2018年铁岭市中考数学押题卷与答案

合集下载

2018最新中考数学调研试卷有答案和解释

2018最新中考数学调研试卷有答案和解释

2018最新中考数学调研试卷有答案和解释一、选择题(本大题共10小题,共30.0分)-1/7的绝对值是( )A. 1/7B. -1/7C. 7D. -7据统计,2013年河南省旅游业总收入达到约3875.5亿元.若将3875.5亿用科学记数法表示为3.8755×〖10〗^n,则n等于( )A. 10B. 11C. 12D. 13如图所示的几何体的俯视图是( )分式方程3/(x(x+1))=1-3/(x+1)的根为( )A. -1或3B. -1C. 3D. 1或-3在一次体育测试中,小芳所在小组8人的成绩分别是:46,47,48,48,49,49,49,50,则这8人体育成绩的中位数和众数分别是( )A. 47,46B. 48,47C. 48.5,49D. 49,49下列方程是关于x的一元二次方程的是( )A. x^2+1/x=1B. ax^2+bx+c=0C. (x+1)(x+2)=1D. 3x^2-2xy-5y=0如图所示,有一张一个角为〖60〗^∘的直角三角形纸片,沿其一条中位线剪开后,不能拼成的四边形是( )A. 邻边不等的矩形B. 等腰梯形C. 有一个角是锐角的菱形D. 正方形三张外观相同的卡片分别标有数字1、2、3,从中随机一次抽出两张,这两张卡片上的数字恰好都小于3的概率是( )A. 1/3B. 2/3C. 1/6D. 1/9如图,在Rt△ABC中,∠C=〖90〗^∘,AC=1cm,BC=2cm,点P从点A出发,以1cm/s的速度沿折线AC→CB→BA运动,最终回到点A,设点P的运动时间为x(s),线段AP的长度为y(cm),则能够反映y与x 之间函数关系的图象大致是( )如图,在Rt△ABC中,∠C=〖90〗^∘,AC=6,BC=8,把△ABC绕AB边上的点D顺时针旋转〖90〗^∘得到△A'B'C',A'C'交AB于点E,若AD=BE,则△A'DE的面积是( )A. 3二、填空题(本大题共5小题,共15.0分)计算:(-2)^0-∛8=______.不等式组{■(3x+6≥0@4-2x>0)┤的所有整数解的和为______.已知点P(a,b)在反比例函数y=2/x的图象上,若点P关于y轴对称的点在反比例函数y=k/x的图象上,则k的值为______.如图,抛物线的顶点为P(-2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P'(2,-2),点A的对应点为A',则抛物线上PA段扫过的区域(阴影部分)的面积为______.如图,矩形ABCD中,AB=3,BC=4,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B'处.当△CEB'为直角三角形时,BE的长为______.三、解答题(本大题共2小题,共75.0分)先化简,再求值:(x+y)^2-2y(x+y),其中x=√2-1,y=√3.如图,在四边形OABC中,BC//AO,∠AOC=〖90〗^∘,点A,B的坐标分别为(5,0),(2,6),点D为AB 上一点,且AD/BD=1/2,双曲线y=k/x(k>0)经过点D,交BC于点E(1)求双曲线的解析式;(2)求四边形ODBE的面积.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:(1)课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;(2)请补全条形统计图;(3)该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;(4)小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27/300=108”,请你判断这种说法是否正确,并说明理由.如图,在Rt△ABC中,∠ABC=〖90〗^∘,点M是AC的中点,以AB为直径作⊙O分别交AC,BM于点D,E.(1)求证:MD=ME;(2)填空:①若AB=6,当AD=2DM时,DE=______;②连接OD,OE,当∠A的度数为______时,四边形ODME是菱形.如图,山顶建有一座铁塔,塔高BC=80米,测量人员在一个小山坡的P处测得塔的底部B点的仰角为〖45〗^∘,塔顶C点的仰角为〖60〗^∘.已测得小山坡的坡角为〖30〗^∘,坡长MP=40米.求山的高度AB(精确到1米).(参考数据:√2≈1.414,√3≈1.732)某游泳馆普通票价20元/张,暑假为了促销,新推出两种优惠卡:①金卡售价600元/张,每次凭卡不再收费.②银卡售价150元/张,每次凭卡另收10元.暑假普通票正常出售,两种优惠卡仅限暑假使用,不限次数.设游泳x次时,所需总费用为y元(1)分别写出选择银卡、普通票消费时,y与x之间的函数关系式;(2)在同一坐标系中,若三种消费方式对应的函数图象如图所示,请求出点A、B、C的坐标;(3)请根据函数图象,直接写出选择哪种消费方式更合算.(1)问题发现如图1,△ACB和△DCE均为等边三角形,点A,D,E在同一直线上,连接BE.填空:①∠AEB的度数为______;②线段AD,BE之间的数量关系为______.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=〖90〗^∘,点A,D,E在同一直线上,CM 为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=√2,若点P满足PD=1,且∠BPD=〖90〗^∘,请直接写出点A到BP的距离.如图,在平面直角坐标系中,已知矩形ABCD的三个顶点B(4,0)、C(8,0)、D(8,8).抛物线y=ax^2+bx 过A、C两点.(1)直接写出点A的坐标,并求出抛物线的解析式;(2)动点P从点A出发.沿线段AB向终点B运动,同时点Q从点C出发,沿线段CD向终点D运动.速度均为每秒1个单位长度,运动时间为t秒.过点P作PE ⊥AB交AC于点E.①过点E作EF⊥AD于点F,交抛物线于点G.当t 为何值时,线段EG最长?②连接EQ.在点P、Q运动的过程中,判断有几个时刻使得△CEQ是等腰三角形?请直接写出相应的t值.答案和解析【答案】1. A2. B3.D4.C5.C6.C7. D8. A 9. A 10. D11. -112. -213. -214. 1215. 3/2或316. 解:原式=x^2+2xy+y^2-2xy-2y^2=x^2-y^2,当x=√2-1,y=√3时,原式=3-2√2-3=-2√2.17. 解:(1)作BM⊥x轴于M,作DN⊥x轴于N,如图,∵点A,B的坐标分别为(5,0),(2,6),∴BC=OM=2,BM=OC=6,AM=3,∵DN//BM,∴△ADN∽△ABM,∴DN/BM=AN/AM=AD/AB,即DN/6=AN/3=1/3,∴DN=2,AN=1,∴ON=OA-AN=4,∴D点坐标为(4,2),把D(4,2)代入y=k/x得k=2×4=8,∴反比例函数解析式为y=8/x;(2)S_四边形ODBE=S_梯形OABC-S_(△OCE)-S_(△OAD)=1/2×(2+5)×6-1/2×|8|-1/2×5×2=12.18. 〖144〗^∘19. 2;〖60〗^∘20. 解:如图,过点P作PE⊥AM于E,PF⊥AB于F.在Rt△PME中,∵∠PME=〖30〗^∘,PM=40,∴PE=20.∵四边形AEPF是矩形,∴FA=PE=20.设BF=x米.∵∠FPB=〖45〗^∘,∴FP=BF=x.∵∠FPC=〖60〗^∘,∴CF=PFtan〖60〗^∘=√3 x.∵CB=80,∴80+x=√3 x.解得x=40(√3+1).∴AB=40(√3+1)+20=60+40√3≈129(米).答:山高AB约为129米.21. 解:(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;(2)由题意可得:当10x+150=20x,解得:x=15,则y=300,故B(15,300),当y=10x+150,x=0时,y=150,故A(0,150),当y=10x+150=600,解得:x=45,则y=600,故C(45,600);(3)如图所示:由A,B,C的坐标可得:当0<x<15时,普通消费更划算;当x=15时,银卡、普通票的总费用相同,均比金卡合算;当15<x<45时,银卡消费更划算;当x=45时,金卡、银卡的总费用相同,均比普通票合算;当x>45时,金卡消费更划算.22. 〖60〗^∘;AD=BE23. 解:(1)因为点B的横坐标为4,点D的纵坐标为8,AD//x轴,AB//y轴,所以点A的坐标为(4,8).将A(4,8)、C(8,0)两点坐标分别代入y=ax^2+bx 得{■(16a+4b=8@64a+8b=0)┤,解得a=-1/2,b=4.故抛物线的解析式为:y=-1/2 x^2+4x;(2)①在Rt△APE和Rt△ABC中,tan∠PAE=PE/AP=BC/AB,即PE/AP=4/8.∴PE=1/2 AP=1/2 t.PB=8-t.∴点E的坐标为(4+1/2 t,8-t).∴点G的纵坐标为:-1/2(4+1/2 t)^2+4(4+1/2 t)=-1/8 t^2+8.∴EG=-1/8 t^2+8-(8-t)=-1/8 t^2+t.∵-1/8<0,∴当t=4时,线段EG最长为2.②共有三个时刻.(①)当EQ=QC时,因为Q(8,t),E(4+1/2 t,8-t),QC=t,所以根据两点间距离公式,得:(1/2 t-4)^2+(8-2t)^2=t^2.整理得13t^2-144t+320=0,解得t=40/13或t=104/13=8(此时E、C重合,不能构成三角形,舍去).(②)当EC=CQ时,因为E(4+1/2 t,8-t),C(8,0),QC=t,所以根据两点间距离公式,得:(4+1/2 t-8)^2+(8-t)^2=t^2.整理得t^2-80t+320=0,t=40-16√5,t=40+16√5>8(此时Q不在矩形的边上,舍去).(③)当EQ=EC时,因为Q(8,t),E(4+1/2 t,8-t),C(8,0),所以根据两点间距离公式,得:(1/2 t-4)^2+(8-2t)^2=(4+1/2 t-8)^2+(8-t)^2,解得t=0(此时Q、C重合,不能构成三角形,舍去)或t=16/3.于是t_1=16/3,t_2=40/13,t_3=40-16√5.【解析】1. 解:根据负数的绝对值等于它的相反数,得|-1/7|=1/7.故选:A.绝对值的性质:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.考查了绝对值的性质.2. 解:3875.5亿=387550000000=3.8755×〖10〗^11,故选:B.科学记数法的表示形式为a×〖10〗^n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×〖10〗^n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 解:从上往下看,该几何体的俯视图与选项D 所示视图一致.故选:D.找到从上面看所得到的图形即可,注意所有看到的棱都应表现在俯视图中.本题考查了简单组合体三视图的知识,俯视图是从物体的上面看得到的视图.4. 解:去分母得:3=x^2+x-3x,解得:x=-1或x=3,经检验x=-1是增根,分式方程的根为x=3,故选:C.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.5. 解:这8个数据的中位数是第4、5个数据的平均数,即中位数为(48+49)/2=48.5,由于49出现次数最多,又3次,所以众数为49,故选:C.根据中位数与众数的定义,从小到大排列后,中位数是第4、5个数据的平均数,众数是出现次数最多的一个,解答即可.本题主要考查众数与中位数的定义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.一组数据中出现次数最多的数据叫做众数.6. 解:A、x^2+1/x=1是分式方程,故此选项错误;B、ax^2+bx+c=0(a≠0),故此选项错误;C、(x+1)(x+2)=1是一元二次方程,故此选项正确;D、3x^2-2xy-5y=0是二元二次方程,故此选项错误.故选:C.直接利用一元二次方程的定义分析得出答案.此题主要考查了一元二次方程的定义,正确把握定义是解题关键.7. 解:如图:此三角形可拼成如图三种形状,(1)为矩形,∵有一个角为〖60〗^∘,则另一个角为〖30〗^∘,∴此矩形为邻边不等的矩形;(2)为菱形,有两个角为〖60〗^∘;(3)为等腰梯形.故选:D.可画出图形,令相等的线段重合,拼出可能出现的图形,然后再根据已知三角形的性质,对拼成的图形进行具体的判定.这是一道生活联系实际的问题,不仅要用到三角形中位线的性质、菱形、等腰梯形、矩形的性质,还锻炼了学生的动手能力.解答此类题目时应先画出图形,再根据已知条件判断各边的关系.8. 解:画树状图得:∵共有6种等可能的结果,而两张卡片上的数字恰好都小于3有2种情况,∴两张卡片上的数字恰好都小于3概率=2/6=1/3.故选:A.首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两张卡片上的数字恰好都小于3的情况,再利用概率公式即可求得答案.此题考查的是用列表法或树状图法求概率.解题的关键是要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9. 解:①当点P在AC边上,即0≤x≤1时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上,即1<x≤3时,根据勾股定理得AP=√(AC^2+PC^2 ),即y=√(1+(x-1)^2 ),则其函数图象是y随x的增大而增大,且不是一次函数.故B、C、D错误;③点P在边AB上,即3<x≤3+√5时,y=√5+3-x=-x+3+√5,其函数图象是直线的一部分.综上所述,A选项符合题意.故选:A.这是分段函数:①点P在AC边上时,y=x,它的图象是一次函数图象的一部分;②点P在边BC上时,利用勾股定理求得y与x的函数关系式,根据关系式选择图象;③点P在边AB上时,利用线段间的和差关系求得y 与x的函数关系式,由关系式选择图象.本题考查了动点问题的函数图象.此题涉及到了函数y=√(1+(x-1)^2 )的图象问题,在初中阶段没有学到该函数图象,所以只要采取排除法进行解题.10. 解:Rt△ABC中,AB=√(AC^2+BC^2 )=10,由旋转的性质,设AD=A'D=BE=x,则DE=10-2x,∵△ABC绕AB边上的点D顺时针旋转〖90〗^∘得到△A'B'C',∴∠A'=∠A,∠A'DE=∠C=〖90〗^∘,∴△A'DE∽△ACB,,即(10-2x)/x=8/6,解得x=3,∴S_(△A'DE)=1/2 DE×A'D=1/2×(10-2×3)×3=6,故选:D.在Rt△ABC中,由勾股定理求得AB=10,由旋转的性质可知AD=A'D,设AD=A'D=BE=x,则DE=10-2x,根据旋转〖90〗^∘可证△A'DE∽△ACB,利用相似比求x,再求△A'DE的面积.本题考查了相似三角形的判定与性质,勾股定理及旋转的性质的运用.关键是根据旋转的性质得出相似三角形,利用相似比求解.11. 解:原式=1-2=-1.故答案为:-1.分别进行零指数幂、开立方的运算,然后合并.本题考查了实数的运算,涉及了零指数幂、开立方等知识,属于基础题.12. 解:{■(3x+6≥0 ①@4-2x>0 ②)┤,由①得:x≥-2,由②得:x<2,∴-2≤x<2,∴不等式组的整数解为:-2,-1,0,1.所有整数解的和为-2-1+0+1=-2.故答案为:-2.先分别求出各不等式的解集,再求出其公共解集,在其公共解集内找出符合条件的x的所有整数解相加即可求解.本题考查的是解一元一次不等式组及求一元一次不等式组的整数解,求不等式的公共解,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13. 解:∵点P(a,b)在反比例函数y=2/x的图象上,∴ab=2,∵点P关于y轴对称的点的坐标是(-a,b),∴k=-ab=-2.故答案为:-2.本题需先根据已知条件,求出ab的值,再根据点P 关于y轴对称并且点P关于y轴对称的点在反比例函数y=k/x的图象上即可求出点K的值.本题主要考查了反比例函数图象上点的坐标的特征,在解题时要能灵活应用反比例函数图象上点的坐标的特征求出k的值是本题的关键.14. 解:连接AP,A'P',过点A作AD⊥PP'于点D,由题意可得出:AP//A'P',AP=A'P',∴四边形APP'A'是平行四边形,∵抛物线的顶点为P(-2,2),与y轴交于点A(0,3),平移该抛物线使其顶点P沿直线移动到点P'(2,-2),∴PO=√(2^2+2^2 )=2√2,∠AOP=〖45〗^∘,又∵AD⊥OP,∴△ADO是等腰直角三角形,∴PP'=2√2×2=4√2,∴AD=DO=sin〖45〗^∘⋅OA=√2/2×3= (3√2)/2,∴抛物线上PA段扫过的区域(阴影部分)的面积为:4√2×(3√2)/2=12.故答案为:12.根据平移的性质得出四边形APP'A'是平行四边形,进而得出AD,PP'的长,求出面积即可.此题主要考查了二次函数图象与几何变换以及平行四边形面积求法和勾股定理等知识,根据已知得出AD,PP'是解题关键.15. 解:当△CEB'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,在Rt△ABC中,AB=3,BC=4,∴AC=√(4^2+3^2 )=5,∵∠B沿AE折叠,使点B落在点B'处,∴∠AB'E=∠B=〖90〗^∘,当△CEB'为直角三角形时,只能得到∠EB'C=〖90〗^∘,∴点A、B'、C共线,即∠B沿AE折叠,使点B落在对角线AC上的点B'处,∴EB=EB',AB=AB'=3,∴CB'=5-3=2,设BE=x,则EB'=x,CE=4-x,在Rt△CEB'中,∵EB'^2+CB'^2=CE^2,∴x^2+2^2=(4-x)^2,解得x=3/2,∴BE=3/2;②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形,∴BE=AB=3.综上所述,BE的长为3/2或3.故答案为:3/2或3.当△CEB'为直角三角形时,有两种情况:①当点B'落在矩形内部时,如答图1所示.连结AC,先利用勾股定理计算出AC=5,根据折叠的性质得∠AB'E=∠B=〖90〗^∘,而当△CEB'为直角三角形时,只能得到∠EB'C=〖90〗^∘,所以点A、B'、C 共线,即∠B沿AE折叠,使点B落在对角线AC上的点B'处,则EB=EB',AB=AB'=3,可计算出CB'=2,设BE=x,则EB'=x,CE=4-x,然后在Rt△CEB'中运用勾股定理可计算出x.②当点B'落在AD边上时,如答图2所示.此时ABEB'为正方形.本题考查了折叠问题:折叠前后两图形全等,即对应线段相等;对应角相等.也考查了矩形的性质以及勾股定理.注意本题有两种情况,需要分类讨论,避免漏解.16. 原式利用完全平方公式,以及单项式乘以多项式法则计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.此题考查了整式的混合运算-化简求值,熟练掌握运算法则是解本题的关键.17. (1)作BM⊥x轴于M,作DN⊥x轴于N,利用点A,B的坐标得到BC=OM=2,BM=OC=6,AM=3,再证明△ADN∽△ABM,利用相似比可计算出DN=2,AN=1,则ON=OA-AN=4,得到D点坐标为(4,2),然后把D 点坐标代入y=k/x中求出k的值即可得到反比例函数解析式;(2)根据反比例函数k的几何意义和S_四边形ODBE=S_梯形OABC-S_(△OCE)-S_(△OAD)进行计算.本题考查了反比例函数综合题:熟练掌握反比例函数图象上点的坐标特征、反比例函数k的几何意义和梯形的性质;理解坐标与图形的性质;会运用相似比计算线段的长度.18. 解:(1)〖360〗^∘×(1-15%-45%)=〖360〗^∘×40%=〖144〗^∘;故答案为:〖144〗^∘;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120-27-33-20=120-80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40/300=160人;(4)这个说法不正确.理由如下:小明得到的108人是全校经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人.(1)用“经常参加”所占的百分比乘以〖360〗^∘计算即可得解;(2)先求出“经常参加”的人数,然后求出喜欢篮球的人数,再补全统计图即可;(3)用总人数乘以喜欢篮球的学生所占的百分比计算即可得解;(4)根据喜欢乒乓球的27人都是“经常参加”的学生,“偶尔参加”的学生中也会有喜欢乒乓球的考虑解答.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.19. (1)证明:∵∠ABC=〖90〗^∘,AM=MC,∴BM=AM=MC,∴∠A=∠ABM,∵四边形ABED是圆内接四边形,∴∠ADE+∠ABE=〖180〗^∘,又∠ADE+∠MDE=〖180〗^∘,∴∠MDE=∠MBA,同理证明:∠MED=∠A,∴∠MDE=∠MED,∴MD=ME.(2)①由(1)可知,∠A=∠MDE,∴DE//AB,∴DE/AB=MD/MA,∵AD=2DM,∴DM:MA=1:3,∴DE=1/3 AB=1/3×6=2.故答案为2.②当∠A=〖60〗^∘时,四边形ODME是菱形.理由:连接OD、OE,∵OA=OD,∠A=〖60〗^∘,∴△AOD是等边三角形,∴∠AOD=〖60〗^∘,∵DE//AB,∴∠ODE=∠AOD=〖60〗^∘,∠MDE=∠MED=∠A=〖60〗^∘,∴△ODE,△DEM都是等边三角形,∴OD=OE=EM=DM,∴四边形OEMD是菱形.故答案为〖60〗^∘.(1)先证明∠A=∠ABM,再证明∠MDE=∠MBA,∠MED=∠A即可解决问题.(2)①由DE//AB,得DE/AB=MD/MA即可解决问题.②当∠A=〖60〗^∘时,四边形ODME是菱形,只要证明△ODE,△DEM都是等边三角形即可.本题考查圆内接四边形性质、直角三角形斜边中线性质、菱形的判定等知识,解题的关键是灵活运用这些知识解决问题,记住菱形的三种判定方法,属于中考常考题型.20. 首先分析图形:根据题意构造直角三角形;本题涉多个直角三角形,应利用其公共边构造关系式,进而可求出答案.本题要求学生借助俯角构造直角三角形,并结合图形利用三角函数解直角三角形.21. (1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;(2)利用函数交点坐标求法分别得出即可;(3)利用(2)的点的坐标以及结合得出函数图象得出答案.此题主要考查了一次函数的应用,根据数形结合得出自变量的取值范围得出是解题关键.22. 解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=〖60〗^∘.∴∠ACD=∠BCE.在△ACD和△BCE中,{■(AC=BC@∠ACD=∠BCE@CD=CE)┤∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=〖60〗^∘.∵点A,D,E在同一直线上,∴∠ADC=〖120〗^∘.∴∠BEC=〖120〗^∘.∴∠AEB=∠BEC-∠CED=〖60〗^∘.故答案为:〖60〗^∘.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=〖90〗^∘,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=〖90〗^∘.∴∠ACD=∠BCE.在△ACD和△BCE中,{■(CA=CB@∠ACD=∠BCE@CD=CE)┤∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=〖45〗^∘.∵点A,D,E在同一直线上,∴∠ADC=〖135〗^∘.∴∠BEC=〖135〗^∘.∴∠AEB=∠BEC-∠CED=〖90〗^∘.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=〖90〗^∘,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为(√3-1)/2或(√3+1)/2.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=〖90〗^∘,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=〖45〗^∘.AB=AD=DC=BC=√2,∠BAD=〖90〗^∘.∴BD=2.∵DP=1,∴BP=√3.∵∠BPD=∠BAD=〖90〗^∘,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=〖45〗^∘.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴√3=2AH+1.∴AH=(√3-1)/2.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH-PD.∴√3=2AH-1.∴AH=(√3+1)/2.综上所述:点A到BP的距离为(√3-1)/2或(√3+1)/2.(1)由条件易证△ACD≌△BCE,从而得到:AD=BE,∠ADC=∠BEC.由点A,D,E在同一直线上可求出∠ADC,从而可以求出∠AEB的度数.(2)仿照(1)中的解法可求出∠AEB的度数,证出AD=BE;由△DCE为等腰直角三角形及CM为△DCE中DE边上的高可得CM=DM=ME,从而证到AE=2CH+BE.(3)由PD=1可得:点P在以点D为圆心,1为半径的圆上;由∠BPD=〖90〗^∘可得:点P在以BD为直径的圆上.显然,点P是这两个圆的交点,由于两圆有两个交点,接下来需对两个位置分别进行讨论.然后,添加适当的辅助线,借助于(2)中的结论即可解决问题.本题考查了等边三角形的性质、正方形的性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、圆周角定理、三角形全等的判定与性质等知识,考查了运用已有的知识和经验解决问题的能力,是体现新课程理念的一道好题.而通过添加适当的辅助线从而能用(2)中的结论解决问题是解决第(3)的关键.23. (1)由于四边形ABCD为矩形,所以A点与D点纵坐标相同,A点与B点横坐标相同;(2)①根据相似三角形的性质求出点E的横坐标表达式即为点G的横作标表达式.代入二次函数解析式,求出纵标表达式,将线段最值问题转化为二次函数最值问题解答.②若构成等腰三角形,则三条边中有两条边相等即可,于是可分EQ=QC,EC=CQ,EQ=EC三种情况讨论.若有两种情况时间相同,则三边长度相同,为等腰三角形.抛物线的求法是函数解析式中的一种,通常情况下用待定系数法,即先列方程组,再求未知系数,这种方法本题比较适合.对于压轴题中的动点问题、极值问题,先根据条件“以静制动”,用未知系数表示各自的坐标,如果能构成二次函数,即可通过配方或顶点坐标公式求其极值.。

