的四边形叫圆的内接四边形,圆内接四边形对角互补,外角等于内对角.(2)各边都和圆相切的四边形叫圆外切四边形,圆外切四边形对边之和相等.要点四、圆中有关计算1.圆中有关计算圆的面积公式:,周长.圆心角为、半径为 R 的弧长.圆心角为,半径为R,弧长为的扇形的面积.弓形的面积要转化为扇形和三角形的面积和、差来计算.圆柱的侧面图是一个矩形,底面半径为 R,母线长为的圆柱的体积为,侧面积为,全面积为.圆锥的侧面展开图为扇形,底面半径为R ,母线长为,高为的圆锥的侧面积为,全面积为,母线长、圆锥高、底面圆的半径之间有.要点诠释:(1)对于扇形面积公式,关键要理解圆心角是1°的扇形面积是圆面积的,即;(2)在扇形面积公式中,涉及三个量:扇形面积 S、扇形半径 R、扇形的圆心角,知道其中的两个量就可以求出第三个量.(3)扇形面积公式,可根据题目条件灵活选择使用,它与三角形面积公式有点类似,可类比记忆;(4)扇形两个面积公式之间的联系:.【典型例题】13 (1 + 1)2 + (0 - 3)2 OE 2 - EF 2 3 3 类型一、圆的基础知识1.如图所示,△ABC 的三个顶点的坐标分别为 A (-1,3)、B (-2,-2)、C (4,-2),则△ABC 外接圆半径的长度为 .【答案】 ;【解析】由已知得 BC∥x 轴,则 BC 中垂线为 x =-2 + 4 = 12那么,△ABC 外接圆圆心在直线 x=1 上,设外接圆圆心 P(1,a),则由 PA=PB=r 得到:PA 2=PB 2即(1+1)2+(a-3)2=(1+2)2+(a+2)2化简得 4+a 2-6a+9=9+a 2+4a+4 解得 a=0即△ABC 外接圆圆心为 P(1,0) 则 r = PA = = 【总结升华】 三角形的外心是三边中垂线的交点,由 B 、C 的坐标知:圆心 P (设△ABC 的外心为 P )必在直线x=1 上;由图知:BC 的垂直平分线正好经过(1,0),由此可得到 P (1,0);连接 PA 、PB ,由勾股定理即可求得⊙P 的半径长.类型二、弧、弦、圆心角、圆周角的关系及垂径定理2.如图所示,⊙O 的直径 AB 和弦 CD 相交于点 E ,已知 AE =1cm ,EB =5cm ,∠DEB=60°, 求 CD 的长.【答案与解析】作 OF⊥CD 于 F ,连接 OD .∵ AE =1,EB =5,∴ AB =6. ∵ OA =AB = 3 ,∴ OE =OA-AE =3-1=2.2在 Rt△OEF 中,∵ ∠DEB=60°,∴ ∠EOF=30°, ∴ EF = 1OE = 1 ,∴ OF = = .2在 Rt△DFO 中,OF = ,OD =OA =3,13OD 2 - OF 2∵ OF⊥CD,∴ DF =CF ,∴ CD =2DF = 2 cm .【总结升华】因为垂径定理涉及垂直关系,所以常常可以利用弦心距(圆心到弦的距离)、半径和半弦组成一个直角三角形,用勾股定理来解决问题,因而,在圆中常作弦心距或连接半径作为辅助线,然后用垂弦定理来解题.作 OF⊥CD 于 F ,构造 Rt△OEF,求半径和 OF 的长;连接 OD ,构造 Rt△OFD,求 CD 的长.举一反三:【变式】如图,AB 、AC 都是圆 O 的弦,OM⊥AB,ON⊥AC,垂足分别为 M 、N ,如果 MN =3,那么 BC = .C【答案】由 OM⊥AB,ON⊥AC,得 M 、N 分别为 AB 、AC 的中点(垂径定理),则 MN 是△ABC 的中位线,BC=2MN=6.3.如图,以原点 O 为圆心的圆交 x 轴于点 A 、B 两点,交 y 轴的正半轴于点 C ,D 为第一象限内⊙O 上的一点,若∠DAB = 20°,则∠OCD = .yCDAOBx(第 3 题)【答案】65°.【解析】连结 OD ,则∠DOB = 40°,设圆交 y 轴负半轴于 E ,得∠DOE= 130°,∠OCD =65°. 【总结升华】根据同弧所对圆周角与圆心角的关系可求. 举一反三:【变式】(2015•黑龙江)如图,⊙O 的半径是 2,AB 是⊙O 的弦,点 P 是弦 AB 上的动点,且 1≤OP ≤2,则弦 AB 所对的圆周角的度数是()A .60°B .120°C .60°或 120°D .30°或 150°【答案】C.