ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解
ATX电源电路工作原理及故障分析详解解读

12.1 计算机开关电源基本结构及原理一、计算机开关电源的基本结构1.ATX电源与AT电源的区别目前计算机开关电源有AT和ATX两种类型。
ATX电源与AT电源的区别为:1)待机状态不同ATX电源增加了辅助电源电路,只要220V市电输入,无论是否开机,始终输出一组+5V SB待机电压,供PC机主板电源监控单元、网络通信接口、系统时钟芯片等使用,为ATX电源启动作准备。
2)电源启动方式不同AT电源采用交流电源开关直接控制电源的通断,ATX电源则采用点动式电源启闭按钮,实质是用PS-ON直流控制信号启动/关闭电源。
具有键盘开/关机、定时开/关机、Modem唤醒远程开/关机、软件关机等控制功能。
3)输出电压不同AT电源共有四路输出(±5V、±12V),另向主板提供一个PG电源准备就绪的信号。
ATX电源PW-0K信号与PG信号功能相同,还增加了+3.3V、+5 V SB供电输出和PS-ON电源启闭控制信号,其中+3.3V向CPU、PCI总线供电。
各档电压的输出电流值大约如下:+5V +12V -5V -12V +3.3V +5V SB21A 6A 0.3A 0.8A 14A 0.8A4)主板综合供电插头接口不同AT电源的6芯P8和P9电源插头,在ATX结构中被20芯双列直排插头所替代,具有可靠的防插反装置。
对于Pentium 4机型的ATX电源,除大4芯(D 形)和小4芯电源接口插头外,还增加4芯12V CPU专用电源插头及6芯+3. 3V、+5V电源增强型插头。
2.计算机开关电源的基本结构目前,计算机电源大多采用他激双管半桥定频调宽式开关电源。
电源中还输出一个特殊的“POWER GOOD”信号。
电源开启后PG信号为低电平,送给系统时钟电路,由该信号产生一个复位信号(RESET)用于系统复位。
经100~5 00ms的延时后,PG信号由低电平变成高电平,系统复位结束,主机启动并开始正常运行。
tl494电源工作原理

tl494电源工作原理TL494是一种常用的开关电源集成芯片,广泛应用于各种直流电源中。
它具有较高的转换效率、较低的功耗和噪声、易于控制等优点。
本篇文章将介绍TL494电源芯片的工作原理、内部结构、外部电路以及应用和注意事项。
一、工作原理TL494芯片是一种可调频的DC-DC转换器,其工作原理是将输入的交流电压通过变压、整流和滤波电路转换为直流电压,并通过控制电路进行调节和控制。
1. 输入与输出TL494芯片的输入为交流电源,输出为稳定的直流电压。
输入电压经过变压和整流后,通过滤波电路输出纹波较小的直流电压,即为芯片的输出电压。
2. 内部结构TL494芯片主要由三个部分组成:控制电路、驱动电路和开关管。
控制电路负责调节输出电压和频率,驱动电路将控制信号放大,驱动开关管进行开关动作,从而调节输出电压。
3. 工作过程TL494芯片的工作过程可以分为三个阶段:启动阶段、稳压阶段和停机阶段。
在启动阶段,芯片通过自举电路启动;在稳压阶段,控制电路通过检测输出电压,调节开关管的开关频率,保持输出电压稳定;在停机阶段,开关管关闭,芯片进入待机状态。
二、内部结构图与外部电路1. 内部结构图TL494芯片的内部结构图如图1所示。
控制电路、驱动电路和开关管集成在芯片内部,外部需要通过连接线进行连接。
2. 外部电路TL494芯片的外部电路包括输入滤波电路、反馈电路、驱动电路和控制电路板等。
输入滤波电路用于抑制交流电源的干扰;反馈电路用于检测输出电压,并将其反馈给控制电路;驱动电路将控制信号放大,驱动开关管进行开关动作;控制电路板则负责调节输出电压和频率。
三、应用与注意事项1. 应用TL494芯片广泛应用于各种直流电源中,如充电器、适配器、电源模块等。
它可以通过调节开关管的开关频率和占空比,实现输出电压的调节和控制。
2. 注意事项在使用TL494芯片时,需要注意以下几点:(1)选择合适的滤波电容和电感,以抑制输出纹波和提高输出稳定性;(2)确保输入电源的稳定性,避免电压波动和干扰;(3)正确连接芯片的外部电路和组件,确保电路的正确匹配和稳定工作;(4)注意控制电路的电压和电流限制,避免过载和短路;(5)定期检查和控制电路的参数和性能,确保电源的正常工作。
tl494开关电源工作原理

tl494开关电源工作原理【最新版】目录1.TL494 开关电源的工作原理概述2.TL494 开关电源的主要组成部分3.TL494 开关电源的工作过程4.TL494 开关电源的优点与应用领域正文一、TL494 开关电源的工作原理概述TL494 开关电源是一种高效、低噪音的开关型电源,其工作原理主要基于现代电力电子技术。
TL494 开关电源具有完善的保护功能,能够实现恒流、恒压输出,广泛应用于工业控制、通信设备、计算机及外围设备等领域。
二、TL494 开关电源的主要组成部分TL494 开关电源主要由四个部分组成,分别是:输入滤波器、开关振荡器、输出整流器及滤波器、保护电路。
1.输入滤波器:用于滤除输入电源中的高频干扰信号,保证开关电源稳定工作。
2.开关振荡器:是开关电源的核心部分,主要负责调整开关管的占空比,实现恒定输出电压。
3.输出整流器及滤波器:将开关电源产生的脉冲电压转换为恒定直流电压,并滤除其中的高频成分。