2018年全国各地中考数学压轴题汇编:几何综合(西北专版)(解析卷)

2018年全国各地中考数学压轴题汇编:几何综合(西北专版)(解析卷)

2018年全国各地中考数学压轴题汇编(西北专版)几何综合参考答案与试题解析一.选择题(共10小题)1.(2018•陕西)如图,在△ABC中,AC=8,∠ABC=60°,∠C=45°,AD⊥BC,垂足为D,∠ABC的平分线交AD于点E,则AE的长为()A.B.2C.D.3解:∵AD⊥BC,∴∠ADC=∠ADB=90°.在Rt△ADC中,AC=8,∠C=45°,∴AD=CD,∴AD=AC=4.在Rt△ADB中,AD=4,∠ABD=60°,∴BD=AD=.∵BE平分∠ABC,∴∠EBD=30°.在Rt△EBD中,BD=,∠EBD=30°,∴DE=BD=,∴AE=AD﹣DE=.故选:C.2.(2018•兰州)如图,矩形ABCD中,AB=3,BC=4,EF∥DF且BE与DF之间的距离为3,则AE的长是()A.B.C.D.解:如图所示:过点D作DG⊥BE,垂足为G,则GD=3.∵∠A=∠G,∠AEB=∠GED,AB=GD=3,∴△AEB≌△GED.∴AE=EG.设AE=EG=x,则ED=4﹣x,在Rt△DEG中,ED2=GE2+GD2,x2+32=(4﹣x)2,解得:x=.故选:C.3.(2018•陕西)如图,在菱形ABCD中.点E、F、G、H分别是边AB、BC、CD和DA 的中点,连接EF、FG、GH和HE.若EH=2EF,则下列结论正确的是()A.AB=EF B.AB=2EF C.AB=EF D.AB=EF解:连接AC、BD交于O,∵四边形ABCD是菱形,∴AC⊥BD,OA=OC,OB=OD,∵点E、F、G、H分别是边AB、BC、CD和DA的中点,∴EF=AC,EF∥AC,EH=BD,EH∥BD,∴四边形EFGH是矩形,∵EH=2EF,∴OB=2OA,∴AB==OA,∴AB=EF,故选:D.4.(2018•兰州)如图,将▱ABCD沿对角线BD折叠,使点A落在点E处,交BC于点F,若∠ABD=48°,∠CFD=40°,则∠E为()A.102°B.112°C.122°D.92°解:∵AD∥BC,∴∠ADB=∠DBC,由折叠可得∠ADB=∠BDF,∴∠DBC=∠BDF,又∵∠DFC=40°,∴∠DBC=∠BDF=∠ADB=20°,又∵∠ABD=48°,∴△ABD中,∠A=180°﹣20°﹣48°=112°,∴∠E=∠A=112°,故选:B.5.(2018•陕西)如图,△ABC是⊙O的内接三角形,AB=AC,∠BCA=65°,作CD∥AB,并与⊙O相交于点D,连接BD,则∠DBC的大小为()A.15°B.35°C.25°D.45°解:∵AB=AC、∠BCA=65°,∴∠CBA=∠BCA=65°,∠A=50°,∵CD∥AB,∴∠ACD=∠A=50°,又∵∠ABD=∠ACD=50°,∴∠DBC=∠CBA﹣∠ABD=15°,故选:A.6.(2018•白银)如图,点E是正方形ABCD的边DC上一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为25,DE=2,则AE的长为()A.5 B.C.7 D.解:∵把△ADE顺时针旋转△ABF的位置,∴四边形AECF的面积等于正方形ABCD的面积等于25,∴AD=DC=5,∵DE=2,∴Rt△ADE中,AE==.故选:D.7.(2018•青海)小桐把一副直角三角尺按如图所示的方式摆放在一起,其中∠E=90°,∠C=90°,∠A=45°,∠D=30°,则∠1+∠2等于()A.150°B.180°C.210°D.270°解:如图:∵∠1=∠D+∠DOA,∠2=∠E+∠EPB,∵∠DOA=∠COP,∠EPB=∠CPO,∴∠1+∠2=∠D+∠E+∠COP+∠CPO=∠D+∠E+180°﹣∠C=30°+90°+180°﹣90°=210°,故选:C.8.(2018•新疆)如图,矩形纸片ABCD中,AB=6cm,BC=8cm.现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为()A.6cm B.4cm C.3cm D.2cm解:∵沿AE对折点B落在边AD上的点B1处,∴∠B=∠AB1E=90°,AB=AB1,又∵∠BAD=90°,∴四边形ABEB1是正方形,∴BE=AB=6cm,∴CE=BC﹣BE=8﹣6=2cm.故选:D.9.(2018•白银)如图,⊙A过点O(0,0),C(,0),D(0,1),点B是x轴下方⊙A上的一点,连接BO,BD,则∠OBD的度数是()A.15°B.30°C.45°D.60°解:连接DC,∵C(,0),D(0,1),∴∠DOC=90°,OD=1,OC=,∴∠DCO=30°,∴∠OBD=30°,故选:B.10.(2018•新疆)如图,点P是边长为1的菱形ABCD对角线AC上的一个动点,点M,N分别是AB,BC边上的中点,则MP+PN的最小值是()A.B.1 C.D.2解:如图,作点M关于AC的对称点M′,连接M′N交AC于P,此时MP+NP有最小值,最小值为M′N 的长.∵菱形ABCD关于AC对称,M是AB边上的中点,∴M′是AD的中点,又∵N是BC边上的中点,∴AM′∥BN,AM′=BN,∴四边形ABNM′是平行四边形,∴M′N=AB=1,∴MP+NP=M′N=1,即MP+NP的最小值为1,故选:B.二.填空题(共7小题)11.(2018•陕西)如图,在正五边形ABCDE中,AC与BE相交于点F,则∠AFE的度数为72°.解:∵五边形ABCDE是正五边形,∴∠EAB=∠ABC==108°,∵BA=BC,∴∠BAC=∠BCA=36°,同理∠ABE=36°,∴∠AFE=∠ABF+∠BAF=36°+36°=72°,故答案为:72°.12.(2018•兰州)如图,M、N是正方形ABCD的边CD上的两个动点,满足AM=BN,连接AC交BN于点E,连接DE交AM于点F,连接CF,若正方形的边长为6,则线段CF 的最小值是3﹣3.解:如图,在正方形ABCD中,AD=BC=CD,∠ADC=∠BCD,∠DCE=∠BCE,在Rt△ADM和Rt△BCN中,,∴Rt△ADM≌Rt△BCN(HL),∴∠DAM=∠CBN,在△DCE和△BCE中,,∴△DCE≌△BCE(SAS),∴∠CDE=∠CBE∴∠DCM=∠CDE,∵∠ADF+∠CDE=∠ADC=90°,∴∠DAM+∠ADF=90°,∴∠AFD=180°﹣90°=90°,取AD的中点O,连接OF、OC,则OF=DO=AD=3,在Rt△ODC中,OC==3根据三角形的三边关系,OF+CF>OC,∴当O、F、C三点共线时,CF的长度最小,最小值=OC﹣OF=3﹣3.故答案为:3﹣3.13.(2018•青海)如图,四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,则=.解:∵四边形ABCD与四边形EFGH位似,其位似中心为点O,且=,∴=,则==.故答案为:.14.(2018•陕西)如图,点O是▱ABCD的对称中心,AD>AB,E、F是AB边上的点,且EF=AB;G、H是BC边上的点,且GH=BC,若S1,S2分别表示△EOF和△GOH的面积,则S1与S2之间的等量关系是=.解:∵==,==,∴S1=S△AOB,S2=S△BOC.∵点O是▱ABCD的对称中心,=S△BOC=S▱ABCD,∴S△AOB∴==.即S1与S2之间的等量关系是=.故答案为=.15.(2018•白银)如图,分别以等边三角形的每个顶点为圆心、以边长为半径,在另两个顶点间作一段圆弧,三段圆弧围成的曲边三角形称为勒洛三角形.若等边三角形的边长为a,则勒洛三角形的周长为πa.解:如图.∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,AB=BC=CA=a,∴的长=的长=的长==,∴勒洛三角形的周长为×3=πa.故答案为πa.16.(2018•青海)如图,用一个半径为20cm,面积为150πcm2的扇形铁皮,制作一个无底的圆锥(不计接头损耗),则圆锥的底面半径r为7.5cm.解:解:设铁皮扇形的半径和弧长分别为R、l,圆锥形容器底面半径为r,则由题意得R=20,由Rl=150π得l=15π;由2πr=15π得r=7.5cm.故答案是:7.5cm.17.(2018•新疆)如图,△ABC是⊙O的内接正三角形,⊙O的半径为2,则图中阴影部分的面积是.解:∵△ABC是等边三角形,∴∠C=60°,根据圆周角定理可得∠AOB=2∠C=120°,∴阴影部分的面积是=π,故答案为:三.解答题(共15小题)18.(2018•陕西)如图,已知:在正方形ABCD中,M是BC边上一定点,连接AM.请用尺规作图法,在AM上作一点P,使△DPA∽△ABM.(不写作法,保留作图痕迹)解:如图所示,点P即为所求:∵DP⊥AM,∴∠APD=∠ABM=90°,∵∠BAM+∠PAD=90°,∠PAD+∠ADP=90°,∴∠BAM=∠ADP,∴△DPA∽△ABM.19.(2018•宁夏)已知:AB为⊙O的直径,延长AB到点P,过点P作圆O的切线,切点为C,连接AC,且AC=CP.(1)求∠P的度数;(2)若点D是弧AB的中点,连接CD交AB于点E,且DE•DC=20,求⊙O的面积.(π取3.14)解:(1)连接OC,∵PC为⊙O的切线,∴∠OCP=90°,即∠2+∠P=90°,∵OA=OC,∴∠CAO=∠1,∵AC=CP,∴∠P=∠CAO,又∵∠2是△AOC的一个外角,∴∠2=2∠CAO=2∠P,∴2∠P+∠P=90°,∴∠P=30°;(2)连接AD,∵D为的中点,∴∠ACD=∠DAE,∴△ACD∽△EAD,∴=,即AD2=DC•DE,∵DC•DE=20,∴AD=2,∵=,∴AD=BD,∵AB是⊙O的直径,∴Rt△ADB为等腰直角三角形,∴AB=2,∴OA=AB=,=π•OA2=10π=31.4.∴S⊙O20.(2018•陕西)如图,在Rt△ABC中,∠ACB=90°,以斜边AB上的中线CD为直径作⊙O,分别与AC、BC交于点M、N.(1)过点N作⊙O的切线NE与AB相交于点E,求证:NE⊥AB;(2)连接MD,求证:MD=NB.证明:(1)连接ON,如图,∵CD为斜边AB上的中线,∴CD=AD=DB,∴∠1=∠B,∵OC=ON,∴∠1=∠2,∴∠2=∠B,∴ON∥DB,∵NE为切线,∴ON⊥NE,∴NE⊥AB;(2)连接DN,如图,∵CD为直径,∴∠CMD=∠CND=90°,而∠MCB=90°,∴四边形CMDN为矩形,∴DM=CN,∵DN⊥BC,∠1=∠B,∴CN=BN,∴MD=NB.21.(2018•宁夏)已知点E为正方形ABCD的边AD上一点,连接BE,过点C作CN⊥BE,垂足为M,交AB于点N.(1)求证:△ABE≌△BCN;(2)若N为AB的中点,求tan∠ABE.(1)证明:∵四边形ABCD为正方形∴AB=BC,∠A=∠CBN=90°,∠1+∠2=90°∵CM⊥BE,∴∠2+∠3=90°∴∠1=∠3在△ABE和△BCN中∴△ABE≌△BCN(ASA);(2)∵N为AB中点,∴BN=AB又∵△ABE≌△BCN,∴AE=BN=AB在Rt△ABE中,tan∠ABE═.22.(2018•兰州)如图,在△ABC中,过点C作CD∥AB,E是AC的中点,连接DE并延长,交AB于点F,交CB的延长线于点G,连接AD,CF.(1)求证:四边形AFCD是平行四边形.(2)若GB=3,BC=6,BF=,求AB的长.解:(1)∵E是AC的中点,∴AE=CE,∵AB∥CD,∴∠AFE=∠CDE,在△AEF和△CED中,∵,∴△AEF≌△CED(AAS),∴AF=CD,又AB∥CD,即AF∥CD,∴四边形AFCD是平行四边形;(2)∵AB∥CD,∴△GBF∽△GCD,∴=,即=,解得:CD=,∵四边形AFCD是平行四边形,∴AF=CD=,∴AB=AF+BF=+=6.23.(2018•白银)已知矩形ABCD中,E是AD边上的一个动点,点F,G,H分别是BC,BE,CE的中点.(1)求证:△BGF≌△FHC;(2)设AD=a,当四边形EGFH是正方形时,求矩形ABCD的面积.解:(1)∵点F,G,H分别是BC,BE,CE的中点,∴FH∥BE,FH=BE,FH=BG,∴∠CFH=∠CBG,∵BF=CF,∴△BGF≌△FHC,(2)当四边形EGFH是正方形时,可得:EF⊥GH且EF=GH,∵在△BEC中,点,H分别是BE,CE的中点,∴GH=,且GH∥BC,∴EF⊥BC,∵AD∥BC,AB⊥BC,∴AB=EF=GH=a,∴矩形ABCD的面积=.24.(2018•陕西)问题提出(1)如图①,在△ABC中,∠A=120°,AB=AC=5,则△ABC的外接圆半径R的值为5.问题探究(2)如图②,⊙O的半径为13,弦AB=24,M是AB的中点,P是⊙O上一动点,求PM 的最大值.问题解决(3)如图③所示,AB、AC、是某新区的三条规划路,其中AB=6km,AC=3km,∠BAC=60°,所对的圆心角为60°,新区管委会想在路边建物资总站点P,在AB,AC路边分别建物资分站点E、F,也就是,分别在、线段AB和AC上选取点P、E、F.由于总站工作人员每天都要将物资在各物资站点间按P→E→F→P的路径进行运输,因此,要在各物资站点之间规划道路PE、EF和FP.为了快捷、环保和节约成本.要使得线段PE、EF、FP 之和最短,试求PE+EF+FP的最小值.(各物资站点与所在道路之间的距离、路宽均忽略不计)解:(1)设O是△ABC的外接圆的圆心,∴OA=OB=OC,∵∠A=120°,AB=AC=5,∴△ABO是等边三角形,∴AB=OA=OB=5,(2)当PM⊥AB时,此时PM最大,连接OA,由垂径定理可知:AM=AB=12,∵OA=13,∴由勾股定理可知:OM=5,∴PM=OM+OP=18,(3)设连接AP,OP分别以AB、AC所在直线为对称轴,作出P关于AB的对称点为M,P关于AC的对称点为N,连接MN,交AB于点E,交AC于点F,连接PE、PF,∴AM=AP=AN,∵∠MAB=∠PAB,∠NAC=∠PAC,∴∠BAC=∠PAB+∠PAC=∠MAB+∠NAC=60°,∴∠MAN=120°∴M、P、N在以A为圆心,AP为半径的圆上,设AP=r,易求得:MN=r,∵PE=ME,PF=FN,∴PE+EF+PF=ME+EF+FN=MN=r,∴当AP最小时,PE+EF+PF可取得最小值,∵AP+OP≥OA,∴AP≥OA﹣OP,即点P在OA上时,AP可取得最小值,设AB的中点为Q,∴AQ=AC=3,∵∠BAC=60°,∴AQ=QC=AC=BQ=3,∴∠ABC=∠QCB=30°,∴∠ACB=90°,∴由勾股定理可知:BC=3,∵∠BOC=60°,OB=OC=3,∴△OBC是等边三角形,∴∠OBC=60°,∴∠ABO=90°∴由勾股定理可知:OA=3,∵OP=OB=3,∴AP=r=OA﹣OP=3﹣3,∴PE+EF+PF=MN=r=3﹣9∴PE+EF+PF的最小值为(3﹣9)km.25.(2018•兰州)如图,AB为⊙O的直径,C为⊙O上一点,D为BA延长线上一点,∠ACD=∠B.(1)求证:DC为⊙O的切线;(2)线段DF分别交AC,BC于点E,F且∠CEF=45°,⊙O的半径为5,sinB=,求CF 的长.(1)证明:连接OC,∵AB为⊙O的直径,∴∠ACB=∠BCO+∠OCA=90°,∵OB=OC,∴∠B=∠BCO,∵∠ACD=∠B,∴∠ACD=∠BCO,∴∠ACD+∠OCA=90°,即∠OCD=90°,∴DC为⊙O的切线;(2)解:Rt△ACB中,AB=10,sinB=,∴AC=6,BC=8,∵∠ACD=∠B,∠ADC=∠CDB,∴△CAD∽△BCD,∴,设AD=3x,CD=4x,Rt△OCD中,OC2+CD2=OD2,52+(4x)2=(5+3x)2,x=0(舍)或,∵∠CEF=45°,∠ACB=90°,∴CE=CF,设CF=a,∵∠CEF=∠ACD+∠CDE,∠CFE=∠B+∠BDF,∴∠CDE=∠BDF,∵∠ACD=∠B,∴△CED∽△BFD,∴,∴,a=,∴CF=.26.(2018•青海)如图,在平行四边形ABCD中,E为AB边上的中点,连接DE并延长,交CB的延长线于点F.(1)求证:AD=BF;(2)若平行四边形ABCD的面积为32,试求四边形EBCD的面积.解:(1)∵E是AB边上的中点,∴AE=BE.∵AD∥BC,∴∠ADE=∠F.在△ADE和△BFE中,∠ADE=∠F,∠DEA=∠FEB,AE=BE,∴△ADE≌△BFE.∴AD=BF.(2)过点D作DM⊥AB与M,则DM同时也是平行四边形ABCD的高.=•AB•DM=AB•DM=×32=8,∴S△AED=32﹣8=24.∴S四边形EBCD27.(2018•白银)如图,点O是△ABC的边AB上一点,⊙O与边AC相切于点E,与边BC,AB分别相交于点D,F,且DE=EF.(1)求证:∠C=90°;(2)当BC=3,sinA=时,求AF的长.解:(1)连接OE,BE,∵DE=EF,∴∴∠OBE=∠DBE∵OE=OB,∴∠OEB=∠OBE∴∠OEB=∠DBE,∴OE∥BC∵⊙O与边AC相切于点E,∴OE⊥AC∴BC⊥AC∴∠C=90°(2)在△ABC,∠C=90°,BC=3,sinA=∴AB=5,设⊙O的半径为r,则AO=5﹣r,在Rt△AOE中,sinA===∴r=∴AF=5﹣2×=28.(2018•青海)如图△ABC内接于⊙O,∠B=60°,CD是⊙O的直径,点P是CD延长线上一点,且AP=AC.(2)若PD=,求⊙O的直径.解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,又∵OA=OC,∴∠OAC=∠OCA=30°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=∠AOC﹣∠P=90°,∴OA⊥PA,∴PA是⊙O的切线.(2)在Rt△OAP中,∵∠P=30°,∴PO=2OA=OD+PD,又∵OA=OD,∴PD=OA,∵PD=,∴2OA=2PD=2.∴⊙O的直径为2.29.(2018•新疆)如图,▱ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.(2)若BD=EF,连接EB,DF,判断四边形EBFD的形状,并说明理由.(1)证明:∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵AE=CF,∴OE=OF,在△DEO和△BOF中,∴△DOE≌△BOF.(2)解:结论:四边形EBFD是矩形.理由:∵OD=OB,OE=OF,∴四边形EBFD是平行四边形,∵BD=EF,∴四边形EBFD是矩形.30.(2018•青海)请认真阅读下面的数学小探究系列,完成所提出的问题:(1)探究1:如图1,在等腰直角三角形ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.求证:△BCD的面积为a2.(提示:过点D作BC 边上的高DE,可证△ABC≌△BDE)(2)探究2:如图2,在一般的Rt△ABC中,∠ACB=90°,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.请用含a的式子表示△BCD的面积,并说明理由.(3)探究3:如图3,在等腰三角形ABC中,AB=AC,BC=a,将边AB绕点B顺时针旋转90°得到线段BD,连接CD.试探究用含a的式子表示△BCD的面积,要有探究过程.解:(1)如图1,过点D作DE⊥CB交CB的延长线于E,∴∠BED=∠ACB=90°,由旋转知,AB=AD,∠ABD=90°,∴∠ABC+∠DBE=90°,∵∠A+∠ABC=90°,∴∠A=∠DBE,在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD(2)△BCD的面积为.理由:如图2,过点D作BC的垂线,与BC的延长线交于点E.∴∠BED=∠ACB=90°,∵线段AB绕点B顺时针旋转90°得到线段BE,∴AB=BD,∠ABD=90°.∴∠ABC+∠DBE=90°.∵∠A+∠ABC=90°.∴∠A=∠DBE.在△ABC和△BDE中,,∴△ABC≌△BDE(AAS)∴BC=DE=a.=BC•DE∵S△BCD=;∴S△BCD(3)如图3,过点A作AF⊥BC与F,过点D作DE⊥BC的延长线于点E,∴∠AFB=∠E=90°,BF=BC=a.∴∠FAB+∠ABF=90°.∵∠ABD=90°,∴∠ABF+∠DBE=90°,∴∠FAB=∠EBD.∵线段BD是由线段AB旋转得到的,∴AB=BD.在△AFB和△BED中,,∴△AFB≌△BED(AAS),∴BF=DE=a.∵S△BCD=BC•DE=•a•a=a2.∴△BCD 的面积为.31.(2018•宁夏)空间任意选定一点O,以点O为端点,作三条互相垂直的射线ox、oy、oz.这三条互相垂直的射线分别称作x轴、y轴、z轴,统称为坐标轴,它们的方向分别为ox(水平向前)、oy(水平向右)、oz(竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为S1、S2、S3,且S1<S2<S3的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体S1所在的面与x轴垂直,S2所在的面与y轴垂直,S3所在的面与z轴垂直,如图1所示.若将x轴方向表示的量称为几何体码放的排数,y轴方向表示的量称为几何体码放的列数,z轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作(1,2,6),如图3的几何体码放了2排3列4层,用有序数组记作(2,3,4).这样我们就可用每一个有序数组(x,y,z)表示一种几何体的码放方式.(1)如图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为12个;(2)对有序数组性质的理解,下列说法正确的是①②⑤;(只填序号)①每一个有序数组(x,y,z)表示一种几何体的码放方式.②有序数组中x、y、z的乘积就表示几何体中单位长方体的个数.③有序数组不同,所表示几何体的单位长方体个数不同.④不同的有序数组所表示的几何体的体积不同.⑤有序数组中x、y、z每两个乘积的2倍可分别确定几何体表面上S1、S2、S3的个数.(3)为了进一步探究有序数组(x,y,z)的几何体的表面积公式S(x,y,z),某同学针对若干个单位长方体进行码放,制作了下列表格:几何体有序数组单位长方体的个数表面上面积为S1的个数表面上面积为S2的个数表面上面积为S3的个数表面积(1,1,1) 1 2 2 2 2S1+2S2+2S3(1,2,1) 2 4 2 4 4S1+2S2+4S3(3,1,1) 3 2 6 6 2S1+6S2+6S3(2,1,2) 4 4 8 4 4S1+8S2+4S3(1,5,1) 5 10 2 10 10S1+2S2+10S3(1,2,3) 6 12 6 4 12S1+6S2+4S3(1,1,7)7 14 14 2 14S1+14S2+2S3(2,2,2)8 8 8 8 8S1+8S2+8S3………………根据以上规律,请写出有序数组(x,y,z)的几何体表面积计算公式S(x,y,z);(用x、y、z、S1、S2、S3表示)(4)当S1=2,S2=3,S3=4时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,对12个单位长方体码放的几何体表面积最小的规律进行探究,根据探究的结果请写出使几何体表面积最小的有序数组,并用几何体表面积公式求出这个最小面积.(缝隙不计)解:(1)这种码放方式的有序数组为(2,3,2),组成这个几何体的单位长方体的个数为2×3×2=12个,故答案为(2,3,2),12;(2)正确的有①②⑤.故答案为①②⑤;(3)S(x,y,z)=2yzS1+2xzS2+2xyS3=2(yzS1+xzS2+xyS3).(4)当S1=2,S2=3,S3=4时S(x,y,z)=2(yzS1+xzS2+xyS3)=2(2yz+3xz+4xy)欲使S(x,y,z)的值最小,不难看出x、y、z应满足x≤y≤z(x、y、z为正整数).在由12个单位长方体码放的几何体中,满足条件的有序数组为(1,1,12),(1,2,6),(1,3,4),(2,2,3).而S(1,1,12)=128,S(1,2,6)=100,S(1,3,4)=96,S(2,2,3)=92所以,由12个单位长方体码放的几何体表面积最小的有序数组为:(2,2,3),最小面积为S(2,2,3)=92.。