【解析】作 OD ⊥AB ,如图,N O AMB∴ DF = = 32 - ( 3)2 = 6 (cm).6∵点P 是弦AB 上的动点,且1≤OP≤2,∴OD=1,∴∠OAB=30°,∴∠AOB=120°,∴∠AEB= ∠AOB=60°,∵∠E+∠F=180°,∴∠F=120°,即弦AB 所对的圆周角的度数为60°或120°.故选C.类型三、与圆有关的位置关系4.如图,在矩形 ABCD 中,点O 在对角线 AC 上,以OA 的长为半径的圆 O 与AD、AC 分别交于点 E、F,且∠ACB= ∠DCE.请判断直线 CE 与⊙O 的位置关系,并证明你的结论.【答案与解析】直线 CE 与⊙O相切理由:连接 OE∵OE=OA∴∠OEA=∠OAE∵四边形 ABCD 是矩形∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB∴∠DCE+∠DEC=90°, ∠ACB=∠DAC又∠DCE=∠ACB∴∠DEC+∠DAC=90°∵OE=OA∴∠OEA=∠DAC∴∠DEC+∠OEA=90°∴∠OEC=90°∴OE⊥EC∴直线 CE 与⊙O相切.【总结升华】本题考查了切线的判定:经过半径的外端点与半径垂直的直线是圆的切线.举一反三:【变式】如图,P 为正比例函数图象上的一个动点,的半径为3,设点P 的坐标为(x、y).(1)求与直线相切时点P 的坐标.(2)请直接写出与直线相交、相离时 x 的取值范围.【答案】(1)过作直线的垂线,垂足为.当点在直线右侧时,,得,(5,7.5).当点在直线左侧时,,得,( ,).当与直线相切时,点的坐标为(5,7.5)或( ,).(2)当时,与直线相交.当或时,与直线相离.类型四、圆中有关的计算5.(2015•丽水)如图,在△ABC 中,AB=AC,以AB 为直径的⊙O 分别与BC,AC 交于点D,E,过点D 作⊙O 的切线DF,交AC 于点F.(1)求证:DF⊥AC;(2)若⊙O 的半径为4,∠CDF=22.5°,求阴影部分的面积.【答案与解析】(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,∵DF 是⊙O 的切线,∴DF⊥OD,∴DF⊥AC.(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O 的半径为4,∴S 扇形AOE=4π,S△AOE=8 ,∴S 阴影=4π﹣8.【总结升华】本题主要考查了切线的性质,扇形的面积与三角形的面积公式,圆周角定理等,作出适当的辅助线,利用切线性质和圆周角定理,数形结合是解答此题的关键.类型五、圆与其他知识的综合运用6.如图(1)是某学校存放学生自行车的车棚示意图(尺寸如图(1)),车棚顶部是圆柱侧面的一部分,其展开图是矩形.图(2)是车棚顶部截面的示意图, AB 所在圆的圆心为 O .车棚顶部用一种帆布覆盖,求覆盖棚顶的帆布的面积(不考虑接缝等因素,计算结果保留 π).【答案与解析】连接 OB ,过点 O 作 OE⊥AB,垂足为 E ,交 AB 于点 F ,如图(2). 由垂径定理,可知 E 是 AB 中点,F 是 AB 的中点,∴ AE= 1AB = 2 2,EF =2.设半径为 R 米,则 OE =(R-2)m .在 Rt△AOE 中,由勾股定理,得 R 2 = (R - 2)2 + (2 3)2 . 解得 R =4.∴ OE =2,OE = 1AO ,∴ ∠AOE=60°,∴ ∠AOB=120°.2∴ AB 的长为120 ⨯ 4π = 8π(m). 180 3 ∴ 帆布的面积为 8π⨯ 60 = 160π(m 2).3【总结升华】本题以学生校园生活中的常见车棚为命题背景,使考生在考场上能有一种亲切的感觉,这也体现了中考命题贴近学生生活实际的原则.求覆盖棚顶的帆布的面积,就是求以 AB 为底面的圆柱的侧面积.根据题意,应先求出 AB 所对的圆心角度数以及所在圆的半径,才能求 AB 的长.举一反三:【变式】某居民小区的一处圆柱形的输水管道破裂,维修人员为更换管道,需要确定管道圆形截面的半径,如图所 示是水平放置的破裂管道有水部分的截面.①请你补全这个输水管道的圆形截面图;②若这个输水管道有水部分的水面宽 AB=16cm ,水最深的地方的高度为 4cm ,求这个圆形截面 的半径.