第四章刚体转动习题

合集下载

第四章 刚体的转动 习题

第四章 刚体的转动 习题

第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动。

一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。

则棒中点的速度为( )。

A .00m m mv +; B .0433m m mv +;C .0023m mv ;D .043m mv 。

2. 一根长为l ,质量为m 的均匀细棒在地上竖立着。

如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。

A .gl 6;B .gl 3;C .gl 2;D .lg23。

3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5. 一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。

一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .MLmv 35 D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。

第四章 刚体转动习题

第四章 刚体转动习题

1.如图所示,一质量为m得匀质细杆AB,A端靠在光滑得竖直墙壁上,B端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A端对墙壁得压力为2.两个均质圆盘A与B得密度分别为ρA与ρB , 若ρA﹥ρB但两圆盘得质量与厚度相同, 如果两盘对通过盘心垂直于盘面轴得转动惯量各为JA与JB , 则( )3.一电唱机得转盘以n =78 转/分得转速匀速转动,则与转轴相距r =15cm 得转盘上得一点P得线速度v = ,法向加速度an= 、在电唱机断电后, 转盘在恒定得阻力矩作用下减速, 并在t =15s内停止转动,则转盘在停止转动前得角加速度a= ,转过得圈数N= 、4、一转动惯量为J 得圆盘绕一固定轴转动,起始角速度为ω0, 设它所受得阻力矩与转动角速度成正比,即M = -kω (k为正得常数),若它得角速度从ω0变到ω0/2, 则所需得时间t = 。

5.一轻绳绕在半径r =20 cm得飞轮边缘, 在绳端施以F=98 N得拉力, 飞轮得转动惯量J = 0、5kg·m2飞轮与转轴间得摩擦不计,试求(1)飞轮得角加速度;(2)当绳下降5m时飞轮所获得得动能;(3)如以质量m=10kg得物体挂在绳端再计算飞轮得角加速度.6.质量为m, 长为l得均匀细棒, 可绕垂直于棒得一端得水平轴转动, 如将此棒放在水平位置, 然后任其落下, 求(1)开始转动时棒得角加速度; (2)棒下落到竖直位置时得动能;(3)下落到竖直位置时得角速度.第四章刚体转动课后练习七1.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆得一个焦点.在运行过程中,下列叙述中正确得就是( )(A)动量守恒(B)动能守恒(C)角动量守恒(D)以上均不守恒.2.一半径为R 得水平圆转台,可饶通过其中心得竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度ω0 转动,此时有一质量为m 得人站在转台中心,随后人沿半径向外走去,当人到达转台边缘时,转台得角速度为( )3.一质量为m得小球由一绳索系着,以角速度ω0在无摩擦得水平面上作半径为r0得圆周运动、如果在绳得另一端作用一竖直向下得拉力, 使小球作半径为r0 /2得圆周运动, 则小球新得角速度为, 拉力所作得功为。

(完整版)刚体的转动习题

(完整版)刚体的转动习题

17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。

今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。

4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

第四章刚体运动习题详解

第四章刚体运动习题详解
例1.一根长为L、质量为m的均匀细直棒, 其一端 有一固定的光滑水平轴,因而可以在竖直平 面内转动。 最初棒静止在水平位置, 求它由此下摆角时的角加速度和角速度。
解:棒下摆为加速过程, 外力矩为重力对O 的力矩。
棒上取质元dm,当棒处在 下摆角时,重力矩为:
x
O
X
C
dm
dM xgdm
合力矩
mg
gdm
解:
因摩擦力产生的力矩是恒定的,故角速度均匀 减小。
0
0
t
0
0 t
dt t
0
f dS
r
σ
m πR2
R
dθ o
r
M J 1 mR2
2
dr
t 0mR2 / (2M ) (1) M ?
考虑面元dS对轴的摩擦力矩dM :
dM r0gdm r0g dS
26
t0mR2/(2M ) (1) dM r0g dS
mg 由(3)(4)(5)得
mgR sin
1 2
J02
1 2
J2
(5)
gh 2R2
cos2
g R
sin
1 2R
.
g 2
(h
4
3R)
M J
mgR 2mR2
g 2R
( 60 )
44
dt
O
X
C
即 d d
3g cos d d
mg
2L
θ
0
3gcos
2L
d
0
d
3g 2L
sin
1 2
2
3g sin
L
22
m 例2.质量为 、长为L的匀质细杆水平放置,一端