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案

辽宁省铁岭市中考数学试卷及答案一、选择题(下列各题的备选答案中,只有一个答案是正确的,将正确答案的序号填入题后的括号内,每小题 3 分,共 30 分)1、下列根式中,最简二次根式是 ( )2、下列关于 x 的一元二次方程中,有两个不相等的实数根的方程是 ( )3、已知⊙O 1和⊙O 2 的半径分别为 5 和 2,圆心距为 3,则两圆的位置关系是 ( )A、内含B、外切C、相交D、内切4、已知正六边形的边长为 10cm则它的边心距为 ( )5、在函数中,自变量 x 的取值范围是 ( )6、反比例函数 y=k/x 的图象经过点 P(-4,3),则 k 的值等于 ( )A、12B、-3/4C、-4/3D、-127、如图,正方形的边长为 a,以各边为直径在正方形内画半圆,则阴影部分的面积为( )8、在矩形 ABCD 中,AB=3cm,AD=2 cm,则以 AB 所在直线为轴旋转一周所得到的圆柱的表面积为 ( )A、17π cm2B、20π cm2C、21π cm2D、30π cm29、用换元法解方程那么原方程可变形为( )10、已知点 P 是半径为 5 的⊙O 内一定点,且 OP=4,则过点 P 的所有弦中,弦长可能取到的整数值为( )A、54 3B、10987654 3C、10987 6D、121110987 6二、填空题(每小题 3 分共 30 分)11、在平面直角坐标系中,点 P(-2,-4)关于 y 轴的对称点的坐标是__________。