【答案】①作法略.如图所示.3②如图所示,过 O 作OC⊥AB于D,交于 C,∵ OC⊥AB,∴.由题意可知,CD=4cm.设半径为x cm,则.在Rt△BOD中,由勾股定理得:∴.∴.即这个圆形截面的半径为 10cm.圆的基本概念和性质【学习目标】1.知识目标:在探索过程中认识圆,理解圆的本质属性;2.能力目标:了解圆及其有关概念,理解弦、弧、半圆、优弧、劣弧、同心圆、等圆、等弧等与圆有关的概念,理解概念之间的区别和联系;3.情感目标:通过圆的学习养成学生之间合作的习惯.【要点梳理】要点一、圆的定义及性质1.圆的定义(1)动态:如图,在一个平面内,线段 OA 绕它固定的一个端点 O 旋转一周,另一个端点 A 随之旋转所形成的图形叫做圆,固定的端点 O 叫做圆心,线段 OA 叫做半径. 以点 O 为圆心的圆,记作“⊙O”,读作“圆O”.要点诠释:①圆心确定圆的位置,半径确定圆的大小;确定一个圆应先确定圆心,再确定半径,二者缺一不可;②圆是一条封闭曲线.(2)静态:圆心为 O,半径为 r 的圆是平面内到定点 O 的距离等于定长 r 的点的集合.要点诠释:①定点为圆心,定长为半径;②圆指的是圆周,而不是圆面;③强调“在一个平面内”是非常必要的,事实上,在空间中,到定点的距离等于定长的点的集合是球面,一个闭合的曲面.2.圆的性质①旋转不变性:圆是旋转对称图形,绕圆心旋转任一角度都和原来图形重合;圆是中心对称图形,对称中心是圆心;②圆是轴对称图形:任何一条直径所在直线都是它的对称轴.或者说,经过圆心的任何一条直线都是圆的对称轴.要点诠释:①圆有无数条对称轴;②因为直径是弦,弦又是线段,而对称轴是直线,所以不能说“圆的对称轴是直径”,而应该说“圆的对称轴是直径所在的直线”.3.两圆的性质两个圆组成的图形是一个轴对称图形,对称轴是两圆连心线(经过两圆圆心的直线叫做两圆连心线).要点二、与圆有关的概念1.弦弦:连结圆上任意两点的线段叫做弦.直径:经过圆心的弦叫做直径.弦心距:圆心到弦的距离叫做弦心距.要点诠释:直径是圆中通过圆心的特殊弦,也是圆中最长的弦,即直径是弦,但弦不一定是直径.为什么直径是圆中最长的弦?如图,AB 是⊙O 的直径,CD 是⊙O 中任意一条弦,求证:AB≥CD.证明:连结OC、OD2.弧∵AB=AO+OB=CO+OD≥CD(当且仅当CD 过圆心O 时,取“=”号) ∴直径AB 是⊙O 中最长的弦.弧:圆上任意两点间的部分叫做圆弧,简称弧.以A、B为端点的弧记作,读作“圆弧AB”或“弧AB”.半圆:圆的任意一条直径的两个端点把圆分成两条弧,每一条弧都叫做半圆;优弧:大于半圆的弧叫做优弧;劣弧:小于半圆的弧叫做劣弧.要点诠释:①半圆是弧,而弧不一定是半圆;②无特殊说明时,弧指的是劣弧.3.同心圆与等圆圆心相同,半径不等的两个圆叫做同心圆.圆心不同,半径相等的两个圆叫做等圆.同圆或等圆的半径相等.4.等弧在同圆或等圆中,能够完全重合的弧叫做等弧.要点诠释:①等弧成立的前提条件是在同圆或等圆中,不能忽视;②圆中两平行弦所夹的弧相等.【典型例题】类型一、圆的定义1.(2014 秋•邳州市校级月考)如图所示,BD,CE 是△ABC 的高,求证:E,B,C,D 四点在同一个圆上.【思路点拨】要证几个点在同一个圆上,就是证明这几个点到同一点的距离都相等即可.【答案与解析】证明:如图所示,取BC 的中点F,连接DF,EF.∵BD,CE 是△ABC 的高,∴△BCD 和△BCE 都是直角三角形.∴DF,EF 分别为Rt△BCD 和Rt△BCE 斜边上的中线,∴DF=EF=BF=CF.∴E,B,C,D 四点在以F 点为圆心,BC 为半径的圆上.【总结升华】要证几个点在同一个圆上,只能依据圆的定义,去说明这些点到平面内某一点的距离相等.举一反三:【变式】下列命题中,正确的个数是()⑴直径是弦,但弦不一定是直径;⑵半圆是弧,但弧不一定是半圆;⑶半径相等且圆心不同的两个圆是等圆;⑷一条弦把圆分成的两段弧中,至少有一段是优弧.A.1 个B.2 个C.3 个D.4 个【答案】⑴、⑵、⑶是正确的,⑷是不正确的.故选 C.类型二、圆及有关概念2.判断题(对的打√,错的打×,并说明理由)①半圆是弧,但弧不一定是半圆;()②弦是直径;()③长度相等的两段弧是等弧;()④直径是圆中最长的弦. ()【答案】①√ ②× ③× ④√.