26.1.1二次函数

合集下载

26.1.1二次函数教学案

26.1.1二次函数教学案

主备人 张 伟 年级主任签字 使用人修 改 补 充【尝试应用】例1.下列函数表达式中,哪些是二次函数?哪些不是?若是二次函数,请指出各项对应项的系数.(1)y =1-3x 2 (2)y =3x 2+2x (3)y =x (x -5)+2(4)y =3x 3+2x 2(5)y =x +1x例2. 关于x 的函数mm xm y -+=2)1(是二次函数, 求m 的值.注意:二次函数的二次项系数必须是 的数。

3.函数y =(m -2)x 2+mx -3(m 为常数).(1)当m__________时,该函数为二次函数; (2)当m__________时,该函数为一次函数. 4.课堂训练:P3-- 练习 【畅谈收获】你认为今天这节课最需要掌握的是 __________________________。

【达标检测】(带*为选做) (一)必做题 :举一反三1.下列函数中是二次函数的是( ) A .y =x +12B .y =3 (x -1)2C .y =(x +1)2-x 2D .y =1x2 -x2.若函数y =(a -1)x 2+2x +a 2-1是二次函数,则( ) A .a =1 B .a =±1 C .a ≠1 D .a ≠-1 3.y =(m +1)xmm -2-3x +1是二次函数,则m 的值为_________________.4.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 s =5t 2+2t ,则当t =4秒时,该物体所经过的路程为( ) A .28米 B .48米 C .68米 D .88米5.一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式. _________________ (二)选做题:劝君未解不要走,解得好题快乐人1.已知二次函数y =-x 2+bx +3.当x =2时,y =3,求 这个二次函数解析式。

2.已知y 与x 2成正比例,并且当x =-1时,y =-3.求: (1)函数y 与x 的函数关系式;(2)当x =4时,y 的值; (3)当y =-13时,x 的值.修 改 补 充课 题 《26.1.1二次函数》教学案学习目标1、经历对实际问题情境分析确定二次函数表达式的过程,理解并掌握二次例函数的概念;2、能判断一个给定的函数是否为二次例函数;3、能根据实际问题中的条件确定二次例函数的解析式。

二次函数的全章教案

二次函数的全章教案

26.1二次函数(一)一、学习目标1.知识与技能目标:(1)理解并掌握二次函数的概念;(2)能判断一个给定的函数是否为二次函数,并会用待定系数法求函数解析式;(3)能根据实际问题中的条件确定二次函数的解析式。

二、学习重点难点1.重点:理解二次函数的概念,能根据已知条件写出函数解析式; 2.难点:理解二次函数的概念。

三、教学过程(一)创设情境、导入新课:回忆一下什么是正比例函数、一次函数、反比例函数?它们的一般形式是怎样的? (二)自主探究、合作交流:问题1: 正方体的六个面是全等的正方形,如果正方形的棱长为x ,表面积为y ,写出y 与x 的关系。

问题2: n 边形的对角线数d 与边数n 之间有怎样的关系?问题3: 某工厂一种产品现在的年产量是20件,计划今后两年增加产量.如果每年都比上一年的产量增加x 倍,那么两年后这种产品的数量y 将随计划所定的x 的值而定,y 与x 之间的关系怎样表示?问题4:观察以上三个问题所写出来的三个函数关系式有什么特点?小组交流、讨论得出结论:经化简后都具有 的形式。

问题5:什么是二次函数?形如 。

问题6:函数y=ax²+bx+c ,当a 、b 、c 满足什么条件时,(1)它是二次函数? (2)它是一次函数? (3)它是正比例函数?(三)尝试应用:例1. 关于x 的函数 是二次函数, 求m 的值.mm 221)x (m y --=注意:二次函数的二次项系数必须是的数。

例2.已知关于x的二次函数,当x=-1时,函数值为10,当x=1时,函数值为4,当x=2时,函数值为7。

求这个二次函数的解析式.(待定系数法)(四)巩固提高:1.下列函数中,哪些是二次函数?(1)y=3x-1 ; (2)y=3x2+2; (3)y=3x3+2x2; (4)y=2x2-2x+1; (5)y=x2-x(1+x); (6)y=x-2+x.2.一个圆柱的高等于底面半径,写出它的表面积S与半径R之间的关系式。