12、一组数据-2,-1,0,1,2 的方差是_________。

13、已知是关于 x 的方程 x2 -4x+c=0 的一个根,则 c 的值是_________ 。

14、如图,AB 是⊙O 的直径,C、D 是⊙O 上两点,∠D=130°,则∠BAC 的度数为_________ 。

15、据某校环保小组调查,某区垃圾量的年增长率为 m,2003 产生的垃圾量为 a 吨,由此预测,该区 2005 年产生的垃圾量为________吨。

辽宁省铁岭市中考数学试卷含答案解析版

辽宁省铁岭市中考数学试卷含答案解析版

2017年辽宁省铁岭市中考数学试卷一、选择题本大题共10小题;每小题3分;共30分1.3分5的相反数是A .5B .﹣5C .15D .﹣15A .6.01×108B .6.1×108C .6.01×109D .6.01×107 3.3分下列几何体中;主视图为三角形的是A .B .C .D .4.3分如图;在同一平面内;直线l 1∥l 2;将含有60°角的三角尺ABC 的直角顶点C 放在直线l 1上;另一个顶点A 恰好落在直线l 2上;若∠2=40°;则∠1的度数是A .20°B .30°C .40°D .50°5.3分在某市举办的垂钓比赛上;5名垂钓爱好者参加了比赛;比赛结束后;统计了他们各自的钓鱼条数;成绩如下:4;5;10;6;10.则这组数据的中位数是A .5B .6C .7D .106.3分下列事件中;不可能事件是A .抛掷一枚骰子;出现4点向上B .五边形的内角和为540°C .实数的绝对值小于0D .明天会下雨7.3分关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根;那么m 的值是 A .98 B .916 C .﹣98 D .﹣916 8.3分某校管乐队购进一批小号和长笛;小号的单价比长笛的单价多100元;用6000元购买小号的数量与用5000元购买长笛的数量恰好相同;设小号的单价为x 元;则下列方程正确的是A .6000x =5000x−100B .6000x−100=5000xC .6000x =5000x+100D .6000x+100=5000x9.3分如图;在△ABC中;AB=5;AC=4;BC=3;分别以点A;点B为圆心;大于12AB的长为半径画弧;两弧相交于点M;N;作直线MN交AB于点O;连接CO;则CO的长是A.1.5B.2C.2.4D.2.510.3分如图;在射线AB上顺次取两点C;D;使AC=CD=1;以CD为边作矩形CDEF;DE=2;将射线AB绕点A沿逆时针方向旋转;旋转角记为α其中0°<α<45°;旋转后记作射线AB′;射线AB′分别交矩形CDEF的边CF;DE于点G;H.若CG=x;EH=y;则下列函数图象中;能反映y与x之间关系的是A.B.C.D.二、填空题本大题共8小题;每小题3分;共24分11.3分在函数y=√x−4中;自变量x的取值范围是.12.3分分解因式:x2y﹣6xy+9y=.13.3分从数﹣2;1;2;5;8中任取一个数记作k;则正比例函数y=kx的图象经过第二、四象限的概率是.14.3分学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛;四名同学平时成绩的平均数x单位:分及方差s2如下表所示:甲乙丙丁x94989896s21 1.21 1.8如果要选出一个成绩好且状态稳定的同学参赛;那么应该选择的同学是.15.3分如图;菱形ABCD的面积为6;边AD在x轴上;边BC的中点E在y轴上;反比例函数y=kx的图象经过顶点B;则k的值为.16.3分在ABCD中;∠DAB的平分线交直线CD于点E;且DE=5;CE=3;则ABCD的周长为.17.3分如图;在圆心角为135°的扇形OAB中;半径OA=2cm;点C;D为AB̂的三等分点;连接OC;OD;AC;CD;BD;则图中阴影部分的面积为cm2.18.3分如图;△ABC的面积为S.点P1;P2;P3;…;P n﹣1是边BC的n等分点n≥3;且n为整数;点M;N分别在边AB;AC上;且AMAB=ANAC=1n;连接MP1;MP2;MP3;…;MP n﹣1;连接NB;NP1;NP2;…;NP n﹣1;线段MP1与NB相交于点D1;线段MP2与NP1相交于点D2;线段MP3与NP2相交于点D3;…;线段MP n﹣1与NP n﹣2相交于点D n﹣1;则△ND1P1;△ND2P2;△ND3P3;…;△ND n﹣1P n﹣1的面积和是.用含有S与n的式子表示三、解答题本大题共2小题;共22分19.10分先化简;再求值:xx−y﹣1÷yx2−y2;其中x=√3﹣2;y=12﹣1.20.12分某校九年级开展征文活动;征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个;九年级每名学生按要求都上交了一份征文;学校为了解选择各种征文主题的学生人数;随机抽取了部分征文进行了调查;根据调查结果绘制成如下两幅不完整的统计图.1求本次调查共抽取了多少名学生的征文;2将上面的条形统计图和扇形统计图补充完整;3如果该校九年级共有1200名学生;请估计选择以“友善”为主题的九年级学生有多少名;4本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的;若从中随机选取2份以“诚信”为主题的征文进行交流;请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.四、解答题本大题共2小题;共24分21.12分某大型快递公司使用机器人进行包裹分拣;若甲机器人工作2h;乙机器人工作4h;一共可以分拣700件包裹;若甲机器人工作3h;乙机器人工作2h;一共可以分拣650件包裹.1求甲、乙两机器人每小时各分拣多少件包裹;2“双十一”期间;快递公司的业务量猛增;要让甲、乙两机器人每天分拣包裹的总数量不低于2250件;它们每天至少要一起工作多少小时22.12分如图;某市文化节期间;在景观湖中央搭建了一个舞台C;在岸边搭建了三个看台A;B;D;其中A;C;D三点在同一条直线上;看台A;B到舞台C的距离相等;测得∠A=30°;∠D=45°;AB=60m;小明、小丽分别在B;D看台观看演出;请分别求出小明、小丽与舞台C的距离.结果保留根号五、解答题本大题共1小题;共12分23.12分如图;AB是半圆O的直径;点C是半圆上一点;连接OC;BC;以点C为顶点;CB为边作∠BCF=12∠BOC;延长AB交CF于点D.1求证:直线CF是半圆O的切线;2若BD=5;CD=5√3;求BĈ的长.六、解答题本大题共1小题;共12分24.12分铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食;每盒售价为50元;由于食材需要冷藏保存;导致成本逐日增加;第x天1≤x≤15且x为整数时每盒成本为p元;已知p与x之间满足一次函数关系;第3天时;每盒成本为21元;第7天时;每盒成本为25元;每天的销售量为y盒;y 与x之间的关系如下表所示:第x 天1≤x≤66<x≤15每天的销售量y /盒1x+61求p与x的函数关系式;2若每天的销售利润为w元;求w与x的函数关系式;并求出第几天时当天的销售利润最大;最大销售利润是多少元3在“荷花美食”厨艺秀期间;共有多少天小张每天的销售利润不低于325元请直接写出结果.七、解答题本大题共1小题;共12分25.12分如图;△ABC中;∠BAC为钝角;∠B=45°;点P是边BC延长线上一点;以点C为顶点;CP为边;在射线BP下方作∠PCF=∠B.1在射线CF上取点E;连接AE交线段BC于点D.①如图1;若AD=DE;请直接写出线段AB与CE的数量关系和位置关系;②如图2;若AD=√2DE;判断线段AB与CE的数量关系和位置关系;并说明理由;2如图3;反向延长射线CF;交射线BA于点C′;将∠PCF沿CC′方向平移;使顶点C落在点C′处;记平移后的∠PCF为∠P′C′F′;将∠P′C′F′绕点C′顺时针旋转角α0°<α<45°;C′F′交线段BC于点M;C′P′交射线BP于点N;请直接写出线段BM;MN与CN之间的数量关系.八、解答题本大题共1小题;共14分26.14分如图;抛物线y=﹣x2+bx+c与x轴的两个交点分别为A3;0;D﹣1;0;与y轴交于点C;点B在y轴正半轴上;且OB=OD.1求抛物线的解析式;2如图1;抛物线的顶点为点E;对称轴交x轴于点M;连接BE;AB;请在抛物线的对称轴上找一点Q;使∠QBA=∠BEM;求出点Q的坐标;3如图2;过点C作CF∥x轴;交抛物线于点F;连接BF;点G是x轴上一点;在抛物线上是否存在点N;使以点B;F;G;N为顶点的四边形是平行四边形若存在;请直接写出点N的坐标;若不存在;请说明理由.2017年辽宁省铁岭市中考数学试卷参考答案与试题解析一、选择题本大题共10小题;每小题3分;共30分1.3分2017 铁岭5的相反数是A.5B.﹣5C.15D.﹣15考点14:相反数.分析根据相反数的定义求解即可.解答解:5的相反数是﹣5;故选:B.点评本题考查了相反数;在一个数的前面加上负号就是这个数的相反数.A.6.01×108B.6.1×108C.6.01×109D.6.01×107考点1I:科学记数法—表示较大的数.分析科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数.确定n 的值时;要看把原数变成a时;小数点移动了多少位;n的绝对值与小数点移动的位数相同.当原数绝对值>1时;n是正数;当原数的绝对值<1时;n是负数.解答×108;故选A.点评此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式;其中1≤|a|<10;n为整数;表示时关键要正确确定a的值以及n的值.3.3分2017 铁岭下列几何体中;主视图为三角形的是A.B.C.D.考点U1:简单几何体的三视图.分析分别找出从图形的正面看所得到的图形即可.解答解:A、主视图是矩形;故此选项错误;B、主视图是矩形;故此选项错误;C、主视图是三角形;故此选项正确;D、主视图是正方形;故此选项错误;故选:C.点评此题主要考查了简单几何体的三视图;关键是掌握主视图是从几何体的正面看所得到的图形.4.3分2017 铁岭如图;在同一平面内;直线l1∥l2;将含有60°角的三角尺ABC的直角顶点C放在直线l1上;另一个顶点A恰好落在直线l2上;若∠2=40°;则∠1的度数是A.20°B.30°C.40°D.50°考点JA:平行线的性质.分析根据平行线的性质得到∠1+30°+∠2+90°=180°;再把∠2=40°代入可求∠1的度数.解答解:∵l1∥l2;∴∠1+30°+∠2+90°=180°;∵∠2=40°;∴∠1+30°+40°+90°=180°;解得∠1=20°.故选:A.点评本题考查的是平行线的性质;用到的知识点为:两直线平行;同旁内角互补是解答此题的关键.5.3分2017 铁岭在某市举办的垂钓比赛上;5名垂钓爱好者参加了比赛;比赛结束后;统计了他们各自的钓鱼条数;成绩如下:4;5;10;6;10.则这组数据的中位数是A.5B.6C.7D.10考点W4:中位数.分析根据中位数的定义先把这组数据从小到大重新排列;找出最中间的数即可.解答解:把这数从小到大排列为:4;5;6;10;10;最中间的数是6;则这组数据的中位数是6;故选B.点评此题考查了中位数的意义;中位数是将一组数据从小到大或从大到小重新排列后;最中间的那个数最中间两个数的平均数;叫做这组数据的中位数;如果中位数的概念掌握得不好;不把数据按要求重新排列;就会错误地将这组数据最中间的那个数当作中位数.6.3分2017 铁岭下列事件中;不可能事件是A.抛掷一枚骰子;出现4点向上B.五边形的内角和为540°C.实数的绝对值小于0D.明天会下雨考点X1:随机事件.分析依据不可能事件的概念求解即可.解答解:A、抛掷一枚骰子;出现4点向上是随机事件;故A错误;B、五边形的内角和为540° 是必然事件;故B错误;C、实数的绝对值小于0是不可能事件;故C正确;D、明天会下雨是实际事件;故D错误.故选C.点评本题主要考查的是不可能事件的定义;熟练掌握相关概念是解题的关键.7.3分2017 铁岭关于x的一元二次方程4x2﹣3x+m=0有两个相等的实数根;那么m的值是A.98B.916C.﹣98D.﹣916考点AA:根的判别式.分析由方程有两个相等的实数根;即可得出关于m的一元一次方程;解之即可得出m 的值.解答解:∵关于x 的一元二次方程4x 2﹣3x +m=0有两个相等的实数根; ∴△=﹣32﹣4×4m=9﹣16m=0;解得:m=916. 故选B .点评本题考查了根的判别式;牢记“当△=0时;方程有两个相等的实数根”是解题的关键.8.3分2017 铁岭某校管乐队购进一批小号和长笛;小号的单价比长笛的单价多100元;用6000元购买小号的数量与用5000元购买长笛的数量恰好相同;设小号的单价为x 元;则下列方程正确的是A .6000x =5000x−100B .6000x−100=5000xC .6000x =5000x+100D .6000x+100=5000x考点B6:由实际问题抽象出分式方程.分析设小号的单价为x 元;则长笛的单价为x ﹣100元;根据6000元购买小号的数量与用5000元购买长笛的数量恰好相同;列方程即可.解答解:设小号的单价为x 元;则长笛的单价为x ﹣100元;由题意得:6000x =5000x−100. 故选:A .点评本题考查了由实际问题抽象出分式方程;解答本题的关键是读懂题意;设出未知数;找出合适的等量关系;列方程.9.3分2017 铁岭如图;在△ABC 中;AB=5;AC=4;BC=3;分别以点A;点B 为圆心;大于12AB 的长为半径画弧;两弧相交于点M;N;作直线MN 交AB 于点O;连接CO;则CO 的长是A .1.5B .2C .2.4D .2.5考点N2:作图—基本作图;KG :线段垂直平分线的性质;KP :直角三角形斜边上的中线;KS :勾股定理的逆定理.分析先利用勾股定理的逆定理证明△ABC 为直角三角形;∠ACB=90°;再由作法得MN 垂直平分AB;然后根据直角三角形斜边上的中线性质求解.解答解:∵AB=5;AC=4;BC=3;∴AC2+BC2=AB2;∴△ABC为直角三角形;∠ACB=90°;由作法得MN垂直平分AB;∴AO=OB;∴OC=12AB=2.5.故选D.点评本题考查了作图﹣基本作图:熟练掌握基本作图作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线.10.3分2017 铁岭如图;在射线AB上顺次取两点C;D;使AC=CD=1;以CD为边作矩形CDEF;DE=2;将射线AB绕点A沿逆时针方向旋转;旋转角记为α其中0°<α<45°;旋转后记作射线AB′;射线AB′分别交矩形CDEF的边CF;DE于点G;H.若CG=x;EH=y;则下列函数图象中;能反映y与x之间关系的是A.B.C.D.考点E7:动点问题的函数图象.分析根据矩形的性质得到CF∥DE;根据相似三角形的性质即可得到结论.解答解:∵四边形CDEF是矩形;∴CF∥DE;∴△ACG∽△ADH;∴CGDH =AC AD;∵AC=CD=1;∴AD=2;∴xDH = 1 2 ;∴DH=2x;∵DE=2;∴y=2﹣2x;∵0°<α<45°;∴0<x<1;故选D.点评本题考查了动点问题的还是图象;矩形的性质;相似三角形的判定和性质;正确的理解题意是解题的关键.二、填空题本大题共8小题;每小题3分;共24分11.3分2017 铁岭在函数y=√x−4中;自变量x的取值范围是x≥4.