第四章_刚体的转动部分习题分析与解答

第四章_刚体的转动部分习题分析与解答

h 1 at2
(4)
2
联合式(1)、(2)、(3)、(4)可解得飞轮的转动惯量为
J mR 2 ( gt2 1) 2h
解2 设根据系统的机械能守恒定律,有
mgh 1 mv2 1 J2 0
(1' )
2
2
线速度和角速度的关系为
v R
(2' )
根据重物作匀加速运动时,有
v at
(3' )
v2 2ah
a1 a2
J1 J1
m1R m2r Jm2 1Rm1Rm22r m2r 2 J2 m1R 2 m2r 2
gR gr
FT1
J1 J1
J2 J2
m2r2 m2Rr m1R 2 m2r2
m1g
FT 2
J1 J2 m1r2 m1Rr J1 J2 m1R 2 m2r2
m2g
4-12 如图示装置,定滑轮半径为r,绕转轴的转动惯量为J,滑 轮两边分别悬挂质量为m1和m2的物体A、B。A置于倾角为θ斜 面上,它和斜面间的摩擦因数为μ。若B向下作加速运动时,求 (1)其下落加速度的大小;(2)滑轮两边绳子的张力。(设 绳的质量及伸长均不计,绳与滑轮间无滑动,滑轮轴光滑)
整个矩形板对该轴的转动惯量为
J
a/2
dJ
b / 2 (x 2 y2 )dxdy
a / 2 b / 2
1 ab(a 2 b2 ) 12
4-11 质量为m1和m2的两物体A、B分别悬挂在如图所示的组合 轮两端。设两轮的半径分别为R和r,两轮ab的(转a 2动惯b量2分) 别为J1 和J2,轮与轴承间、绳索与轮间的摩1擦2力均略去不计,绳的质 量也略去不计。试求两物体的加速度和强绳的张力。

第四章:刚体转动习题解答

第四章:刚体转动习题解答

l2
l1
厚 度 为 2.0cm 的 圆 盘 和 两 个 直 径 都 为 10cm 、长为 8.0cm 的共轴圆柱体组成, 设飞轮的密度为 7.8kg•m–3,求飞轮对轴 的转动惯量。
题解 4―12 图
d2 d1
解:总转动惯量等于各部分对转轴转动惯量之和,而且圆盘 和两个圆柱体共轴,因此飞轮对轴的转动惯量为
作用于质点上的重力为jmgoabg??任一时刻t质点也是重力的作用点的位置矢量为jgtibry???据定义该重力对原点o点的力矩为kbmmjgtibgrmgjg???????任一时刻t质点的动量为jmgtmvp???据定义质点对原点o的角动量为kbmgtmgtjgtibrjpl???????习题42我国第一颗人造卫星沿椭圆轨道运卫星v动地球的中心o为椭圆的一个焦点如图llo已知地球半径r6378km卫星与地面的最近距v离l439km与地面的最远距离l238km
第四章:刚体一章习题解答
习题 4—1 � M = 如图所示,X 轴沿水平方向,Y 轴竖直向下,在 t=0 时刻将质量为 m � ;在任意时刻 t,质点对原点的角动量 L =
的质点由 a 处静止释放,让它自由下落,则在任意时刻 t,质点对原点 O 的力矩 。
解:作用于质点上的重力为 � � G = mgj 任一时刻 t 质点 (也是重力的作用点 ) 的位 置矢量为 � � � r = bi + gtj 据定义,该重力对原点 O 点的力矩为 � � � � � � � M = r × G = (bi + gtj ) × mgj = bmgk 任一时刻 t 质点的动量为
轴正向
m,l
θ
M =
1 mgl cos θ 2
根据转动定律,棒的角加速度为