人教版九年级数学《26.1.1二次函数》优质说课稿

人教版九年级数学《26.1.1二次函数》优质说课稿

各位老师:大家好!今天我说课的题目是:《26.1.1二次函数》。

我准备从如下几个方面展示:教材分析,教法、学法分析,教学程序设计,评价与反思。

一、教材分析(一)教材内容的地位和作用《二次函数》是初中数学教材九年级上册第二章第一节内容。

在此之前,我们学习了平面直角坐标系、认识了函数,学习反比例函数,以及一次函数,对函数已经有了一定的认识。

《二次函数》在初中数学学习中占据了非常重要的地位,是初中数学的核心内容,是学生体会数形结合思想的载体,华罗庚说过:数缺形时少直观,形缺数时难入微。

是对函数学习最好的注解。

(二)教学目标根据上述教材分析,考虑到学生已有的认知结构和心理特征,制定如下教学目标:知识与技能:经历二次函数定义的过程,掌握二次函数的一般式;学会用待定系数法求二次函数关系式。

数学思考:通过用函数表述数量关系的过程,体会模型的思想,建立应用意识。

问题解决:初步学会在具体的情境中从数学的角度发现问题和提出问题,并运用数学知识和方法解决简单的实际问题,增强应用意识。

情感与态度:使学生明白数学来源于生活,从一般情境中归纳出特点,激发学生探究数学问题的兴趣。

(三)教学重点、难点教学重点:二次函数的定义及其一般式,运用待定系数法求二次函数;教学难点:概括二次函数的模型。

二:教法、学法分析类比学习:变量与变量的关系的一种特殊形式共同点:变量与变量的关系,不同点:形式不同,()20=++≠y ax bx c a教法与学法可以以此为基础进行叙述。

由于本节课的内容是学生在学习了《一次函数》和《反比例函数》的基础上的加深,所以可以利用学生已有的知识在问题一、二中放手让学生先去探究探究两个问题中的变量之间的关系,在得到具体的关系式后,再引导学生观察关系式都有着什么样的特点,可以和一元二次方程比较认识,并最终得出二次函数的一般式及二次项系数的取值为什么不为零的道理。

(我改的)学生在我的鼓励引导下,克服思维定势,并通过小组讨论、合作交流等方式,增加学生的学习积极性和自信心,从而培养浓厚的学习兴趣。

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3

华师大版数学九年级下册《26.1 二次函数》教学设计3一. 教材分析华师大版数学九年级下册《26.1 二次函数》是学生在初中阶段学习二次函数的起始章节,它是在学生已经掌握了函数概念、一次函数和二次方程的基础上进行的。

本节课的主要内容是介绍二次函数的定义、性质和图像,以及二次函数的顶点公式。

教材通过生动的实例和丰富的练习,帮助学生理解和掌握二次函数的知识,为学生进一步学习高中数学打下坚实的基础。

二. 学情分析九年级的学生已经具备了一定的数学基础,对函数概念、一次函数和二次方程有一定的了解。

但二次函数相对于一次函数来说,其图像和性质更加复杂,需要学生通过实例和练习来进一步理解和掌握。

此外,学生的学习兴趣和动机对他们的学习效果有很大影响,因此教师需要设计有趣的教学活动来激发学生的学习兴趣。

三. 教学目标1.知识与技能:使学生理解和掌握二次函数的定义、性质和图像,能够运用二次函数的知识解决实际问题。

2.过程与方法:通过实例和练习,培养学生的观察能力、推理能力和解决问题的能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的合作意识和创新精神。