考点E4:函数自变量的取值范围;72:二次根式有意义的条件.分析根据二次根式的性质;被开方数大于等于0;列不等式求解.解答解:根据题意得:x﹣4≥0;解得x≥4;则自变量x的取值范围是x≥4.点评本题考查的知识点为:二次根式的被开方数是非负数.12.3分2017 铁岭分解因式:x2y﹣6xy+9y=yx﹣32.考点55:提公因式法与公式法的综合运用.分析原式提取y;再利用完全平方公式分解即可.解答解:原式=yx2﹣6x+9=yx﹣32;故答案为:yx﹣32点评此题考查了提公因式法与公式法的综合运用;熟练掌握因式分解的方法是解本题的关键.13.3分2017 铁岭从数﹣2;1;2;5;8中任取一个数记作k;则正比例函数y=kx的图象经过第二、四象限的概率是15.考点X4:概率公式;F7:一次函数图象与系数的关系.分析从数﹣2;1;2;5;8中任取一个数记作k;有5种情况;其中使正比例函数y=kx的图象经过第二、四象限的k值只有1种;根据概率公式求解即可.解答解:∵从数﹣2;1;2;5;8中任取一个数记作k;有5种情况;其中使正比例函数y=kx 的图象经过第二、四象限的k 值只有1种;即k=﹣2;∴满足条件的概率为15. 故答案为15. 点评本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比.也考查了正比例函数的性质.14.3分2017 铁岭学校准备从甲、乙、丙、丁四名同学中选择一名同学代表学校参加市里举办的“汉字听写”大赛;四名同学平时成绩的平均数x 单位:分及方差s 2如下表所示:甲 乙 丙 丁 x 94 98 98 96s 2 1 1.2 1 1.8如果要选出一个成绩好且状态稳定的同学参赛;那么应该选择的同学是 丙 . 考点W7:方差;W1:算术平均数.分析先比较平均数得到乙同学和丙同学成绩较好;然后比较方差得到丙同学的状态稳定;于是可决定选丙同学去参赛.解答解:∵乙、丙同学的平均数比甲、丁同学的平均数大;∴应从乙和丙同学中选;∵丙同学的方差比乙同学的小;∴丙同学的成绩较好且状态稳定;应选的是丙同学;故答案为:丙.点评本题考查了方差:一组数据中各数据与它们的平均数的差的平方的平均数;叫做这组数据的方差.方差是反映一组数据的波动大小的一个量.方差越大;则平均值的离散程度越大;稳定性也越小;反之;则它与其平均值的离散程度越小;稳定性越好.15.3分2017 铁岭如图;菱形ABCD 的面积为6;边AD 在x 轴上;边BC 的中点E在y 轴上;反比例函数y=k x的图象经过顶点B;则k 的值为 3 . 考点G5:反比例函数系数k 的几何意义;L8:菱形的性质.分析在Rt△AEB中;由∠AEB=90°;AB=2BE;推出∠EAB=30°;设AE=a;则AB=2a;由题意2a×√3a=6;推出a2=√3;可得k=√3a2=3.解答解:在Rt△AEB中;∵∠AEB=90°;AB=2BE;∴∠EAB=30°;设AE=a;则AB=2a;由题意2a×√3a=6;∴a2=√3;∴k=√3a2=3;故答案为3.点评本题考查反比例函数系数的几何意义、菱形的性质等知识;解题的关键是灵活运用所学知识解决问题;属于中考常考题型.16.3分2017 铁岭在ABCD中;∠DAB的平分线交直线CD于点E;且DE=5;CE=3;则ABCD的周长为26.考点L5:平行四边形的性质.分析易证得△ADE是等腰三角形;所以可得AD=DE;再求出DC的长;继而求得答案.解答解:∵四边形ABCD是平行四边形;∴AD∥BC;AB=CD=DE+CE=8;∴∠BAE=∠DEA;∵AE平分∠BAD;∴∠BAE=∠EAD;∴∠DEA=∠EAD;∴DE=AD=5;∴ABCD的周长=2AD+AB=2×13=26;故答案为:26.点评本题考查了平行四边形的性质以及等腰三角形的判定.注意证得△ADE是等腰三角形是关键.17.3分2017 铁岭如图;在圆心角为135°的扇形OAB中;半径OA=2cm;点C;D为AB̂的三等分点;连接OC;OD;AC;CD;BD;则图中阴影部分的面积为32π﹣3√2cm2.考点MO :扇形面积的计算.分析易知△AOC ≌△COD ≌△DOB;如图作DH ⊥OB 于H .求出DH;即可求出△DOB 的面积;再根据阴影部分面积=扇形面积﹣三个三角形面积;计算即可. 解答解:如图作DH ⊥OB 于H .∵点C;D 为AB̂的三等分点;∠AOB=135°; ∴∠AOC=∠COD=∠DOB=45°;∴△ODH 是等腰直角三角形;△AOC ≌△COD ≌△DOB;∵OD=2;∴DH=OH=√2;∴S △ODB =12OB DH=√2; ∴S △AOC =S △COD =S △DOB =√2;∴S 阴=135?π?22360﹣3S △DOB =32π﹣3√2cm 2; 故答案为32π﹣3√2cm 2. 点评本题考查扇形的面积、全等三角形的判定和性质等知识;解题的关键是学会添加常用辅助线;构造直角三角形解决问题;属于中考常考题型.18.3分2017 铁岭如图;△ABC 的面积为S .点P 1;P 2;P 3;…;P n ﹣1是边BC 的n 等分点n ≥3;且n 为整数;点M;N 分别在边AB;AC 上;且AM AB =AN AC =1n;连接MP 1;MP 2;MP 3;…;MP n ﹣1;连接NB;NP 1;NP 2;…;NP n ﹣1;线段MP 1与NB 相交于点D 1;线段MP 2与NP 1相交于点D 2;线段MP 3与NP 2相交于点D 3;…;线段MP n ﹣1与NP n ﹣2相交于点D n ﹣1;则△ND 1P 1;△ND 2P 2;△ND 3P 3;…;△ND n ﹣1P n ﹣1的面积和是 n−12nS .用含有S 与n 的式子表示考点K3:三角形的面积.分析连接MN;设BN 交MP 1于O 1;MP 2交NP 1于O 2;MP 3交NP 2于O 3.由AM AB =AN AC =1n;推出MN ∥BC;推出MN BC =AM AB =1n;由点P 1;P 2;P 3;…;P n ﹣1是边BC 的n 等分点;推出MN=BP 1=P 1P 2=P 2P 3;推出四边形MNP 1B;四边形MNP 2P 1;四边形MNP 3P 2都是平行四边形;易知S △ABN =1n S;S △BCN =n−1n S;S △MNB =n−1n 2S;推出S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n−12n 2 S;根据S 阴=S △NBC ﹣n S △BP 1O 1计算即可; 解答解:连接MN;设BN 交MP 1于O 1;MP 2交NP 1于O 2;MP 3交NP 2于O 3. ∵AM AB =AN AC =1n; ∴MN ∥BC;∴MN BC =AM AB =1n; ∵点P 1;P 2;P 3;…;P n ﹣1是边BC 的n 等分点;∴MN=BP 1=P 1P 2=P 2P 3;∴四边形MNP 1B;四边形MNP 2P 1;四边形MNP 3P 2都是平行四边形;易知S △ABN =1n S;S △BCN =n−1n S;S △MNB =n−1n 2 S; ∴S △BP 1O 1=S △P 1P 2O 2=S △P 3P 2O 3=n−12n 2 S; ∴S 阴=S △NBC ﹣n S △BP 1O 1=n−1n S ﹣n n−12n 2 S=n−12nS; 故答案为n−12n S . 点评本题考查三角形的面积;平行线的判定和性质、平行四边形的判定和性质等知识;解题的关键是灵活运用所学知识解决问题;属于中考压轴题.三、解答题本大题共2小题;共22分19.10分2017 铁岭先化简;再求值:x x−y ﹣1÷yx 2−y 2;其中x=√3﹣2;y=12﹣1. 考点6D :分式的化简求值;6F :负整数指数幂.分析根据分式的减法和除法可以化简题目中的式子;然后将x 、y 的值代入即可解答本题.解答解:x x−y ﹣1÷yx 2−y 2=x−x+y x−y ?(x+y)(x−y)y=yx−y(x+y)(x−y)y=x+y;当x=√3﹣2;y=12﹣1=2时;原式=√3﹣2+2=√3.点评本题考查分式的化简求值、负整数指数幂;解答本题的关键是明确分式化简求值的方法.20.12分2017 铁岭某校九年级开展征文活动;征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个;九年级每名学生按要求都上交了一份征文;学校为了解选择各种征文主题的学生人数;随机抽取了部分征文进行了调查;根据调查结果绘制成如下两幅不完整的统计图.1求本次调查共抽取了多少名学生的征文;2将上面的条形统计图和扇形统计图补充完整;3如果该校九年级共有1200名学生;请估计选择以“友善”为主题的九年级学生有多少名;4本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的;若从中随机选取2份以“诚信”为主题的征文进行交流;请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.考点X6:列表法与树状图法;V5:用样本估计总体;VB:扇形统计图;VC:条形统计图.分析1用“诚信”的人数除以所占的百分比求出总人数;2用总人数减去“爱国”“敬业”“诚信”“的人数;求出“友善”的人数;从而补全统计图;分别求出百分比即可补全扇形图;3用样本估计总体的思想解决问题即可;4根据题意画出树状图;再根据概率公式进行计算即可;解答解:1本次调查共抽取的学生有3÷6%=50名.2选择“友善”的人数有50﹣20﹣12﹣3=15名;占1550=30%;“爱国”占2050=40%;“敬业”占1250=24%.条形统计图和扇形统计图如图所示;3该校九年级共有1200名学生;请估计选择以“友善”为主题的九年级学生有1200×30%=360名.4记小义、小玉和大力分别为A 、B 、C .树状图如图所示:共有6种情形;小义和小玉同学的征文同时被选中的有2种情形;小义和小玉同学的征文同时被选中的概率=13. 点评本题考查读频数分布直方图的能力和利用统计图获取信息的能力以及求随机事件的概率;利用统计图获取信息时;必须认真观察、分析、研究统计图;才能作出正确的判断和解决问题.四、解答题本大题共2小题;共24分21.12分2017 铁岭某大型快递公司使用机器人进行包裹分拣;若甲机器人工作2h;乙机器人工作4h;一共可以分拣700件包裹;若甲机器人工作3h;乙机器人工作2h;一共可以分拣650件包裹.1求甲、乙两机器人每小时各分拣多少件包裹;2“双十一”期间;快递公司的业务量猛增;要让甲、乙两机器人每天分拣包裹的总数量不低于2250件;它们每天至少要一起工作多少小时考点C9:一元一次不等式的应用;9A :二元一次方程组的应用.分析1设甲、乙两机器人每小时各分拣x 件、y 件包裹;根据“若甲机器人工作2h;乙机器人工作4h;一共可以分拣700件包裹;若甲机器人工作3h;乙机器人工作2h;一共可以分拣650件包裹”列出方程组;求解即可;2设它们每天要一起工作t 小时;根据“甲、乙两机器人每天分拣包裹的总数量不低于2250件”列出不等式;求解即可.解答解:1设甲、乙两机器人每小时各分拣x 件、y 件包裹;根据题意得 {2x +4y =7003x +2y =650;解得{x =150y =100; 答:甲、乙两机器人每小时各分拣150件、100件包裹;2设它们每天要一起工作t 小时;根据题意得150+100t ≥2250;解得t ≥9.答:它们每天至少要一起工作9小时.点评本题考查了一元一次不等式的应用以及二元一次方程组的应用;解决问题的关键是读懂题意;找到关键描述语;找到所求的量的关系.22.12分2017 铁岭如图;某市文化节期间;在景观湖中央搭建了一个舞台C;在岸边搭建了三个看台A;B;D;其中A;C;D三点在同一条直线上;看台A;B到舞台C的距离相等;测得∠A=30°;∠D=45°;AB=60m;小明、小丽分别在B;D看台观看演出;请分别求出小明、小丽与舞台C的距离.结果保留根号考点T8:解直角三角形的应用.分析如图作BH⊥AD于H.;CE⊥AB于E.解直角三角形;分别求出BC、CD即可解决问题.解答解:如图作BH⊥AD于H.;CE⊥AB于E.∵CA=CB;CE⊥AB;∴AE=EB=30;∴tan30°=CEAE;∴CE=10√3;AC=CB=2CE=20√3;在Rt△CBH中;CH=12BC=10√3;BH=√3CH=30;在Rt△BHD中;∵∠D=45°;∴BH=DH=30;∴DC=DH+CH=30+10√3;答:小明、小丽与舞台C的距离分别为20√3m和30+10√3m.点评本题考查解直角三角形、锐角三角函数等知识;解题的关键是学会添加常用辅助线;构造直角三角形解决问题;属于中考常考题型.五、解答题本大题共1小题;共12分23.12分2017 铁岭如图;AB是半圆O的直径;点C是半圆上一点;连接OC;BC;以点C为顶点;CB为边作∠BCF=12∠BOC;延长AB交CF于点D.1求证:直线CF是半圆O的切线;2若BD=5;CD=5√3;求BĈ的长.考点ME:切线的判定与性质;MN:弧长的计算.分析1欲证明CF是切线;只要证明OC⊥CF即可.2由△DCB∽△DAC;可得DC:DA=DB:DC;设AB=x;则有75=55+x;推出x=10;再证明∠COB=60°即可解决问题.解答解:1作OH ⊥BC 于H .∵OC=OB;OH ⊥BC;∴∠COH=∠BOH;∵∠BCF=12∠BOC; ∴∠BCF=∠COH;∵∠COH +∠OCH=90°;∴∠BCF +∠OCH=90°;∴∠OCF=90°;即OC ⊥CF;∴CF 是⊙O 的切线.2连接AC .∵∠DCB=∠A;∠CDB=∠ADC;∴△DCB ∽△DAC;∴DC :DA=DB :DC;设AB=x;则有75=55+x;∴x=10;∴OC=5;OD=10;∴OD=2OC;∵∠OCD=90°;∴∠CDO=30°;∴∠COB=60°;∴BC ̂的长=60?π?5180=53π. 点评本题考查切线的判定、勾股定理、相似三角形的判定和性质、弧长公式等知识;解题的关键是学会添加常用辅助线;灵活运用所学知识解决问题;属于中考常考题型.六、解答题本大题共1小题;共12分24.12分2017 铁岭铁岭“荷花节”举办了为期15天的“荷花美食”厨艺秀.小张购进一批食材制作特色美食;每盒售价为50元;由于食材需要冷藏保存;导致成本逐日增加;第x 天1≤x ≤15且x 为整数时每盒成本为p 元;已知p 与x 之间满足一次函数关系;第3天时;每盒成本为21元;第7天时;每盒成本为25元;每天的销售量为y 盒;y 与x 之间的关系如下表所示:第x 天 1≤x ≤6 6<x≤15每天的销售量y/盒10 x+6 1求p 与x 的函数关系式;2若每天的销售利润为w 元;求w 与x 的函数关系式;并求出第几天时当天的销售利润最大;最大销售利润是多少元3在“荷花美食”厨艺秀期间;共有多少天小张每天的销售利润不低于325元 请直接写出结果.考点HE :二次函数的应用.分析1设p=kx +bk ≠0;然后根据第3天和第7天的成本利用待定系数法求一次函数解析式解答即可;2根据销售利润=每盒的利润×盒数列出函数关系式;再根据一次函数的增减性和二次函数的最值问题求解;3根据2的计算以及二次函数与一元二次方程的关系求解.解答解:1设p=kx +bk ≠0;∵第3天时;每盒成本为21元;第7天时;每盒成本为25元;∴{3k +b =217k +b =25; 解得{k =1b =18; 所以;p=x +18;21≤x ≤6时;w=1050﹣x +18=﹣10x +320;。