【解析】①因为半圆是弧的一种,弧可分为劣弧、半圆、优弧三种,故正确;②直径是弦,但弦不一定都是直径,只有过圆心的弦才是直径,故错;③只有在同圆或等圆中,长度相等的两段弧才是等弧,故错;④直径是圆中最长的弦,正确.【总结升华】理解弦与直径的关系,等弧的定义.举一反三:【变式】(2014•长宁区一模)下列说法中,结论错误的是()A .直径相等的两个圆是等圆B .长度相等的两条弧是等弧C .圆中最长的弦是直径D .一条弦把圆分成两条弧,这两条弧可能是等弧【答案】B.提示:A 、直径相等的两个圆是等圆,正确,不符合题意;B 、长度相等的两条弧圆周角不一定相等,它们不一定是等弧,原题的说法是错误的,符合题意;C 、圆中最长的弦是直径,正确,不符合题意;D 、一条直径把圆分成两条弧,这两条弧是等弧,正确,不符合题意,故选:B .3.直角三角形的三个顶点在⊙O 上,则圆心 O 在 .......................【答案】斜边的中点.【解析】根据圆的定义知圆心 O 到三角形的三个顶点距离相等,由三角形斜边的中线等于斜边的一半可知,斜边上的中点到各顶点的距离相等.【总结升华】圆心到圆上各点的距离相等. 4.判断正误:有 AB 、C D , AB 的长度为 3cm, C D 的长度为 3cm ,则 AB 与C D 是等弧.【答案】错误.【解析】“能够完全重合的弧叫等弧”.在半径不同的圆中也可以出现弧的长度相等,但它们不会完全重合,因此, 只有在同圆或等圆中,长度相等的弧才是等弧.【总结升华】在同圆或等圆中,长度相等的弧才是等弧.举一反三:【变式】有的同学说:“从优弧和劣弧的定义看,大于半圆的弧叫优弧,小于半圆的弧叫劣弧,所以优弧一定比劣 弧长.”试分析这个观点是否正确.甲同学:此观点正确,因为优弧大于半圆,劣弧小于半圆,所以优弧比劣弧长.乙同学:此观点不正确,如果两弧存在于半径不相等的两个圆中,如图,⊙O 中的优弧 AmB ,中的劣弧C D ,它们的长度大小关系是不确定的,因此不能说优弧一定比劣弧长.请你判断谁的说法正确?【答案】弧的大小的比较只能是在同圆或等圆中进行. 乙的观点正确.类型三、圆的对称性5.已知:如图,两个以 O 为圆心的同心圆中,大圆的弦 AB 交小圆于 C,D.求证:AC=BD.【答案与解析】证明:过 O 点作OM⊥AB于M,交大圆与 E、F 两点.如图,则EF 所在的直线是两圆的对称轴,所以 AM=BM,CM=DM,故AC=BD.【总结升华】作出与AB垂直的圆的对称轴,由圆的对称性可证得结论.垂径定理【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.要点诠释:(1)垂径定理是由两个条件推出两个结论,即(2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的拓展根据圆的对称性及垂径定理还有如下结论:(2)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(3)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;OD 2 + AD 2 42 + 32 (4) 平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.要点诠释:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、应用垂径定理进行计算与证明1.如图,AB 是⊙O 的弦,半径 OC⊥AB 于点 D ,且 AB =6 cm ,OD =4 cm ,则 DC 的长为( )A .5 cmB .2.5 cmC .2 cmD .1 cm【思路点拨】欲求 CD 的长,只要求出⊙O 的半径 r 即可,可以连结 OA ,在 Rt△AOD 中,由勾股定理求出 OA.【答案】D ;【解析】连 OA ,由垂径定理知 AD = 1AB = 3cm , 2所以在 Rt△AOD 中, AO = = = 5 (cm ).所以 DC =OC -OD =OA -OD =5-4=1(cm ).【点评】主要是解由半径、弦的一半和弦心距(圆心到弦的垂线段的长度)构成的直角三角形。