大学物理习题册及解答_第二版_第四章_刚体的定轴转动

大学物理习题册及解答_第二版_第四章_刚体的定轴转动

3. 一根绳子绕在半径为30 cm的轮子上.当轮子由初速度2.0 rad/s 匀减速到静止,绳子在轮上的长度为25 m.轮子的加速度和轮子 转过的周数为
2 (A) - 0.942rad/s ,13.3 2 (B) - 0.884rad/s ,13.3 2 (D) - 0.884rad/s ,2.67 2
1 (A) 3
0
( B)
1 3
0
(C)
3
0
(D) 3
0
8.光滑的水平桌面上,有一长为2l、质量为m的匀质细杆,可绕过 其中点且垂直于杆的竖直光滑固定轴O自由转动,其转动惯量为 ml2/3,起初杆静止.桌面上有两个质量均为m的小球各自在垂直于 杆的方向上正对着杆的一端,以相同速率v相向运动,当两小球同 时与杆的两个端点发生完全非弹性碰撞后,就与杆粘在一起转动, v 则这一系统碰撞后的转动角速度应为
M r F. 2.力矩的定义式为_________
变角动量 在力矩作用下,一个绕轴转动的物体作______ _运动. 角动量 若系统所受的合外力矩为零,则系统的____________ 守恒. 3 质量为20 kg、边长为1.0 m的均匀立方物体,放在水平地面 上.有一拉力F作用在该物体一顶边的中点,且与包含该顶边的 物体侧面垂直,如图所示.地面极粗糙,物体不可能滑动.若 要使该立方体翻转90°,则拉力F不能小于___ 解:要使该立方体翻转90o,则拉力F对转轴的力矩 不能小于重力对转轴的力矩,即:
pB 2 ( A) pA 2
pB 3 (B) pA 4
pB 2 (C) pA 4
pB 1 ( D) pA 2
分析:细杆在下落过程中只有重力做功,系统机械 能守恒,以地面为重力势能0点,则有:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章刚体转动习题
1.如图所示,一质量为m得匀质细杆AB,A端靠在光滑得竖直墙壁上,B端置于粗糙水平地面上而静止,杆身与竖直方向成θ角,则A端对墙壁得压力为
2.两个均质圆盘A与B得密度分别为ρA与ρB , 若ρA﹥ρB但两圆盘得质量与厚度相同, 如果两盘对通过盘心垂直于盘面轴得转动惯量各为JA与JB , 则( )
3.一电唱机得转盘以n =78 转/分得转速匀速转动,则与转轴相距r =15cm 得转盘上得一点P得线速度v = ,法向加速度an= 、在电唱机断电后, 转盘在恒定得阻力矩作用下减速, 并在t =15s内停止转动,则转盘在停止转动前得角加速度a= ,转过得圈数N= 、
4、一转动惯量为J 得圆盘绕一固定轴转动,起始角速度为ω0, 设它所受得阻力矩与转动角速度成正比,即M = -kω (k为正得常数),若它得角速度从ω0变
到ω0/2, 则所需得时间t = 。

5.一轻绳绕在半径r =20 cm得飞轮边缘, 在绳端施以F=98 N得拉力, 飞轮得转动惯量J = 0、5kg·m2飞轮与转轴间得摩擦不计,试求(1)飞轮得角加速度;(2)当绳下降5m时飞轮所获得得动能;(3)如以质量m=10kg得物体挂在绳端再计算飞轮得角加速度.
6.质量为m, 长为l得均匀细棒, 可绕垂直于棒得一端得水平轴转动, 如将此棒放在水平位置, 然后任其落下, 求(1)开始转动时棒得角加速度;
(2)棒下落到竖直位置时得动能;(3)下落到竖直位置时得角速度.
第四章刚体转动课后练习七
1.我国第一颗人造卫星绕地球作椭圆运动,地球中心为椭圆得一个焦点.在运行过程中,下列叙述中正确得就是( )
(A)动量守恒(B)动能守恒
(C)角动量守恒(D)以上均不守恒.
2.一半径为R 得水平圆转台,可饶通过其中心得竖直固定光滑轴转动,转动惯量为J,开始时转台以匀角速度ω0 转动,此时有一质量为m 得人站在转台中心,随后人沿半径向外走去,当人到达转台边缘时,转台得角速度为( )
3.一质量为m得小球由一绳索系着,以角速度ω0在无摩擦得水平面上作半径为r0得圆周运动、如果在绳得另一端作用一竖直向下得拉力, 使小球作半径为r0 /2得圆周运动, 则小球新得角速度为, 拉力所作得功为。

4、某滑冰者转动得角速度原为, 转动惯量为, 当她收拢双臂后,转动惯量减少了1/4,这时她转动得角速度为; 她若不收拢双臂, 而被另一滑冰者作用,角速度变为,则另一滑冰者对她施加得力矩所作得功、
5.在光滑得水平面上有一木杆,
一质量为m2 得子弹,以v 得速度射入杆端,其方向与杆及轴正交,若子弹陷入杆中,求所得到得角速度、
6 、长为l,质量为m1 得匀质杆,可绕通过O点垂直于纸面得轴转动,令杆自水平位置静止摆下,在竖直位置处与质量为m2得物体作完全非弹性碰撞,碰后物体沿摩擦因数为μ得水平面滑动。

求(1)碰撞前杆得角速度; (2)物体滑动前得速度。

7.如果由于温室效应,地球大气变暖,致使两极冰山融化,对地球自转有何影响?为什么?。

相关文档
最新文档