辽宁省铁岭市中考数学试卷

辽宁省铁岭市中考数学试卷

辽宁省铁岭市中考数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018七上·武昌期中) 如果a+b+c=0,且|c|>|b|>|a|,则下列说法中可能成立的是()A . a、b为正数,c为负数B . a、c为正数,b为负数C . b、c为正数,a为负数D . a为正数,b、c为负数2. (2分)(2017·深圳模拟) 下列运算正确的是A . 2a+3a=5a2B . a6÷a2=a3C . (-3a3)2=9a6D . (a-3)2=a2-93. (2分)下列数学表达式中是不等式的是()A . 5x=4B . 2x+5yC . 6<2xD . 04. (2分) (2018九上·西安期中) 某反比例函数的图象经过点(-2,3),则此函数图象也经过()A . (2,-3)B . (-3,3)C . (2,3)D . (-4,6)5. (2分)弧长等于半径的圆弧所对的圆心角是()A .B .C .D . 60°6. (2分)介于下列哪两个整数之间()A . 0与1B . 1与2C . 2与3D . 3与47. (2分) (2017八上·黄陂期中) 如图,在△ABE中,∠A=105°,AE的垂直平分线MN交BE于点C,且AB+BC=BE,则∠B的度数是()A . 50°B . 45°C . 60°D . 55°8. (2分)如图,AB是⊙O的直径,点C、D都在⊙O上,若∠C=20°,则∠ABD的度数等于()A . 80°B . 70°C . 50°D . 40°二、填空题 (共10题;共20分)9. (2分)(2018·弥勒模拟) 如图,若点A的坐标为(1,),则∠1=________,sin∠1=________.10. (1分)分式方程的解是________11. (2分) (2016八上·防城港期中) 点A(﹣2a,a﹣1)在x轴上,则A点的坐标是________,A点关于y 轴的对称点的坐标是________.12. (1分)(2020·盐城模拟) 在一次考试中,某小组8名同学的成绩(单位:分)分别是:7,10,9,8,7,9,9,8,则这组数据的众数是________.13. (1分) (2019九上·武汉月考) 如图,AE是正八边形ABCDEFGH的一条对角线,则∠BAE=________°.14. (1分)若∠A=66°20′,则∠A的余角等于________15. (1分)如图,在△ABC中,D、E分别是AB、AC的中点,若BC=10,则DE= ________.16. (9分)二次函数y=3x2-3的图象开口向________,顶点坐标为________,对称轴为________,当x>0时,y随x的增大而________;当x<0时,y随x的增大而________.因为a=3>0,所以y有最________值,当x=________时,y的最________值是________.17. (1分) (2019八下·长宁期末) 如图,菱形的对角线相交于点,若,则菱形的面积=________.18. (1分) (2019七上·徐汇期中) 如果单项式与的和仍是单项式,那么mn=________.三、解答题 (共10题;共93分)19. (5分)(2012·辽阳) 先化简,再求值:,其中x= .20. (5分)(2020·萧山模拟) 解不等式,并把它的解集在数轴上表示出来:21. (13分) (2017八下·江都期中) 我们给出如下定义:若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称这个四边形为勾股四边形,这两条相邻的边称为这个四边形的勾股边.(1)写出你所学过的特殊四边形中是勾股四边形的两种图形的名称________,________;(2)如图1,已知格点(小正方形的顶点)O(0,0),A(3,0),B(0,4),请你直接写出所有以格点为顶点,OA、OB为勾股边且有对角线相等的勾股四边形OAMB的顶点M的坐标.(3)如图2,将△ABC绕顶点B按顺时针方向旋转60°,得到△DBE,连接AD、DC,∠DCB=30°.求证:DC2+BC2=AC2 ,即四边形ABCD是勾股四边形.(4)若将图2中△ABC绕顶点B按顺时针方向旋转a度(0°<a<90°),得到△DBE,连接AD、DC,则∠DCB=________°,四边形ABCD是勾股四边形.22. (5分) (2017八下·龙海期中) 如图,在▱ABCD中,已知AD=5cm,AB=3cm,AE平分∠BAD交BC边于点E,求EC的长.23. (10分) (2017九下·宜宾期中) 减负提质“1+5”行动计划是我市教育改革的一项重要举措.某中学“阅读与演讲社团”为了了解本校学生的每周课外阅读时间,采用随机抽样的方式进行了问卷调查,调查结果分为“2小时以内”、“2小时~3小时”、“3小时~4小时”和“4小时以上”四个等级,分别用A、B、C、D表示,根据调查结果绘制成了如图所示的两幅不完整的统计图.由图中所给出的信息解答下列问题:(1)求出x的值,并将不完整的条形图补充完整;(2)在此次调查活动中,初三(1)班的两个学习小组内各有2人每周课外阅读时间都是4小时以上,现从这4人中任选2人去参加学校的知识抢答赛.用列表或画树状图的方法求选出的2人来自不同小组的概率.24. (10分) (2019九上·海曙期末) 2018年6月,某市全面推进生活垃圾分类工作.如图是某小区放置的垃圾桶,从左到右依次是红色:有害垃圾;蓝色:可回收垃圾;绿色:厨余垃圾;黑色:其他垃圾.(1)居民A将一袋厨余垃圾随手放入一个垃圾桶,问他能正确投放垃圾的概率是.(2)居民B手拎两袋垃圾,一袋是可回收垃圾,另一袋是有害垃圾。