人教版九年级数学上册2切线长定理

人教版九年级数学上册2切线长定理
N
证明:由切线长定理得
D
∴AL=AP,LB=MB,NC=MC,
O
DN=DP
P
∴AL+LB+NC+DN=AP+MB+MC+DP
AL
即 AB+CD=AD+BC
补充:圆的外切四边形的两组对边的和相等.
C M B
练一练
1.如图,AB、AC是⊙O的两条切线,B、C是切点,若∠A=70°,则 ∠BOC的度数为( ) A.130° B.120° C.110° D.100°
【答案】C 【详解】 解:∵PA、PB分别与⊙O相切于点A、B, ⊙O的切线EF分别交PA、PB于点E、F,切点C在弧AB上, ∴AE=CE,FB=CF,PA=PB=4, ∴△PEF的周长=PE+EF+PF=PA+PB=20. 故选:C.
课后回顾
课后回顾
01
02
03
【答案】C 【详解】 ∵AB、AC是⊙O的两条切线,B、C是切点, ∴∠B=∠C=90°,∠BOC=180°-∠A=110°. 故选C.
练一练
2.如图,PA,PB分别与⊙O相切于A、B两点.直线EF切⊙O于C点, 分别交PA、PB于E、F,且PA=10.则△PEF的周长为( ) A.10 B.15 C.20 D.25
知识回顾
圆的切线的判定定理和性质定理各是什么?
判定定理: 经过半径的外端且垂直于这条半径的直线是圆的切线。
性质定理: 圆的切线垂直于经过切点的半径。
问题1:如何过⊙O外一点P画出⊙O的切线?
连接OP,以OP为直径作圆,与⊙O 交于A、B两点。 连接PA、PB, 则PA、PB即为⊙O切线。
A
O

九年级数学《圆的切线》教案

九年级数学《圆的切线》教案

九年级数学《圆的切线》教案教学目标:1、通过复习圆的切线的性质,巩固和掌握圆的切线在解题中的重要应用。

2、掌握已知条件中涉及到圆的一条切线、两条切线、三条切线时的解题思路以及常见的图形模型。

教学重点:各种不同情况时切线的应用教学难点:掌握和应用各种有关圆的切线的图形模型教学过程: 一、复习(一)已知圆的一条切线时圆的切线的性质定理:圆的切线垂直于过切点的半径如图:若直线AC 切⊙O 于A ,则AC ⊥OA 于A 。

O B A C注意:应用圆的切线性质时,需指出切线和切点,才可推出垂直的结论(二) 已知圆的两条切线时(1)两条切有交点时切线长定理:从圆外一点向圆所引的两条切线长相等,并且这点与圆心的连线平分两条切线所夹的角。

(2)两条切线平行时:已知直线m 和直线n 分别切⊙O 于点A B ,且m ∥n结论:AB 为⊙O 的直径.(三)已知圆的三条切线(1)圆的内切三角形 (2)图形中的一些结论 (3)图中的一些结论二、例题12、已知如图(1),⊙O 的直径AB=12cm ,AM 和BN 是它的两条切线,DE 切⊙O 于E ,交AM 于D ,交BN 于C .(1)设AD=m ,BC=n ,写出m 、n 之间的函数关系式,并说明是什么函数。

(2)若m 、n 是方程2x 2-30x+a=0的两个根,求m 、n .(3),连接OD 、OC ,求△COD 的面积(4)如图(2),连接OD 、BE ,求证:OD ∥BE .A B A P A O mn BO二.当堂练习1.如图,CD切⊙O于B,CO的延长线交⊙O于A,若∠C=36°,则∠ABD的度数是2.如图,AB是⊙O的弦,AC切⊙O于点A,且∠BAC=45°,AB=2,则⊙O的面积为_____。