四. 教学重难点1.重点:二次函数的定义、性质和图像。

2.难点:理解二次函数的顶点公式,并能运用其解决实际问题。

五. 教学方法采用问题驱动法、案例教学法和小组合作法。

通过提出问题,引导学生思考和探索;通过分析具体案例,使学生理解和掌握二次函数的知识;通过小组合作,培养学生的合作意识和解决问题的能力。

六. 教学准备1.准备相关的教学案例和练习题。

2.准备多媒体教学设备,如投影仪和黑板。

3.准备教案和教学笔记。

七. 教学过程1.导入(5分钟)通过提出问题,引导学生思考和探索二次函数的概念。

例如:“什么是二次函数?它与一次函数有什么区别?”2.呈现(10分钟)通过分析具体案例,使学生理解和掌握二次函数的定义、性质和图像。

例如,展示一个二次函数的图像,引导学生观察其特点。

26.1.1 二次函数

26.1.1 二次函数

年级: 九年级 学科: 数学 命题人: 王金涛 审核人: 叶书生
东 辛 店 中 学 验 标 题
(满分: 50+20 时间: 10 分钟 成绩: ) 必做题:(共5题,每题10分)
1、下列函数中是二次函数的是( )
A .y =x +12
B .()21-=x y
C .()221x x y -+=
D .x x
y -=21 2、若函数()12122-++-=a x x a y 是二次函数,则( )
A .a =1
B .a =±1
C .a ≠1
D .a ≠-1 3.y =(m +1)x m m -2-3x +1是二次函数,则m 的值为_________________.
4.在一定条件下,若物体运动的路段s (米)与时间t (秒)之间的关系为 t t s 252+=,则当t =4秒时,该物体所经过的路程为( )
A .28米
B .48米
C .68米
D .88米
5.一个长方形的长是宽的2倍,写出这个长方形的面积y 与宽x 之间的函数关系式。

____________ _____
选做题:(共2题,每题10分)
1.已知二次函数32++-=bx x y 。

当x =2时,y =3,求这个二次函数解析式。

2.已知y 与2x 成正比例,并且当x =-1时,y =-3.求:
(1)函数y 与x 的函数关系式;
(2)当x =4时,y 的值;
(3)当y =-13 时,x 的值.。

九年级数学下第26章二次函数26.1二次函数及其图象2二次函数y=ax2的图象习题新人教

九年级数学下第26章二次函数26.1二次函数及其图象2二次函数y=ax2的图象习题新人教

•1、书籍是朋友,虽然没有热情,但是非常忠实。2022年3月27日星期日2022/3/272022/3/272022/3/27 •2、科学的灵感,决不是坐等可以等来的。如果说,科学上的发现有什么偶然的机遇的话,那么这种‘偶然的机遇’只能给那些学有素养的人,给那些善于独 立思考的人,给那些具有锲而不舍的人。2022年3月2022/3/272022/3/272022/3/273/27/2022 •3、做老师的只要有一次向学生撒谎撒漏了底,就可能使他的全部教育成果从此为之失败。 2022/3/272022/3/27March 27, 2022
x> 0时 , y随 x的 增 大 而 增 大 , x< 0时 , y随 x的 增 大 而 减 小 .
2.a<0⇔开口向下⇔有最大值⇔
x> 0时 , y随 x的 增 大 而 减 小 , x< 0时 , y随 x的 增 大 而 增 大 .
知识点 2 求二次函数y=ax2的解析式
【例2】(2013·山西中考)如图是我省某地一座抛物线形拱桥,
(1)求此抛物线的解析式. (2)过点P作CB所在直线的垂线,垂足为点R, 求证:PF=PR.
【解析】(1)由题意可得:点A的坐标为(2,-1),
∵抛物线的顶点为坐标原点O,
∴可设抛物线的解析式为:y=ax2, 将点A(2,-1)代入可得:4a=-1,解得a=- 1 ,
4
∴抛物线的解析式为y=- 1 x2.
【例1】函数 ym2xm 2m 4 是关于x的二次函数,求:
(1)满足条件的m的值. (2)m为何值时,抛物线有最低点?求出这个最低点,这时当x为何 值时,y随x的增大而增大? (3)m为何值时,抛物线的开口方向向下?这时当x为何值时,y随x 的增大而减小?
【解题探究】(1)函数是二次函数的条件是自变量的最高次数