辽宁省铁岭市数学中考模拟试卷

辽宁省铁岭市数学中考模拟试卷

辽宁省铁岭市数学中考模拟试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·南湖模拟) 从2,-3,4,-5四个数中任意选出两个数相乘,得到的最大乘积是()A . -6B . -12C . -20D . 152. (2分) (2019八上·陇西期中) 如图,点O是△ABC内一点,∠A=80°,∠1=15°,∠2=40°,则∠BOC 等于()A . 95°B . 125°C . 130°D . 135°3. (2分)我国的陆地面积居世界第三位,约为959.7万千米 2 ,用科学记数法表示正确的是()A . 9.597×105千米2B . 9.597×107千米2C . 9.97×105千米2D . 9.597×106千米24. (2分)某班一些学生做图钉随机抛掷的实验,求图钉尖触地还是图钉面触地的概率,下列做法正确的是()A . 甲做了4000次,得出针尖触地的频率约为42%,于是他断定在做第4001次时,针尖肯定不会触地;B . 乙认为一次一次做,速度太慢,他拿来了大把材料,形状及大小都完全一样的图钉,随意朝上轻轻抛出,然后统计针尖触地的个数,这样大大提高了速度;C . 老师安排每位同学回家做实验,各人的图钉大小、质地均匀程度都不一样,同学交来的结果,老师进行统计;D . 老师安排同学回家做实验,图钉统一发(完全一样的图钉),同学交来的结果,老师进行统计。

5. (2分)若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是A . l=2rB . l=3rC . l=rD .6. (2分)若m为不等于零的实数,则关于x的方程x2+mx﹣m2=0的根的情况是()A . 有两个相等的实数根B . 有两个不等的实数根C . 有两个实数根D . 无实数根7. (2分) (2017九上·哈尔滨期中) 如图,有一轮船在A处测得南偏东30°方向上有一小岛F,轮船沿正南方向航行至B处,测得小岛F在南偏东45°方向上,按原方向再航行10海里至C处,测得小岛F在正东方向上,则A,B之间距离是()A . 10 海里B . (10 -10)海里C . 10海里D . (10 -10)海里8. (2分)(2019·宽城模拟) 西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC 约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A . asin26.5°B .C . acos26.5°D .9. (2分)一次函数图象经过点A(﹣2,﹣1),且与直线y=2x﹣3平行,此函数与x轴交点坐标为()A . (﹣,0)B . (﹣2,0)C . (﹣1,0)D . (,0)10. (2分) (2019九上·南浔月考) 二次函数y=ax2+bx+c(a>0)图象的顶点为D ,其图象与x轴的交点A、B的横坐标分别为-1,3.与y轴负半轴交于点C ,在下面五个结论中:①2a-b=0;②a+b+c>0;③c=-3a;④只有当a=时,△ABD是等腰直角三角形;⑤使△ACB为等腰三角形的a值可以有三个.其中正确的结论是()A . 1B . 2C . 3D . 4二、填空题 (共8题;共8分)11. (1分)(2017·定安模拟) 分解因式:x2+6x+9=________.12. (1分)等腰三角形顶角的度数为131°18′,则底角的度数为________.13. (1分) (2018八下·柳州期末) 一次数学测验中,某小组七位同学的成绩分别是:90,85,90,95,90,85,95.则这七个数据的众数是________.14. (1分) (2017九下·泰兴开学考) 函数y= 中自变量x的取值范围是________.15. (1分) (2019八下·贵池期中) 如果关于x的一元二次方程有两个不相等的实数根,那么的取值范围是________.16. (1分)在平面直角坐标系xOy中,过点P(0,2)作直线l:(b为常数且b<2)的垂线,垂足为点Q,则tan∠OPQ=________.17. (1分)(2018·拱墅模拟) 如图,点A是双曲线y=﹣在第二象限分支上的一个动点,连接AO并延长交另一分支于点B,以AB为底作等腰△ABC,且∠ACB=120°,点C在第一象限,随着点A的运动,点C的位置也不断变化,但点C始终在双曲线y= 上运动,则k的值为________.18. (1分) (2019八下·贵池期中) 《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺,问折高者几何?意思是:一根竹子原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面高度是________尺。

2018年中考数学模拟试题及答案(共五套)

2018年中考数学模拟试题及答案(共五套)

中考模拟试卷数学卷一、仔细选一选。

(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.注意可以用多种不同的方法来选取正确答案. 1.下列四个运算中,结果最小的是( ). A 、2017的相反数 B 、2017的绝对值 C 、2017的0次幂 D 、2017的立方根 2.已知∠α=23°45′,则∠α的余角=( ).A .66°55′B .156°15′C .66°15′D .156°55′3.若代数式x 2+bx 可以分解因式,则常数b 不可以是( ). A .﹣1B .0C .1D .24.在代数式x ﹣y, 4a, y+,,yz, ,中有( ).A .5个整式B .3个单项式,4个多项式C .6个整式,4个单项式D .单项式与多项式的个数相同5.下图是小方送给她外婆的生日蛋糕,则下面关于三种视图判断正确的( ).A.主视图、俯视图、左视图都正确B.主视图、俯视图、左视图都错误C.主视图、左视图正确、俯视图错误D. 左视图、俯视图正确、主视图错误 6.已知⎩⎨⎧>≤-,,a xb x 则的值( ).A.大于0B.小于0C.大于或等于0D.小于或等于07.某超市举办促销活动,促销方式是将原价x 元的衣服以(45x -10) 元出售,则下列说法中,能正确表达该超市促销方式的是( ).A. 原价减去10元后再打8折B. 原价打8折后再减去10元C. 原价减去10元后再打2折D. 原价打2折后再减去10元8.如图为4×4的网格图,A ,B ,C ,D ,O 均在格点上,点O 是( ).(第8题图) A .△ACD 的外心 B .△ABC 的外心C .△ACD 的内心 D .△ABC 的内心9.在同一直角坐标系中,对于以下四个函数①y=-x-1;②y=x+1;③y=-x+1; ④y=-2(x+1)的图像。

2018年辽宁省部分市中考数学试题汇编及参考答案(word解析版7份)

2018年辽宁省部分市中考数学试题汇编及参考答案(word解析版7份)

2018年辽宁省部分市中考数学试题汇编(含参考答案与试题解析)目录1.辽宁省沈阳市中考数学试题及参考答案与试题解析 (2)2.辽宁省大连市中考数学试题及参考答案与试题解析 (25)3.辽宁省葫芦岛市中考数学试题及参考答案与试题解析 (47)4.辽宁省锦州市中考数学试题及参考答案与试题解析 (71)5.辽宁省抚顺市中考数学试题及参考答案与试题解析 (97)6.辽宁省盘锦市中考数学试题及参考答案与试题解析 (121)7.辽宁省阜新市中考数学试题及参考答案与试题解析 (147)2018年辽宁省沈阳市中考数学试题及参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)1.下列各数中是有理数的是()A.πB.0 C D2.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×1063.如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)5.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a76.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°7.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<09.点A (﹣3,2)在反比例函数ky x=(k≠0)的图象上,则k 的值是( ) A .﹣6 B .32- C .﹣1 D .610.如图,正方形ABCD 内接于⊙O ,AB=AB 的长是( )A .πB .32πC .2πD .12π二、细心填一填(本大题共6小题,每小题3分,满分18分) 11.因式分解:3x 3﹣12x= .12.一组数3,4,7,4,3,4,5,6,5的众数是 . 13.化简:22142a a a -=-- . 14.不等式组20360x x -⎧⎨+⎩<≥的解集是 .15.如图,一块矩形土地ABCD 由篱笆围着,并且由一条与CD 边平行的篱笆EF 分开.已知篱笆的总长为900m (篱笆的厚度忽略不计),当AB= m 时,矩形土地ABCD 的面积最大.16.如图,△ABC 是等边三角形,,点D 是边BC 上一点,点H 是线段AD 上一点,连接BH 、CH .当∠BHD=60°,∠AHC=90°时,DH= .三、解答题(本大题共3小题,共22分,17题6分,18-19题各8分)17.(6分)计算:()2012tan 45|3|42π-⎛⎫︒-+-- ⎪⎝⎭.18.(8分)如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D 作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.19.(8分)经过校园某路口的行人,可能左转,也可能直行或右转.假设这三种可能性相同,现有小明和小亮两人经过该路口,请用列表法或画树状图法,求两人之中至少有一人直行的概率.四、解答题(本大题共2小题,每小题8分,共16分)20.(8分)九年三班的小雨同学想了解本校九年级学生对哪门课程感兴趣,随机抽取了部分九年级学生进行调查(每名学生必只能选择一门课程).将获得的数据整理绘制如下两幅不完整的统计图.据统计图提供的信息,解答下列问题:(1)在这次调查中一共抽取了名学生,m的值是.(2)请根据据以上信息直在答题卡上补全条形统计图;(3)扇形统计图中,“数学”所对应的圆心角度数是度;(4)若该校九年级共有1000名学生,根据抽样调查的结果,请你估计该校九年级学生中有多少名学生对数学感兴趣.21.(8分)某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.(1)求每个月生产成本的下降率;(2)请你预测4月份该公司的生产成本.五、解答题(本题10)22.(10分)如图,BE是O的直径,点A和点D是⊙O上的两点,过点A作⊙O的切线交BE延长线于点.(1)若∠ADE=25°,求∠C的度数;(2)若AB=AC,CE=2,求⊙O半径的长.六、解答题(本题10分)23.(10分)如图,在平面直角坐标系中,点F的坐标为(0,10).点E的坐标为(20,0),直线l1经过点F和点E,直线l1与直线l2 、34y x相交于点P.(1)求直线l1的表达式和点P的坐标;(2)矩形ABCD的边AB在y轴的正半轴上,点A与点F重合,点B在线段OF上,边AD平行于x 轴,且AB=6,AD=9,将矩形ABCD沿射线FE的方向平移,边AD始终与x 轴平行.已知矩形ABCD(点A移动到点E时止移动),设移动时间为t秒(t>0).①矩形ABCD在移动过程中,B、C、D三点中有且只有一个顶点落在直线l1或l2上,请直接写出此时t的值;②若矩形ABCD在移动的过程中,直线CD交直线l1于点N,交直线l2于点M.当△PMN的面积等于18时,请直接写出此时t的值.七、解答题(本题12分)24.(12分)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时①求证:△BCM≌△ACN;②求∠BDE的度数;(2)当∠ACB=α,其它多件不变时,∠BDE的度数是α或180°﹣α(用含α的代数式表示)(3)若△ABC是等边三角形,AB=,点N是BC边上的三等分点,直线ED与直线BC交于点F,请直接写出线段CF的长.八、解答题(本题12分)25.(12分)如图,在平面角坐标系中,抛物线C1:y=ax2+bx﹣1经过点A(﹣2,1)和点B(﹣1,﹣1),抛物线C2:y=2x2+x+1,动直线x=t与抛物线C1交于点N,与抛物线C2交于点M.(1)求抛物线C1的表达式;(2)直接用含t的代数式表示线段MN的长;(3)当△AMN是以MN为直角边的等腰直角三角形时,求t的值;(4)在(3)的条件下,设抛物线C1与y轴交于点P,点M在y轴右侧的抛物线C2上,连接AM 交y轴于点k,连接KN,在平面内有一点Q,连接KQ和QN,当KQ=1且∠KNQ=∠BNP时,请直接写出点Q的坐标.参考答案与解析一、选择题(本大题共10小题,每小题2分,共20分)1.下列各数中是有理数的是()A.πB.0 C D【知识考点】实数.【思路分析】根据有理数是有限小数或无限循环小,可得答案.【解答过程】解:A、π是无限不循环小数,属于无理数,故本选项错误;B、0是有理数,故本选项正确;CD故选:B.【总结归纳】本题考查了有理数,有限小数或无限循环小数是有理数.2.辽宁男蓝夺冠后,从4月21日至24日各类媒体体关于“辽篮CBA夺冠”的相关文章达到81000篇,将数据81000用科学记数法表示为()A.0.81×104B.0.81×106C.8.1×104D.8.1×106【知识考点】科学记数法—表示较大的数.【思路分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答过程】解:将81000用科学记数法表示为:8.1×104.故选:C.【总结归纳】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.如图是由五个相同的小立方块搭成的几何体,这个几何体的左视图是()A.B.C.D.【知识考点】简单组合体的三视图.【思路分析】细心观察图中几何体中正方体摆放的位置,根据左视图是从左面看到的图形判定则可.【解答过程】解:从左边看,从左往右小正方形的个数依次为:2,1.左视图如下:故选:D.【总结归纳】本题主要考查了几何体的三种视图和学生的空间想象能力,视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.4.在平面直角坐标系中,点B的坐标是(4,﹣1),点A与点B关于x轴对称,则点A的坐标是()A.(4,1)B.(﹣1,4)C.(﹣4,﹣1)D.(﹣1,﹣4)【知识考点】关于x轴、y轴对称的点的坐标.【思路分析】直接利用关于x轴对称点的性质,横坐标不变纵坐标改变符号进而得出答案.【解答过程】解:∵点B的坐标是(4,﹣1),点A与点B关于x轴对称,∴点A的坐标是:(4,1).故选:A.【总结归纳】此题主要考查了关于x轴对称点的性质,正确把握横纵坐标的关系是解题关键.5.下列运算错误的是()A.(m2)3=m6B.a10÷a9=a C.x3•x5=x8D.a4+a3=a7【知识考点】合并同类项;同底数幂的乘法;幂的乘方与积的乘方;同底数幂的除法.【思路分析】直接利用合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则化简求出即可.【解答过程】解:A、(m2)3=m6,正确;B、a10÷a9=a,正确;C、x3•x5=x8,正确;D、a4+a3=a4+a3,错误;故选:D.【总结归纳】此题主要考查了合并同类项法则以及单项式乘以单项式运算法则和同底数幂的除法运算法则等知识,正确掌握运算法则是解题关键.6.如图,AB∥CD,EF∥GH,∠1=60°,则∠2补角的度数是()A.60°B.100°C.110°D.120°【知识考点】余角和补角;平行线的性质.【思路分析】根据平行线的性质比较多定义求解即可;【解答过程】解:∵AB∥CD,∴∠1=∠EFH,∵EF∥GH,∴∠2=∠EFH,∴∠2=∠1=60°,∴∠2的补角为120°,故选:D.【总结归纳】本题考查平行线的性质、补角和余角等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.7.下列事件中,是必然事件的是()A.任意买一张电影票,座位号是2的倍数B.13个人中至少有两个人生肖相同C.车辆随机到达一个路口,遇到红灯D.明天一定会下雨【知识考点】随机事件.【思路分析】必然事件就是一定发生的事件,依据定义即可判断.【解答过程】解:A、“任意买一张电影票,座位号是2的倍数”是随机事件,故此选项错误;B、“13个人中至少有两个人生肖相同”是必然事件,故此选项正确;C、“车辆随机到达一个路口,遇到红灯”是随机事件,故此选项错误;D、“明天一定会下雨”是随机事件,故此选项错误;故选:B.【总结归纳】考查了随机事件.解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.8.在平面直角坐标系中,一次函数y=kx+b的图象如图所示,则k和b的取值范围是()。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2018年铁岭市中考数学押题卷与答案注意事项:1、本试卷满分 120 分,考试时间 100 分钟。