4.保护电路:具有过压、过流、短路等保护功能,确保开关电源安全可靠运行。
三、TL494 开关电源的工作过程TL494 开关电源的工作过程可以分为以下几个步骤:1.输入电压经过输入滤波器,滤除其中的高频干扰信号,得到干净的输入电压。
2.开关振荡器根据输入电压的大小,调整开关管的占空比,从而产生恒定频率的脉冲电压。
3.脉冲电压经过输出整流器及滤波器,得到恒定直流电压,并滤除其中的高频成分。
4.输出电压通过保护电路,实现对开关电源的安全保护。
四、TL494 开关电源的优点与应用领域TL494 开关电源具有以下优点:1.高效:开关电源的转换效率高达 80%-90%,大大提高了电能利用率。
2.低噪音:由于采用了先进的电力电子技术,开关电源的运行噪音较低。
3.恒定输出:能够实现恒定输出电压,保证负载设备稳定运行。
最新ATX电源用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解整理

用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1?控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)?494是双排16脚集成电路,工作电压7~40V?它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定?{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号?本例为此种工作方式,故将{13}脚与{14}脚相连接?比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端?比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平?494内的比较放大器有四个,为叙述方便,在图1中用小写字母a?b?c?d来表示?其中a是死区时间比较器?因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路?两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候?因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路?为防止这样的事情发生,494设置了死区时间比较器a?从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚?A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路?死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了?494内部还有3个二输入端与门(用1?2?3表示)?两个二输入端与非门?反相器?T触发器等电路?与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平?反相器的作用是把输入信号隔离放大后反相输出?与非门则相当于一个与门和一个反相器的组合?T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次?如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平?比较器?与门?反相器?T触发器以及锯齿波振荡器及{8}脚?{11}脚输出的波形见图2?339是四比较器集成电路?按管脚的顺序把内部四个比较器设为A?B ?C ?D 比较器?494和339再配合其他电路,共同完成ATX电源的稳压,产生PW-OK信号及各种保护功能?过流保护过压保护一?产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约+5V),主机在获得此信号后才开始工作?接通电源时,要求PW-OK信号比±5V?±12V?+3.3V电源延迟数百毫秒才产生,关机时PW-OK信号应比直流电源先消失数百毫秒,以便主机先停止工作,硬盘的磁头回复到着陆区,以保护硬盘?ATX电源接通市电后,辅助电源立即工作?一方面输出+5VSB电源,同时向494的{12}脚提供十几伏到二十多伏的直流电源?494从{14}脚输出+5V基准电源,锯齿波振荡器也开始起振工作?若主机未开机,PS-ON信号为高电平,经R37使339的B比较器{6}脚亦为高电平,因电阻R37小于R44,{6}脚电平高于{7}脚电平,B比较器输出端{1}脚输出低电平,经D36的钳位作用,A比较器的反相端{4}脚亦为低电平,其电平低于同相端{5}脚的电平,输出端{2}脚呈高电平,经R41使494的{4}脚为高电平,故494内部的死区时间比较器a输出低电平,与门1也因此输出低电平并进而使与门2和与门3输出低电平,封锁了振荡器的输出,{8}脚?{11}脚无脉冲输出,ATX电源无±5V?±12V?+3.3V电源输出,主机处于待机状态?因+5V?+12V电源输出为零,经电阻R15?R16使494的{1}脚电平亦为零,494的c比较器的输出端{3}脚输出亦为零,经R48使339的{9}脚亦为零电平,故339的C比较器的输出端{14}脚为零电平?