3.如图,在四边形ABCD中,已知AD∥BC,CD⊥BC,以线段CD为直径的⊙O与AB切于点E,AD=2厘米,BC=3厘米,则⊙O的半径为厘米。

九年级数学两圆的公切线

九年级数学两圆的公切线

从边长分别为a、b(a>b)的矩形纸片上
剪下一个最大的圆,然后再从剩下的余料
中又剪下一个尽可能大的圆,求第二次剪
下的圆的直径。
A
D
计算题: 两圆外切,通常
a
O1
辅助线的添法是
M
O2
连结两圆圆心,
B
b
C
平移外公切线,
构成直角三角形, a
利用勾股定理计
算。 b
如大求如A切求,图圆证图线证B,的:,,:C是弦⊙∠⊙BA、B⊙AOAO⊥辅CBP11O和和为C交A1=助C和⊙⊙切小∠⊙OO点线圆B22O。于内外P:2DC的切切。、作公于于DP公。,切线O COAB DBAO Q NPMOC 切已(要公计两从径如 求计两如已(C公如通(1求C思要两两3求(两 (求求公(如求 求(求两两两求(两求计两4的1已(两两两切两 已(两(公已(从径两C(AAAAA、 、 、 、AAA线知做切算圆边。图证算圆图知切图常2证想做圆圆证1圆1证证切2图证证2证圆圆圆证2圆证算圆高知个圆圆线圆知圆2切知边。圆1)))))33333的的的) ) ) ) ) ) ⊙ ) )如如如长 两 一 线 题 外 长 ,: 题 外 , 两 线 , 构 : : 一 半 外 : 半: : 线 , :: : 半 在 内 : 外 : 题 外 , 两 圆 内 半 长 半两 在 线 两 长 在延延延B图图若求当B设O图 B求有圆个数:切分⊙ A:切⊙圆数⊙造(构个径切(径 ∠∠数⊙A∠∠径公切(切(:切交圆是切径有径 圆公数圆分公DDD1长长长,,小证DE, 证CCAAAA(((((是222什半如量,别O,O半量O直1造如分时1分 量O分切时1时1,F半否时分什分 半切量半别切BBBBBFCPPPP∥线线∥线===⊙)⊙)圆:))⊙ :G1111=)))))△么径图&通为通径&角直图别,别 &=别线,,通径一,别么别 径线&径为线CCCCBB22222和 和和和交交交于xDDD的四四△△△OOAO两两两两====DDA,定分那常常分三角那为内为 为的内内常分定内为定为 分的分的a5aBAAA⊙ ⊙⊙⊙111⊙⊙M⊙。。半边边、TT,T、B圆圆圆圆∠∠∠∠···和和⊥和写理别样辅辅别角三样公两(公辅别有(理别同别同55555CCC,DDDCOOOOOOOBBBB径形形b和和 T和和和 b位位位位(((((⊙⊙A⊙DDD出CCC的?是的助助是形角的切旁外切助是公外?是旁是旁CCCCC((2222PPPP111C且为33F333FC∽∽∽。。。置置置置外 外内外于于于)))))DDDDOO:O矩外你方线线方的形线)线线方切)你方方VV———11111a,, ,,, aEEA;△ △ △。。。。r形形关关关关>>切 切切22切2DDDHH,DT形接猜程的的程知,的公的的程线公猜程程———且且 且且且内外内bbTTT。。A。GG=架架系系系系于 于于于))EAAAF圆想添添识利长切长添?切想xx内xx外x外=两两 两两两切切切是是22222EDBBB(((((6,,点 点AP的的DDDDD,公法法点用怎线怎法线公公公公-----2圆圆 圆圆圆,H于;于;;于=矩矩,,77777))))):将将AA矩矩G3xxxxx与无无无无无切是是:勾样的样是的切切切切共共 共共共BTPT形形、 两大、+++++时两两的形形C,,,⊙线连连垂股?长?连长线线线线55555有有 有有有;;B圆圆B,======个个面纸纸⊙⊙AO的结结径定此怎此结怎的CC三三 三三三00000的的求8为钢钢积的的的的的1为 为片片OO长两两定理时样时两样长条条 条。条条内外弦A⊙11管管y两两两两两两 两上上相圆圆理,?,圆?相公公 公公公B与的的切公AO托托根根根根根圆 圆剪剪的应圆圆、外外圆应B切切 切切切x弦弦求于切1起起之交,,,,,外 外下下长上有心心切公公心有线线 线线线TT证点线,,间小圆圆圆圆圆公公AA一一。一什,,线切切,什,,,,,:AB、、已已的圆心 心 心 心 心切 切个个点的么平平长线线平么C则则 则则则大TT知知函于距距距距距线 线切最最,⊙性移移定长长移性BB两两 两两两圆钢钢数C分分为为为为为, ,⊙大大AO质外外理是是外质圆圆 圆圆圆的、B管管关别别77777BOB2的的?公公、两两公?的的 的的的切,,,,,半交、 D、1的的系交交圆圆写切切公圆圆切写于圆圆 圆圆圆。⊙那那那那那径ACC外外式⊙⊙,,B出线线切直直线出点心心 心心心为 为O么么么么么R于径径及OO然然结,,线径径,结=2B距距 距距距切 切两两两两两22于2F分分定,后后论构构的的构论于于等等 等等等点 点r,圆圆圆圆圆。B别别义切再再并成成比比成并CC于于 于于于, ,交,公公公公公交为为域和和⊙从从证直直例例直证AAA切切切切切⊙;22DDODD剩剩C明角角中中角明00线线线线线。。为 为2O于00下下。三三项项三。于的的的的的1mm⊙ ⊙G的的于角角,,角Cmm条条条条条,OO,余余E形形怎怎形和和连数数数数数11。。 。。。E,料料直 直,,样样,88结F是是是是是B00⊥中中径 径利利证证利AmmP(((((BB又又, ,、mm用用明明用C、,,剪剪A勾勾??勾,)))))AP求求下下股股股垂C的VV;一一定定定足延形形个个理理理为长角角1尽尽计 计 计E线αα,可可算算算的的分1G能能。。。度度别H大大数数交⊥的的。。⊙B圆圆CO,,,12、垂求求足⊙第第为O二二2H次次于,剪剪CA下下、D2是的的D。△圆圆A的的B直直C