26.1 二次函数y=ax2的图象与性质 精品作业课件(课程配套练习) 公开课一等奖课件

26.1    二次函数y=ax2的图象与性质 精品作业课件(课程配套练习) 公开课一等奖课件

1 2 解:(1)y= x (2)图略 (3)抛物线;当 x>0 时,y 随 x 4 的增大而增大 (4)有最小值为 0
18. (10 分)如图所示, 某桥洞的截面是抛物线形, 在图中 建立的直角坐标系中,抛物线所对应的二次函数的关系式为 1 2 y=- x ,当桥洞中水面宽 AB 为 12 米时,求水面到桥拱顶 4 点 O 的距离.
解:水面到桥拱顶点 O 的距离为 9 米
【综合运用】 19.(12 分)已知点 A(-3,-9)是顶点在原点的抛物线上 的一点 ,点 P(x,y)是抛物线上的一个动点 ,且在第四象限 内.点 B 在 x 轴正半轴上,且 OB=4,△OPB 的面积为 S. (1)求抛物线的函数关系式; (2)分别求 S 和 y,S 和 x 之间的函数关系式,并判断它们 是什么函数,直接写出自变量的取值范围.
)
3.(4分)某课外兴趣小组为了了解所在地区老年人的健康状况,分别做了四种不 同的抽样调查,你认为抽样比较合理的是( D ) A.在某个公园调查了1 000名老年人的健康状况 B.在医院调查了1 000名老年人的健康状况 C.调查了10名老年邻居的健康状况 D.利用派出所的户籍网随机调查了该地区10%的老年人的健康状况 4.(4分)下列调查的样本缺乏代表性的是( C ) A.在大学生中调查大学生课余时间娱乐的主要方式 B.调查学号为3的倍数的学生,以了解学生对学校某项新举措的意见和建议 C.在老年活动中心调查市民对春节联欢会的喜好程度 D.在某校九年级中调查全市九年级学生的身体发育情况
解: (1)y=-x2 (2)S=-2y, 它是一次函数, 自变量 y< 0;S=2x2,它是二次函数,自变量的取值范围为 x>0.
抽样调查时 , 所选取的样本要有 __ 代表性 __ , 样本容量要足够 __大__.仅仅增加调查人数不一定能够提高调查质量 ,开展调查 之前,要仔细检查总体中的每个个体是否都有可能成为 _调查对象 __.

初中数学人教课标版九年级下册第二十六章 二次函数《2二次函数》

初中数学人教课标版九年级下册第二十六章 二次函数《2二次函数》
(1) y=200(1+x)2,
即y=200x2+400x+200(X>0)
a=200,b=400,c=200
(2)y=6x2(X>0)
a=6,b=0,c=0
(3)S=-L2+30L(0<L<30)a=-1,b=30,c=0
提问:1.上述概念中的a为什么不能是0?
2.对于二次函数y=ax2+bx+c中的b和c可否为0?若b和c各自为0或均为0,上述函数的式子可以改写成怎样?你认为它们还是不是二次函数?
内容:《26.1二次函数(1)》
设计意图
本课的具体学习任务:本节课要学习的内容是二次函数所描述的关系,重点是通过分析实际问题,以及用关系式表示这一关系的过程,引出二次函数的概念,获得用二次函数表示变量之间关系的体验。然后根据这种体验能够表示简单变量之间的二次函数关系,并能利用尝试求值的方法解决实际问题.让学生通过分析实际问题(探究橙子的数量与橙子树之间的关系),从学生感兴趣的问题入手,并广泛联系多学科问题,使学生好奇而愉快地感受二次函数的意义,感受数学的广泛联系和应用价值.在教学中,让学生通过观察、思考、合作,交流,归纳出二次函数的概念,并从中体会函数的建模思想。
2、化工厂在一月份生产某种产品200吨,三月份生产y吨,则y与月平均增长率x自变量的关系是__y=200(1+x)2,即y=200x2+400x+200(X>0)_
3、有一个矩形,它的长与宽的和为30cm,设长为L,矩形面积为S,则S与L的函数关系是___S=-L2+30L (0<L<30)
请大家先独立思考,再互相交流后回答
(三)情感态度与价值观
1.从学生感兴趣的问题入手,数形结合能使学生积极参与数学学习活动,对数学有好奇心和求知欲.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