另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平?因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作?开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35?D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定?正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定?PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}?{11}脚输出脉冲信号,ATX电源向主机输出±5V ?±12V?+3.3V电源?此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响?494的{1}脚从+5V?+12V 经取样电阻R15?R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作?关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平?在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态?上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要?此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平?二?稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15?R16与+5V?+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高?当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升?由于494内的放大器增益很高,故稳压精度很好?从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法?如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大?要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69?R35来降低输出电压?三?过流保护过流保护的原理是基于负载愈大,Q3?Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54?R55并联电阻与R51?R56?R58等组成的分压电路送到494的{16}脚?随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小?另外,从R56?R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V?±12V?+3.3V电源的输出,达到过流及短路保护的目的?需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V?±12V?+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V?+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机?四?过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚?若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V?±12V? +3.3V电源的输出,达到过电压保护的目的?正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五?欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚?若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护?二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度?六?电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的?正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)?若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出?因此ATX电源出了故障,若电源的整流?滤波?逆变以及辅助电源均完好,则要检查339的{4}?{5}脚的电平?若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态?下一步则找出是什么原因使电源进入了保护状态?可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路?另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上?再沿着这条支路往下查,很快就可以把故障排除?下面通过两个实例来加以说明?1.一台SLPS-250ATXC电源的输出电压偏低?空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降?电源是采用TL494及LM339集成电路的典型ATX电路?检查494的{4}脚电压为+2.6V?电路似乎处于保护状态?但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解?试着把494的第{4}脚接地,电源立即输出正常?{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路?用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了?甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作?这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V?但电源要用“天线”才能工作,说明还有故障未找到?再检查339的{4}脚与{5}脚的电压,{5}脚电压为 2.4V,{4}脚的电压为 1.2V,输出端{2}脚的电压为 2.9V?(这部分电路见图3)?但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试?在断开c支路以后,电源就正常了?沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了?再检查+3.3V电源原来的滤波电容,发现已经失效?更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决?为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态?从+20V电源经R3?D1 ?R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是 2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是 2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在 2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是 2.6V了?在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约 1.8V的电压输出?解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了?经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了?而R2电阻的改动,也不会影响电源的过载保护性能?至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC 电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)?为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡?{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了?同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了?此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出?2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载?检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因?在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为 1.5V,约是+5VSB挡线圈电压的 1.7倍?电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示?由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了?由此说明T3脉冲变压器线圈4的匝数少了?拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝?重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变?绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除?从故障现象看,可能是工厂生产时将变压器装错了?。
用TL494制作的ATXC开关电源控制电路图

用TL494制作的ATXC开关电源控制电路图本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。