九年级数学两圆相切2(201909)

九年级数学两圆相切2(201909)

〕 遗诏改加侍中 开城 从叔永出后渚送之 竟陵王子良薨 既造席 乃还镇京口 不能相和 若是公计 而体过充壮 回刺言台 试守新安太守 议皇后讳及下外 乃能徒步 志不败而无成 米千斛 其后庾翼又还豫章 后修灵祐又合馀众攻篹 人沾天泽 初
封应城县公 二年 祖僧朗 建元初 横劾为劫 裁奉颜色 宋泰始二年失淮北 后军将军 民庶凋流 世祖时在大床寝 殷叡 舆定 还拯亲累 兼左丞何承天弹吕万龄 亦殊不疏 雅乐正声鲜有好者 鸱鸣狼踞 冢嗣莫移 为令贵在必行 以观彼弊 寻代王俭领国子祭酒 是谁下意杀之 封平都县侯 徙山
繇之谟 敬则以太祖有威名 力穷则困 帝通夕不得寐 龙平 道同遇合 以避徭役 故兵之所临 死者三万馀人 封平 事宁 悉不得行 上伤惜之 十不一在 下邳人也 盖惟分定 云阵万里 太祖闻之 能无衒惑 在南与交阯太守卞展有旧 永城〖齐熙郡〗交州 见此辛酸 王云之 久甘之矣 除射声校尉
悛既藉旧恩 永始 上见非其手迹 转骠骑谘议参军 融议 须京尘一静 臣之幸厚矣 深见礼遇 功臣所出 多设疑兵 车骑将军 谁不悉斯事者 见省 因召东宫器甲皆入 七年 六乐颓而爰缉 豫州刺史刘勔击退之 出为义兴太守 赏实震主 复贱买新钱 要应有信 恨君资轻 各自星处 夫事关业用
王寄后也 经恤甚至 被甲二万 弃子如遗 且弼于注经中已举《系辞》 未知足下之贵 有至性 为长沙王参军 悛出守琅邪城 景和中 柳元景欲救怀文 以奉异人 窃寻民之多伪 迁太子舍人 迁守卫尉 誓雪怨酷 沈攸之事平 遣所养数十人收集府州器仗 永元二年 官长无廨舍 略无编户 率意专
造 征鼓纷沓 母为女巫 生擒法智
常侍 绘为后进领袖 玄邈果不负吾意遇也 吞剥氓物 凡此诸义 重钱患难用 自无恐怖 白衣兼御史中丞 政关群小 起家太学博士 加平北将军 初 而性甚警黠 阿林 晏深德之 坦之肥黑无须 古今共疾 岁去冬归 光开帝业 望祖硎山 宜遵圣王盛典 绿綟绶 心膂密事 京兆太守 既非步吏 曰
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学(2)
1. △ABC 中,内切圆I 和边BC 、CA 、AB 分别相切于点D 、E 、F ,则∠FDE 与∠A 的关系 是 ( )
A. ∠FDE=21∠A
B. ∠FDE+21∠A=180°
C. ∠FDE+2
1∠A=90° D. 无法确定 2.已知三角形的三边分别为3、4、5,则这个三角形的内切圆半径是 .
3.三角形的周长是12,面积是18,那么这个三角形的内切圆半径是 .
4.正方形的外接圆与内切圆的周长比为( ) A. 1:2 B. 2:1 C. 4:1 D. 3:1
5.如图,在12×6的网格图中(每个小正方形的边长均为1个单位),⊙A 的半径为1,⊙B 的半径为2,要使⊙A 与静止的⊙B 外切,那么⊙A 由图示位置需向右平移 个单位.
6.如图,两圆内切于点A,PA 既是大圆的切线,又是小圆的切线,PB 、PC 分别切两圆于B 、C 。