y=ax2+bx+c (其中a、b、c是常数,a≠0) 也叫二次函数的一般形式
注意:Biblioteka (1)等号左边是变量y,右边是关于自 变量x的 整式。 (2)a,b,c为常数,且 a≠0. (3)等式的右边最高次数为 2 ,可以没 有一次项和常数项,但不能没有二次项。 (4)x的取值范围是任意实数。
1.说出下列二次函数的二次项系数、 一次项系数、常数项. (1) y=-x2+58x-112
(2)y=πx2
2.指出下列函数y=ax² +bx+c中的a、b、c (1) y=-3x2-x-1 (2) y=5x2-6 (3) y=x(1+x)
例1.下列函数中,哪些是二次函数? 若是,分别指出二次项系数,一次项系数, 常数项。
(1) y=3(x-1)² +1 (3) s=3-2t²
1 __
(2) y=x+ x (4) y=(x+3)² -x²
26.1.1二次函数
回顾
什么叫函数? 在某变化过程中的两个变量x、y, 当变量x在某个范围内取一个确定的值, 另一个变量y总有唯一的值与它对应。 这样的两个变量之间的关系我们 把它叫做函数关系。 对于上述变量x 、y,我们把y叫x 的函数。 x叫自变量, y叫因变量。
y=kx+b (k≠0)
一次函数 正比例函数y=kx (k≠0)
3、下列函数中,(x是自变量),是二 次函数的有( C ) A y=ax2+bx+c B y2=x2-4x+1 C y=x2 D y=2+ √x2+1
4.函数 y=(m-n)x2+ mx+n 是二次函数 的条件是( C ) A.m,n是常数,且m≠0 B.m,n是常数,且n≠0
C.m,n是常数,且m≠n D.m,n为任何实数
m=2/3 n=2/3
m=2/3
n=-4/3
1 d n n 3 2
M
N
1 2 3 即 d n n② 2 2
观察: 函数①②③有什么共同点? y=6x2①
1 n2 3 n② d 2 2
y 20x 40x 20③
2
定义:一般地,形如y=ax² +bx+c(a,b,c 是常数,a≠ 0)的函数叫做二次函数。其 中x是自变量,a为二次项系数,ax2叫 做二次项,b为一次项系数,bx叫做一 次项,c为常数项。
函 数
反比例函数
y=k/x (k≠0)
二次函数
节日的喷泉给人带来喜庆,你是否注意过水流所经 过的路线?它会与某种函数有联系吗?
投掷过程中的篮球
问题1: 正方体的六个面是全等的正方 形,设正方形的棱长为x,表面积为y, 它们 的具体关系可以表示为 y=6x2①
问题2: 多边形对角线条数d与边数n有什么关系? 由图可以想出,如果多边形有n条边,那么它 有 n 个顶点,从一个顶点出发,连接与这点 不相邻的各顶点,可以作 (n-3)条对角线.
1 __
(5) y= x² -x
(6) v=8πr²
例2.m取何值时,函数y= (m+1)x
+(m-3)x+m是二次函数? 解:由题意得 m2—2m-1=2 m+1 ≠0 ∴m=3
m 2 2m 1
函数y ax bx c(其中a, c是常数), b,
2
当a, c满足什么条件时 b, (1)它是二次函数? (2)它是一次函数? (3)它是正比例函数 ?
一农民用40m长的篱笆围成一个一边靠 墙的长方形菜园,和墙垂直的一边长为 xm,菜园的面积为ym2,求y与x之间的 函数关系式,并说出自变量的取值范围。 当x=12m时,计算菜园的面积。
解:由题意得: y=x(40-2x) x m
即:y=-2x2+40x (0<x<20) 当x=12m时,菜园的面积为:(40-2x )m y=-2x2+40x=-2×122+40×12
y m2
x m
=192(m2)
若函数y=x2m+n - 2xm-n+3是以x为自 变量的二次函数,求m、n的值。
2m+n=2
∵ ⑤ ∵
2m+n=2② ① ∵ m-n=1

2m+n=1③ ∵ m-n=2


2m+n=2

2m+n=0
m-n=2

m-n=2

m-n=0

m=1 n=0
m=1 n=-1
m=4/3 n=-2/3
(3)当m2-7=2且m+3≠0即m=3
1.一个圆柱的高等于底面半径,写出它 的表面积 s 与半径 r 之间的关系式.
S=2πr2 +2πr2 即S=4πr2
2. n支球队参加比赛,每两队之间进行 一场比赛,写出比赛的场次数 m与球 队数 n 之间的关系式.
1 m nn 1 2

1 2 1 m n n 2 2
解:(1)a 0
(2)a 0, 0 b
(3)a 0,b 0,c 0
m2-7 y=(m+3)x
(1)m取什么值时,函数是正比例函数?
(2)m取什么值时,函数是反比例函数?
(3)m取什么值时,函数是二次函数?
解:(1)当m2-7=1且m+3≠0即m=±2 2
(2)当m2-7=-1且m+3≠0即m=± 6
相关文档
最新文档