494是双排16脚集成电路,工作电压7~40V。
它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路。
图1ATX电源的控制电路见图1。
控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。
494是双排16脚集成电路,工作电压7~40V。
它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。
{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。
本例为此种工作方式,故将{13}脚与{14}脚相连接。
比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。
比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。
494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。
其中a是死区时间比较器。
因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。
两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。
因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。
为防止这样的事情发生,494设置了死区时间比较器a。
从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。
电器开关原理剖析:开关的过压保护与欠压保护

电器开关原理剖析:开关的过压保护与欠压保护电器开关是电路中常见的一种元件,广泛应用于各类电气设备和家用电器中。
它的作用是在电路中完成开关操作,控制电流的通断。
在开关的正常使用过程中,由于外界因素或其他原因,可能会出现过压或欠压的情况。
为了保护开关和电路的安全运行,开关通常会设计有过压保护和欠压保护功能。
电器开关的过压保护是指当电压超过开关额定电压时,开关能及时采取相应的措施,保护电器设备和电路不受损害。
现代电器开关通常采用光电隔离原理进行过压保护。
光电隔离原理是将开关的控制电路与电源电路进行隔离,通过光电器件对电压进行检测,并输出相应的信号,控制开关的动作。
在正常情况下,电源电压与控制电路之间存在一个继电器。
当电源电压高于额定电压时,光电器件将发出光信号,经过光电传感器转换为电信号。
然后通过一个比较电路与一定的参考电压进行比较,当电压超过设定值时,将会通过继电器将信号发送给开关的控制电路。
控制电路接收到信号后,会立即切断电路的供电,以达到过压保护的效果。
同时,开关的动作也会发出警示信号,提示用户进行相应的处理。
另一方面,电器开关的欠压保护是指当电压低于开关的额定电压时,开关能够自动切断电路,以避免电器设备和电路的异常工作。
欠压保护一般采用欠压继电器进行实现。
欠压继电器是一种电控设备,在其控制电路上加入电压检测电路。
当电压低于设定值时,电压检测电路将发出信号,控制继电器将信号传送给开关的控制电路。
控制电路接收到欠压信号后,会立即切断电路的供电,避免设备和电路在欠压状态下工作,保护设备和电路的正常运行。
需要注意的是,电器开关的过压保护和欠压保护虽然能够保护电器设备和电路的安全运行,但并不能完全预防过压和欠压所带来的损害。
因此,在使用电器设备时,用户应该合理使用和保护电器设备,避免过压和欠压的发生。
总结起来,电器开关的过压保护和欠压保护是为了保护设备和电路的正常运行。
过压保护采用光电隔离原理,欠压保护采用欠压继电器。
tl494开关电源工作原理

tl494开关电源工作原理
TL494是一种常用的PWM控制器,常用于开关电源、逆变器、电机驱动等电路中。
其工作原理如下:
1. 参考电压:TL494内部有一个参考电压源,一般为5V,用于比较输入信号和产生PWM信号。
2. 错误放大器:TL494内部有两个错误放大器,用于将输入信号与参考电压进行比较,产生误差信号。
3. 比较器:TL494内部有两个比较器,用于将误差信号与三角波进行比较,产生PWM信号。
4. 输出级:TL494内部有两个输出级,用于产生PWM信号的输出。
5. 死区控制:TL494内部有死区控制电路,用于控制开关管的导通和关断时间,避免开关管同时导通或关断。
6. 反馈电路:TL494内部有反馈电路,用于将输出电压或电流信号反馈给PWM控制器,实现电源的稳定控制。
通过以上几个部分的协同工作,TL494可以实现对开关管的PWM控制,从而实现对开关电源输出电压或电流的稳定控制。
ATX电源原理图

ATX电源原理图。
可能你的电源和这个不一样哦。
经典的TL494调压调流原理调压过程1、去除TL494 1脚和2脚原来所有电路。
2、去除5V连1脚的采样电阻。
3、去除所有的3.3V、5V 、12V、-5V 、-12V过压、欠压电路。
4、辅助电源取电,用7812给电源风扇供电。
调流过程1、去掉tl494 15脚的任何连接,去掉16脚连接的两个电阻。
2、电流取样电阻用康铜丝,我用的是水泥电阻精度不大。