2、本试卷上不要答题,请按答题卡上注意事项的要求,直接把答案填写在答题卡上。

答在 试卷上的答案无效。

一、选择题(每小题3分,共30分)下列各小题均有四个答案,其中只有一个是正确的.1.的倒数是( )A .﹣B .C .D .-2.肥皂泡的泡壁厚度大约是0.000 07mm ,用科学记数法表示为( )A .7×10-4B .7×10-5C .0.7×10-4D .0.7×10-53.如图是由棱长为1的正方体搭成的某几何体三视图,则图中棱长为1的正方体的个数是( )A .9B .8C .7D .64.若宇宙中一块陨石落在地球上,它落在陆地上的概率是0.3,那么用扇形统计图反映地球上陆地面积与海洋面积所占的比例时,陆地面积所对应的圆心角是( ) A .54° B .72° C .108°D .114°5.如图,点O 在△ABC 内,且到三边的距离相等.若∠BOC=120°,则tanA 的值为( )A .B .C .D .6.某纪念品原价为168元,连续两次降价a%后售价为128元,下列所列方程正确的是( )A .160(1+a%)2=128B .160(1﹣a%)2=128C .160(1﹣2a%)=128D .160(1﹣a%)=1287.化简分式÷,正确的结果是( )A .B .C .a ﹣1D .a8.甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都均为8.8环,方差分别为S 甲2=0.63,S 乙2=0.51,S 丙2=0.48,S 丁2=0.42,则四人中成绩最稳定的是( ) A .甲B .乙C .丙D .丁9.如图,四边形纸片ABCD 中,∠A=70°,∠B=80°,将纸片折叠,使C ,D 落在AB 边上的C′,D′处,折痕为MN ,则∠AMD′+∠BNC′=( )A .50°B .60°C .70°D .80°10.已知二次函数2(0)y ax bx c a =++≠图象上部分点的坐标()x y ,的对应值如下表所示:则方程20ax bx ++=的根是( )A .x 1=x 2=100B .x 1=0,x 2=200C .x 1=50,x 2=150D .x 1=50,x 2=250二、填空题(每小题3分,共15分)11.函数y =中,自变量x 的取值范围是 . 12.如图,O 是坐标原点,菱形OABC 的顶点A 的坐标为(﹣3,4),顶点C 在x 轴的负半轴上,函数y=(x <0)的图象经过顶点B ,则k 的值为 .13. 某小区2013年屋顶绿化面积为2000平方米,计划2015年屋顶绿化面积要达到2880平方米.如果每年屋顶绿化面积的增长率相同,那么这个增长率是_________ 14.表格记录了一名球员在罚球线上罚篮的结果.这名球员投篮一次,投中的概率约是 .15.如图,在平面直角坐标系中,点A (0,2),B (﹣2,0),点D 是x 轴上一个动点,以AD 为一直角边在一侧作等腰直角三角形ADE ,∠DAE=90°,若△ABD 为等腰三角形时点E 的坐标为_____________.三、解答题 (本大题共8个小题,满分75分) 16.(本题满分6分)计算:(14)-1+|-3|-(π-3)0+3tan 30°.17. (本题满分7分)先化简,再求值:a -32a -4÷(a+2-5a -2),其中a =5-3.18. (本题满分10分)如图,某渔船在海面上朝正西方向以20海里/时匀速航行,在A 处观测到灯塔C 在北偏西60°方向上,航行1小时到达B 处,此时观察到灯塔C 在北偏西30°方向上,若该船继续向西航行至离灯塔距离最近的位置,求此时渔船到灯塔的距离(结果精确到1海里,参考数据:≈1.732)19. (本题满分10分)某学生社团为了解本校学生喜欢球类运动的情况,随机抽取了若干名学生进行问卷调查,要求每位学生只能填写一种自己喜欢的球类运动,并将调查的结果绘制成如下的两幅不完整的统计图.请根据统计图表提供的信息,解答下列问题:(1)参加调查的人数共有 人;在扇形图中,m= ;将条形图补充完整; (2)如果该校有3500名学生,则估计喜欢“篮球”的学生共有多少人?(3)该社团计划从篮球、足球和乒乓球中,随机抽取两种球类组织比赛,请用树状图或列表法,求抽取到的两种球类恰好是“篮球”和“足球”的概率. 20.(本题满分10分)如图,已知四边形ABCD 是矩形,延长AB 至点F ,连结CF ,使得CF =AF ,过点A 作AE ⊥FC 于点E .(1)求证:AD =AE .(2)连结CA ,若∠DCA =70°,求∠CAE 的度数.21.(本题满分10分)如图.一次函数y=x+b 的图象经过点B (﹣1,0),且与反比例函数(k 为不等于0的常数)的图象在第一象限交于点A (1,n ).求: (1)一次函数和反比例函数的解析式; (2)当1≤x ≤6时,反比例函数y 的取值范围.22.(本题满分10分)(1)问题发现如图1,△ACB 和△DCE 均为等边三角形,点A ,D ,E 在同一直线上,连接BE .填空:①∠AEB的度数为;②线段AD,BE之间的数量关系为.(2)拓展探究如图2,△ACB和△DCE均为等腰直角三角形,∠ACB=∠DCE=90°,点A,D,E在同一直线上,CM为△DCE中DE边上的高,连接BE,请判断∠AEB的度数及线段CM,AE,BE之间的数量关系,并说明理由.(3)解决问题如图3,在正方形ABCD中,CD=,若点P满足PD=1,且∠BPD=90°,请直接写出点A到BP 的距离.23.(本题满分12分)阅读:对于函数y=ax2+bx+c(a≠0),当t1≤x≤t2时,求y的最值时,主要取决于对称轴x=﹣是否在t1≤x≤t2的范围和a的正负:①当对称轴x=﹣在t1≤x≤t2之内且a>0时,则x=﹣时y有最小值,x=t1或x=t2时y有最大值;②当对称轴x=﹣在t1≤x≤t2之内且a<0时,则x=﹣时y有最大值,x=t1或x=t2时y有最小值;③当对称轴x=﹣不在t1≤x≤t2之内,则函数在x=t1或x=t2时y有最值.解决问题:设二次函数y1=a(x﹣2)2+c(a≠0)的图象与y轴的交点为(0,1),且2a+c=0.(1)求a、c的值;(2)当﹣2≤x≤1时,直接写出函数的最大值和最小值;(3)对于任意实数k,规定:当﹣2≤x≤1时,关于x的函数y2=y1﹣kx的最小值称为k的“特别值”,记作g(k),求g(k)的解析式;(4)在(3)的条件下,当“特别值”g(k)=1时,求k的值.参考答案:一、选择题(每小题3分,共30分)1.C2.B3.B4.C5.A6.B7.D8.D9.B 10.C 二、填空题(每小题3分,共15分)11.x ≤3且x ≠1; 12.-32 13. 12.20﹪ 14. 0.60215.(2,2)或(2,4)或(2,2)或(2,﹣2)三、解答题 (本大题共8个小题,满分75分) 16.(本题满分6分)解:原式=3+23 17. (本题满分7分)解:原式=12(a +3),当a =5-3时,原式=12(5-3+3)=51018.(本题满分10分)证明:(1)∵CF=AF ,∴∠FCA=∠CAF∵四边形ABCD 是矩形 , ∴ DC ∥AB ∴ ∠DCA=∠CAF , ∴∠FCA=∠DCA∵AE ⊥FC ∴∠CEA =90°∴∠CDA =∠CEA =90°, 又∵CA=CA ,∴△ADC ≌△CAE ∴AD=AE(方法不限,也可以先证△CBF ≌△ABE ) (2)∵△ADC ≌△CAE ∴∠CAE =∠CAD ∵四边形ABCD 是矩形 ,∴∠D =90°∴∠CAD =︒=︒-︒=∠-︒20709090DCA∴∠CAE =20° 19.(本题满分10分)解:(1)∵240÷40%=600(人) ∴参加调查的人数共有600人; ∵1﹣40%﹣20%﹣10%=30%,∴在扇形图中,m=30..(2)3500×40%=1400(人)答:喜欢“篮球”的学生共有1400人.(3)2÷6=.答:抽取到的两种球类恰好是“篮球”和“足球”的概率是.故答案为:600、30.20.(本题满分10分)解:(1)∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∵AE∥BF,∴∠DAB+∠CBA,=180°,∴∠BAC+∠ABD=(∠DAB+∠ABC)=×180°=90°,∴∠AOD=90°;(2)证明:∵AE∥BF,∴∠ADB=∠DBC,∠DAC=∠BCA,∵AC、BD分别是∠BAD、∠ABC的平分线,∴∠DAC=∠BAC,∠ABD=∠DBC,∴∠BAC=∠ACB,∠ABD=∠ADB,∴AB=BC,AB=AD∴AD=BC,∵AD∥BC,∴四边形ABCD是平行四边形,∵AD=AB,∴四边形ABCD是菱形.21.(本题满分10分)解:(1)把点B(﹣1,0)代入一次函数y=x+b得:0=﹣1+b,∴b=1,∴一次函数解析式为:y=x+1,∵点A(1,n)在一次函数y=x+b的图象上,∴n=1+1,∴n=2,∴点A的坐标是(1,2).∵反比例函数的图象过点A(1,2).∴k=1×2=2,∴反比例函数关系式是:y=,(2)反比例函数y=,当x>0时,y随x的增大而减少,而当x=1时,y=2,当x=6时,y=1/3,∴当1≤x≤6时,反比例函数y的值:1/3≤y≤2.22.(本题满分10分)解:(1)①如图1,∵△ACB和△DCE均为等边三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=60°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴∠ADC=∠BEC.∵△DCE为等边三角形,∴∠CDE=∠CED=60°.∵点A,D,E在同一直线上,∴∠ADC=120°.∴∠BEC=120°.∴∠AEB=∠BEC﹣∠CED=60°.故答案为:60°.②∵△ACD≌△BCE,∴AD=BE.故答案为:AD=BE.(2)∠AEB=90°,AE=BE+2CM.理由:如图2,∵△ACB和△DCE均为等腰直角三角形,∴CA=CB,CD=CE,∠ACB=∠DCE=90°.∴∠ACD=∠BCE.在△ACD和△BCE中,∴△ACD≌△BCE(SAS).∴AD=BE,∠ADC=∠BEC.∵△DCE为等腰直角三角形,∴∠CDE=∠CED=45°.∵点A,D,E在同一直线上,∴∠ADC=135°.∴∠BEC=135°.∴∠AEB=∠BEC﹣∠CED=90°.∵CD=CE,CM⊥DE,∴DM=ME.∵∠DCE=90°,∴DM=ME=CM.∴AE=AD+DE=BE+2CM.(3)点A到BP的距离为或.理由如下:∵PD=1,∴点P在以点D为圆心,1为半径的圆上.∵∠BPD=90°,∴点P在以BD为直径的圆上.∴点P是这两圆的交点.①当点P在如图3①所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交BP于点E,如图3①.∵四边形ABCD是正方形,∴∠ADB=45°.AB=AD=DC=BC=,∠BAD=90°.∴BD=2.∵DP=1,∴BP=.∵∠BPD=∠BAD=90°,∴A、P、D、B在以BD为直径的圆上,∴∠APB=∠ADB=45°.∴△PAE是等腰直角三角形.又∵△BAD是等腰直角三角形,点B、E、P共线,AH⊥BP,∴由(2)中的结论可得:BP=2AH+PD.∴=2AH+1.∴AH=.②当点P在如图3②所示位置时,连接PD、PB、PA,作AH⊥BP,垂足为H,过点A作AE⊥AP,交PB的延长线于点E,如图3②.同理可得:BP=2AH﹣PD.∴=2AH﹣1.∴AH=.综上所述:点A到BP的距离为或.23.(本题满分10分)解:(1)将(0,1)代入得:4a+c=1.又∵2a+c=0,∴2a=1,解得:a=.∴c=﹣2a=﹣2×=﹣1.(2)∵a=,c=﹣1,∴y1=(x﹣2)2﹣1.∴x=﹣=2.∵x=2不在﹣2≤x≤1之内,∴当x=﹣2时,y1有最大值,最大值为=×16﹣1=7,当x=1时,y1有最小值,最小值为=×1﹣1=﹣.(3)∵y2=y1﹣kx,∴y2=(x﹣2)2﹣1=﹣kx=x2﹣(k+2)x+1.∴抛物线的对称轴为x=k+2.当k+2<﹣2时,即k<﹣4时,当x=﹣2时,y2有最小值,y2的最小值=×4+2(k+2)+1=2k+7;当﹣2≤k+2≤1时,即﹣4≤k≤﹣1时,当x=k+2时,y2有最小值,y2的最小值=(k+2)2﹣(k+2)2+1=﹣(k+2)2+1.当k+2>1时,即k>﹣1时,当x=1时,y2有最小值,y2的最小值=×1﹣(k+2)+1=﹣k﹣.综上所述,g(k)的解析式为g(k)=.(4)当k<﹣4时:令y=2k+7=1,得k=﹣3,不合题意舍去;当﹣4≤k≤﹣1时:令y=﹣(k+2)2+1=1;得k=﹣2.当k>﹣1时:令y=﹣k﹣=1,得k=﹣,舍去.综上所述,k=﹣2.。

相关文档
最新文档