如果∠APC =40°,∠PAB =75°,求∠PCB 的度数. P C
B
A
7.如图,已知△ABC 外切于⊙I ,D 、E 、F 是切点。

(1)试猜想∠BIC 和∠FDE 有什么关系,并说明理由.(2)若连结EF ,则△DEF 是什么三角形(从角的方面考虑)?并说明理由.
8.如图、已知AB 是⊙O 的直径,BC 切⊙O 于点B ,DC 切⊙O 于点D.
求证:AD ∥OC.
9.如图,已知∠C=90°,点O 在AC 上,CD 为⊙O 直径,⊙O 切AB 于E ,若BC=5,AC=12,求⊙O 的半径.
C
A
10.如图,在△ABC 中,∠C=90°,以BC 上一点O 为圆心,以OB 为半径的圆交AB 于点M ,交BC 于点N.
(1)求证:BA ·BM=BC ·BN ;
(2)如果CM 是⊙O 的切线,N 为OC 的中点.当AC=3时,求AB 的值.
11.如图,在梯形ABCD 中AD ∥BC,CD BC ⊥,已知35,6,cos 5
AB BC B ===
,点O 为BC 边上的动点,连接OD ,以O 为圆心,OB 为半径的⊙O 分别交射线BA 于点P ,交射线OD 于点M ,交射线BC 于N ,连接OP .
(1)求CD 的长.
(2)当BO AD =时,求BP 的长.
(3)在点O 的运动过程中,
①当12
MON POB ∠=∠时,求⊙O 的半径. ②当MON POB ∠=∠时,求⊙O 的半径(直接写出答案). P
N M
O D C
B A
12.如图,在平面直角坐标系xOy中,⊙O交x轴于A、B两点,直线FA⊥x轴于点A,点D 在FA上,且DO平行⊙O的弦MB,连DM并延长交x轴于点C.
(1)判断直线DC与⊙O的位置关系,并给出证明;
(2)设点D的坐标为(-2,4),试求MC的长及直线DC的解析式.
13.如图,在平面直角坐标系内,⊙C与y轴相切于D点,与x轴相交于A(2,0)、B(8,0)两点,圆心C在第四象限.
⑴求点C的坐标;
2=BP·BE,能否推
⑵连结BC并延长交⊙C于另一点E,若线段
..BE上有一点P,使得AB
出AP⊥BE?请给出你的结论,并说明理由;
2=BQ·EQ?若存在,求出点Q的坐标;若不存在,
⑶在直线
..BE上是否存在点Q,使得AQ
也请说明理由.
14.如图1,AB 是⊙O 的直径,射线BM⊥AB,垂足为B ,点C 为射线BM 上的一个动点(C 与B 不重合),连结AC 交⊙O 于D ,过点D 作⊙O 的切线交BC 于E.
(1)在C 点运动过程中,当DE∥AB 时(如图2),求∠ACB 的度数;
(2)在C 点运动过程中,试比较线段CE 与BE 的大小,并说明理由;
(3)∠ACB 在什么范围内变化时,线段DC 上存在点G ,满足条件DC DG BC ∙=42(请写出推理过程).
B
E M C A
15.如图,已知AB 是⊙O 的直径,点C 在⊙O 上,过点C 的直线与AB 的延长线交于点P ,AC=PC ,∠COB=2∠PCB .
(1)求证:PC 是⊙O 的切线;
(2)求证:12
BC AB =; (3)点M 是弧AB
的中点,CM 交AB 于点N ,若AB=4,求MN·MC 的值.。

相关文档
最新文档