3、确定你的最大电流。
用你电源的总功率除以最高电压。
比如你的电源总功率是300W。
你的电源是0V-24V可调。
那么最大电流就是300W 除以24V 等于12.5A。
4、根据经典调压图,焊好所有的东西。
下面是计算工具,下一个吧。
希望对大家的改造有帮助。
THE END。
电脑ATX电源改造成可调输出大功率电源,可以给手机电瓶充电。
家里旧的ATX电源有好几个放在那里没用可惜了,所以想着怎么利用起来。
网上查了一些资料动手。
先画了要改造电源的电路图点击查看原图(121.28 KB)点击查看原图(121.28 KB)下载次数: 6阅读权限: 2552011-11-07 13:21这种电源基本上多是有调制芯片TL494加上保护芯片393组成。
要改制成可调的需要把保护的那部分电路全部隔离。
因为这个部分是为原先固定电压设计的。
上个tl494芯片的原理图[每日热点]:【新车作业】犀利大灯流畅车身线条起亚K3提车有感回复本帖举报评分那年匆匆加关注| 发短消息黄金长老财产: 2699 爱卡币帖子: 1716帖查看>>注册: 2010-01-22来自: 北京|北京状态: 离线2楼发表于2011-11-07 13:26达人又来了[每日热点]:【新车作业】犀利大灯流畅车身线条起亚K3提车有感回复本帖举报评分飞人18 3楼发表于2011-11-07 13:29加关注 | 发短消息引用:原帖由 那年匆匆 于 11-11-07 13:26 发表达人又来了郁闷我还没发完啊,被你抢了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
用TL494制作的ATX开关电源控制电路图过流,过压,欠压保护详解本开头电源控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路ATX电源的控制电路见图1。控制电路采用TL494(有的电源采用KA7500B,其管脚功能与TL494相同,可互换)及LM339集成电路(以下简称494和339)。494是双排16脚集成电路,工作电压7~40V。它含有由{14}脚输出的+5V基准电源,输出电压为+5V(±0.05V),最大输出电流250mA;一个频率可调的锯齿波产生电路,振荡频率由{5}脚外接电容及{6}脚外接电阻来决定。{13}脚为高电平时,由{8}脚及{11}脚输出双路反相(即推挽工作方式)的脉宽调制信号。本例为此种工作方式,故将{13}脚与{14}脚相连接。比较器是一种运算放大器,符号用三角形表示,它有一个同相输入端“+”;一个反相输入端“-”和一个输出端。比较器同相端电平若高于反相端电平,则输出端输出高电平;反之输出低电平。494内的比较放大器有四个,为叙述方便,在图1中用小写字母a、b、c、d来表示。其中a是死区时间比较器。因两个作逆变工作的三极管串联后接到+310V的直流电源上,若两个三极管同时导通,就会形成对直流电源的短路。两个三极管同时导通可能发生在一个管子从截止转为导通,而另一个管子由导通转为截止的时候。因为管子在转换时有时间的延迟,截止的管子已经转为导通了,但导通的管子尚未完全转为截止,于是两个管子都呈导通状态而形成对直流电源的短路。为防止这样的事情发生,494设置了死区时间比较器a。从图1可以看出,在比较器a的反相输入端串联了一个“电源”,正极接反相端,负极接494的{4}脚。A比较器同相端输入的锯齿波信号,只有大于“电源”电压的部分才有输出,在三极管导通变为截止与截止转为导通期间,也就是死区时间,494没有脉冲输出,避免了对直流电源的短路。死区时间还可由{4}脚外接的电平来控制,{4}脚的电平上升,死区时间变宽,494输出的脉冲就变窄了,若{4}脚的电平超过了锯齿波的峰值电压,494就进入了保护状态,{8}脚和{11}脚就不输出脉冲了。494内部还有3个二输入端与门(用1、2、3表示)、两个二输入端与非门、反相器、T触发器等电路。与门是这样一种电路,只有所有的输入端都是高电平,输出端才能输出高电平;若有一个输入端为低电平,则输出端输出低电平。反相器的作用是把输入信号隔离放大后反相输出。与非门则相当于一个与门和一个反相器的组合。T触发器的作用是:每输入一个脉冲,输出端的电平就变化一次。如输出端Q为低电平,输入一个脉冲后,Q变为高电平,再输入一个脉冲,Q又回到低电平。比较器、与门、反相器、T触发器以及锯齿波振荡器及{8}脚、{11}脚输出的波形见图2。339是四比较过流保护过压保护一、产生PW-OK信号PC主机要求各路电源稳定之后才工作,以保护各元器件不致因电压不稳而损坏,故设置了PW-OK信号(约的C比较器的输出端{14}脚为零电平。另外,339的{1}脚低电平信号因D34的钳位作用,也使{14}脚为低电平,经R50和R63使{11}脚亦为低电平。因此D比较器的输出端{13}脚为低电平,也就是PW-OK信号为低电平,主机不会工作。开启主机时,通过人工或遥控操作闭合了与PS-ON相关的开关,PS-ON呈低电平,经R37使339的反相端{6}脚为低电平,B比较器{1}脚输出高电平,D35、D36反偏截止,A比较器的输出电平则由{5}脚与{4}脚的电平决定。正常工作时,{5}脚电平低于{4}脚电平,{2}脚输出低电平,经R41送到494的{4}脚,使{4}脚的电平变为低电平,锯齿波振荡信号可以从死区时间比较器a输出脉冲信号,另一方面,振荡信号送到了PWM比较器b 的同相输入端,PWM比较器输出的脉冲信号的宽度,则是由494的{1}脚的电平(也就是负载的大小)与{16}脚的电平来决定。PWM比较器输出的脉冲信号,最后经缓冲放大器放大后,从{8}、{11}脚输出脉冲信号,ATX电源向主机输出±5V、±12V、+3.3V电源。此过程因C35的充电有数百毫秒的延时,但对主机开机并无影响。494的{1}脚从+5V、+12V经取样电阻R15、R16得到电压,其电平略高于{2}脚电平,{3}脚输出高电平,经R48使339的{9}脚得到高电平,其电平高于{8}脚电平,因而{14}脚输出高电平,此电平经R50与基准+5V电源经R64共同对C39充电,经数百毫秒后,{11}脚电平升到高于{10}脚电平时,D比较器{13}脚输出高电平,此电平经R49反馈至{11}脚,维持{11}脚处于高电平状态,故{13}脚输出稳定的高电平PW-OK信号,主机检测到此信号后即开始正常工作。关机时,主机内开关使PS-ON呈高电平,此时339的{6}脚电平高于{7}脚,{1}脚输出低电平,因二极管D34的钳位作用,{14}脚呈低电平,C39对C比较器及B比较器放电,很快{11}脚呈低电平,{13}脚输出低电平,即PW-OK信号呈低电平。在339的{1}脚为低电平时,经D36使{4}臆脚为低电平,{2}脚输出高电平,经R41传送到494的{4}脚,但因C35电位不能突变,经数百毫秒的放电后方使494的{4}脚转为高电平,从而封锁正负脉冲的输出,主机进入待机状态。上述的过程中,关机时C39和C35都要放电,但因放电时间常数不同,C39放电较快,故PW-OK信号先于各电源变成低电平,满足了主机关机的需要。此外,关机时因各路输出电源的电解电容放电需要时间,也使PW-OK信号先于各电源回到低电平。二、稳压494的{2}脚经R47与基准电压+5V相连,维持较好的稳定电压,而{1}脚则与取样电阻R15、R16与+5V、+12V相连接,正常的情况下,{1}脚电平与{2}脚电平相等或略高。当输出电压升高时(无论+5V或+12V),{1}脚电平高于{2}脚电平,c比较器输出误差电压与锯齿波振荡脉冲在PWM比较器b进行比较使输出脉冲宽度变窄,输出电压回落到标准值,反之则促使振荡脉冲宽度增加,输出电压回升。由于494内的放大器增益很高,故稳压精度很好。从稳压的原理,我们可以得到ATX电源输出电压偏高或偏低的维修方法。如果输出电压偏低,可在494的{1}脚对地并联电阻,或是把R47的电阻增大。要是电源的输出偏高,则可在{2}脚对地并联电阻,也可以用增大R33或取下R69、R35来降低输出电压。三、过流保护过流保护的原理是基于负载愈大,Q3、Q4集电极的脉冲电压也愈高,也即是R13(1.5kΩ)上的电压也愈高,从这里采样经D14整流和C36滤波,再经R54、R55并联电阻与R51、R56、R58等组成的分压电路送到494的{16}脚。随着负载的加重,{16}脚的电平也随之上升,当超过{15}脚的电平时,误差放大器输出的误差电压促使调制脉冲的宽度变窄从而使负载电流减小。另外,从R56、R58并联电阻获得的分压再经R52送到339的{5}脚,当{5}脚的电平超过{4}脚时,{2}脚即输出高电平送到494的{4}脚,494停止输出脉冲信号,终止±5V、±12V、+3.3V 电源的输出,达到过流及短路保护的目的。需要说明的是:494的{16}脚电平的高低只能改变输出脉冲的宽度,但不影响494的{4}脚电平状态,而339的{5}脚电平一旦超过{4}脚的电平,339的{2}脚就送出高电平去封锁449的脉冲输出,终止±5V、±12V、+3.3V电源的输出,同时{2}脚的高电平经R59和二极管D39反馈到{5}脚,维持{5}脚处于高电平状态,此时若过载或短路状态消失,494的{4}脚仍维持高电平,±5V与±12V、+3.3V电源仍不能输出,只有切断交流市电的输入,再重新接通交流电,方可再次开机。四、过压保护过电压保护由R17和稳压管Z02并联电路从+5V采样,经D37送到339的{5}脚。若+5V电源由于某种原因升高,339的{5}脚电平也会随之升高,当超过{4}脚电平时,{2}脚即送出高电平去494的{4}脚,封锁±5V、±12V、+3.3V电源的输出,达到过电压保护的目的。正常工作时,R17上的压降不大,Z02截止送到{5}脚的电压较低,若+5V电源的电压上升,使R17上的压降超过Z02的稳压值,Z02导通,+5V电源上升后的电压值全部加到339的{5}脚上,促使其快速封锁494脉冲的输出,以保护电源五、欠压保护欠压保护从-5V的D32及-12V处的R14取样,经R34和D37送到339的{5}脚。若因某种原因使输出电压过低时,-12V及-5V电压的负值也会随之减小,也就是电压值上升,经R34及D37送往339的{5}脚使电平上升,339的{2}脚送出高电平到494的{4}脚,从而封锁449脉冲的输出,实现欠压保护。二极管D32在导通时,其电压降与通过的电流基本无关,保持在0.6V~0.7V,于是-5V电压的减少量会全部传送到D32的负端,提高了欠压保护的灵敏度。六、电源保护电路故障的维修从上面的叙述中可以了解到,各种保护电路最终都是通过控制339的{5}脚电平来控制494的{4}脚电平实现的。正常工作时,339的{5}脚电平低于339的{4}脚电平,339的{2}脚输出低电平,使494的{4}脚呈低电平状态(约为0.25V)。若339的{5}脚电平高于339的{4}脚电平,339的{2}脚输出高电平,于是494的{4}脚变为高电平,电源就进入了保护状态,终止各路电源的输出。因此ATX电源出了故障,若电源的整流、滤波、逆变以及辅助电源均完好,则要检查339的{4}、{5}脚的电平。若是{5}脚电平高于{4}脚的电平,表示电源进入了保护状态。下一步则找出是什么原因使电源进入了保护状态。可检查与339的{5}脚相连各支路另一端的电压是不是比{5}脚电压高,高出{5}脚电压的支路就是故障所在的支路。另外,也可以用断开与{5}脚相连的一个个支路,若是断开某一条支路后{5}脚的电平正常了,那么故障就出在这一条支路上。再沿着这条支路往下查,很快就可以把故障排除。下面通过两个实例来加以说明。1.一台SLPS-250ATXC电源的输出电压偏低。空载下,+5V电源的电压只有+1.8V,其他各路电压也按比例同样下降。电源是采用TL494及LM339集成电路的典型ATX电路。检查494的{4}脚电压为+2.6V。电路似乎处于保护状态。但保护状态时各路输出的电压均应为零,而现在却是正常电压的三分之一,令人费解。试着把494的第{4}脚接地,电源立即输出正常。{4}脚接地就正常工作,说明494并未损坏,问题可能出在339以及有关的电路。用万用表查339管脚的电压,当查到第{4}脚及{7}脚时,各路电源均正常了。甚至只用一条表笔去碰{7}脚或{4}脚,也可使电源恢复正常工作。这等于在{4}脚或{7}脚上加了一条“天线”,天线接收了外来信号电源就工作正常了!我试了试天线的长度,40厘米以下对电源不起作用,长度增加了,输出电压也随着增加,达到1米左右时,输出电压就正常了,494的{4}脚电压也恢复到0V。但电源要用“天线”才能工作,说明还有故障未找到。再检查339的{4}脚与{5}脚的电压,{5}脚电压为2.4V,{4}脚的电压为1.2V,输出端{2}脚的电压为2.9V。(这部分电路见图3)。但是339的{2}脚高电位,必须由{5}脚电位高于{4}脚的电位时才能产生,那{5}脚最初的高电位是怎么来的?把与{5}脚相连的各支路断开试一试。在断开c支路以后,电源就正常了。沿着D2往下找,最后在+3.3V电源处对地接一个1000μF的电容时,电源就正常了。再检查+3.3V电源原来的滤波电容,发现已经失效。更换电容后494的{4}脚电压恢复正常,用表笔去碰触339的{4}脚或{7}脚也不起作用,问题得到了解决。为什么+3.3V电源的滤波电容失效会造成输出电压偏低?+3.3V电源在没有电容滤波时,输出的直流电源中含有很强的由逆变功率管输出的脉冲成分,通过D3及D2送到LM339的{5}脚,使{5}脚的电平高于{4}脚的电平,电源进入了保护状态。从+20V 电源经R3、D1、R2和三个并联电阻到接地的支路中,三个电阻并联后的电阻值是2.43kΩ,再略去其他支路的影响,可以估算出{5}脚的电压大约是2.3V,因二极管D1的钳位作用,{2}脚输出电压只能在2.9V左右,经R1送到TL494的{4}脚,减去电阻R1的降压,494的{4}脚电压就是2.6V了。在此电压下,494会输出较窄的脉冲,于是在空载下,+5V电源有约1.8V的电压输出。解决的办法可在d支路中串联一个47kΩ的电阻,并把R2由3.9kΩ换成100kΩ就行了。经这样处理后,不论是正常工作或是保护状态,各路电源的输出电压和各管脚的电压均正常了。而R2电阻的改动,也不会影响电源的过载保护性能。至此,电源的故障才完全得到了解决(爱好者手中若有SLPS-250ATXC电源,可参考此例加一个47kΩ电阻以提高电源的保护性能)。为什么339的{4}脚加了天线会正常工作呢?这是{2}脚经D1反馈到{5}脚后,产生了轻微的高频寄生振荡。{4}脚或{7}脚接了天线以后,破坏了电路的振荡条件,使{4}脚的电压升高,当超过{5}脚的电压时,{2}脚送出0V的低电平信号到494的{4}脚,电源就工作正常了。同样,在D1支路中串联了47kΩ电阻后,增加了阻尼因数,破坏了电路的振荡条件,电源也就正常了。此时若取下+3.3V电源处新加的电解电容,通电后,电源会立即进入保护状态,各路电源都没有输出。2.一台新时代HY-ATX300电源,空载时输出电压正常,但不能带动负载。检查494各个管脚的电压,发现{12}脚的电压只有10V,这是造成不能带动负载的原因。在辅助电源逆变变压器T3的初级线圈1加上16.5V的高频电压,测得次级+5VSB挡线圈3的电压是0.9V,向494集成电路{12}脚供电线圈4的电压为1.5V,约是+5VSB挡线圈电压的 1.7倍。电源的+5VSB电源是直接从线圈3经整流和滤波后得到,+5VSB电源的稳压则是借助WD431稳压集成电路和光电耦合器反馈回逆变三极管得到的,如图4所示。由此可以算出线圈4的电压为5×1.7=8.5V,因负载较轻,经电容滤波后的电压就是10V左右了。由此说明T3脉冲变压器线圈4的匝数少了。拆开T3变压器,得到各绕组的匝数为:初级2×110匝;反馈绕组10匝;+5VSB绕组12匝;绕组4的匝数是8匝。重新绕制绕组4,把匝数由原来的8匝增加到20匝,其余绕组的匝数不变。绕好后上机实验,494集成电路{12}脚的电压上升到17V,电源的输入功率可达130W,故障排除。从故障现象看,可能是工厂生产时将变压器装错了。。