练习 四刚体的转动

合集下载

大学物理习题册及解答_第二版_第四章_刚体的定轴转动

大学物理习题册及解答_第二版_第四章_刚体的定轴转动
桌面上有两个质量均为m的小球各自在垂直于杆的方向上正对着杆的一端以相同速率v相向运动当两小球同时与杆的两个端点发生完全非弹性碰撞后就与杆粘在一起转动则这一系统碰撞后的转动角速度应为12题俯视图质量为20kg边长为10m的均匀立方物体放在水平地面上
第四章 刚体定轴转动(一)
一.选择题
1.几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几 个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变.
(1 )m m / 2 T mg m m m/2
k 1 k 2 2 1 2
4.质量为M,长为l的均匀细杆,可绕A端的水平轴自由转动,当 杆自由下垂时,有一质量为m的小球,在离杆下端的距离为a处垂 直击中细杆,并于碰撞后自由下落,而细杆在碰撞后的最大偏角 为,试求小球击中细杆前的速度。 解:球与杆碰撞瞬间,系统所受合外力矩为零,系 统碰撞前后角动量守恒
m (l a) J
1 J Ml 3
2
杆摆动过程机械能守恒
1 l J Mg (1 cos ) 2 2
2
解得小球碰前速率为
Ml 2 gl sin m(l a ) 3 2
5.一轻绳绕过一半径R,质量为M/4的滑轮。质量为M的人抓住绳 子的一端,而绳子另一端系一质量为M/2的重物,如图。求当人相 对于绳匀速上爬时,重物上升的加速度是多少? 解:选人、滑轮、与重物为系统,系统所受对滑轮轴的 外力矩为 1
1 d 13 即 MgR ( MR MRu) 2 dt 8
该题也可在地面参考系中分别对人和物体利用牛顿第二定 律,对滑轮应用转动定律求解。
一选择题
第四章 刚体定轴转动(二)

第四章 刚体的转动 习题

第四章 刚体的转动 习题

第四章 刚体的转动1. 一质量为m 0 ,长为l 的棒能绕通过O 点的水平轴自由转动。

一质量为m ,速率为v 0的子弹从水平方向飞来,击中棒的中点且留在棒内,如图所示。

则棒中点的速度为( )。

A .00m m mv +; B .0433m m mv +;C .0023m mv ;D .043m mv 。

2. 一根长为l ,质量为m 的均匀细棒在地上竖立着。

如果让竖立着的棒以下端与地面接触处为轴倒下,则上端到达地面时速率应为( )。

A .gl 6;B .gl 3;C .gl 2;D .lg23。

3. 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示,今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一个是正确的?( ) A .角速度从小到大,角加速度从大到小 B .角速度从小到大,角加速度从小到大 C .角速度从大到小,角加速度从大到小 D .角速度从大到小,角加速度从小到大4. 一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并留在盘内,则子弹射入后的瞬间,圆盘的角速度ω( ) A .增大 B .不变 C .减小 D .不能确定5. 一静止的均匀细棒,长为L ,质量为M ,可绕通过棒的端点且垂直于棒长的光滑固定轴O 在水平面内转动,转动惯量为231ML 。

一质量为m 速率为v 的子弹在水平面内沿与棒垂直的方向射入并穿入棒的自由端,设穿过棒后子弹的速率为v 21,则此时棒的角速度应为( )A .ML mvB .ML mv 23C .MLmv 35 D .ML mv 476. 在某一瞬时,物体在力矩作用下,则有( )A 、角速度ω可以为零,角加速度α也可以为零;B 、角速度ω不能为零,角加速度α可以为零;C 、角速度ω可以为零,角加速度α不能为零;D 、角速度ω与角加速度α均不能为零。

【大题】工科物理大作业04-刚体定轴转动

【大题】工科物理大作业04-刚体定轴转动

【大题】工科物理大作业04-刚体定轴转动 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN0404 刚体定轴转动班号 学号 姓名 成绩一、选择题(在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内)1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是:A .n a 、τa 的大小均随时间变化;B .n a 、τa 的大小均保持不变;C .n a 的大小变化,τa 的大小保持恒定;D .n a 的大小保持恒定,τa 大小变化。

(C )[知识点]刚体匀变速定轴转动特征,角量与线量的关系。

[分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2ω=,r a τβ=当β = 恒量时,t βωω+=0 ,显然r t r a n 202)(βωω+==,其大小随时间而变,ra τβ=的大小恒定不变。

2. 两个均质圆盘A 和B ,密度分别为ρA 和ρB ,且B ρρ>A ,但两圆盘的质量和厚度相同。

若两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A .B I I >A; B. B I I <A ;C .B I I =A ; D. 不能确定A I 和B I 的相对大小。

(B )[知识点]转动惯量的计算。

[分析与题解] 设A 、B 两盘厚度为d ,半径分别为R A 和R B ,由题意,二者质量相等,即B B A A d R d R ρπρπ22=因为B A ρρ>, 所以22B A R R < 且转动惯量221mR I =,则B A I I <3.在下列关于刚体的表述中,不正确的是:A .刚体作定轴转动时,其上各点的角速度相同,线速度不同;B .刚体定轴转动的转动定律为βI M =,式中β,,I M 均对同一条固定轴而言的,否则该式不成立;C .对给定的刚体而言,它的质量和形状是一定的,则其转动惯量也是唯一确定的;D .刚体的转动动能等于刚体上各质元的动能之和。

(完整版)刚体的转动习题

(完整版)刚体的转动习题

17-4图18-4 图F F ρ-O 04 第四章 刚体力学一、选择题:1、如图4-18所示,一圆盘绕通过盘心且与盘面垂直的轴o 以角速度ω针转动。

今将两大小相等、方向相反、但不在同一条直线上的力F 和F -盘面同时作用到圆盘上,则圆盘的角速度:[ ] (A )必然减少 (B )必然增大(C )不会变化 (D )如何变化,不能确定 2、如图4-17所示,一质量为m 的匀质细杆AB ,A 端靠在粗糙的竖直墙壁上,B端置于粗糙的水平地面上而静止,杆身与竖直方向成θ角,则A 端对墙壁的压力大小为:[ ](A )θcos 41mg (B )θmgtg 21 (C )θsin mg (D )不能唯一确定 3、某转轮直径m d 4.0=,以角量表示的转动方程为t t t 4323+-=θ(SI ),则:[ ](A )从s t 2=到s t 4=这段时间内,其平均角加速度为2.6-s rad ;(B )从s t 2=到s t 4=这段时间内,其平均角加速度为2.12-s rad ;(C )在s t 2=时,轮缘上一点的加速度大小等于2.42.3-s m ;(D )在s t 2=时,轮缘上一点的加速度大小等于2.84.6-s m 。

4、如图4-2所示,一倔强系数为k 轮(转动惯量为J ),下端连接一质量为m 的物体,问物体在运动过程中,下列哪个方程能成立?[ ] (A )ky mg = (B )02=-T mg(C )my T mg =-1 (D )y R J J βR T T ''⋅==-)(21 5、 关于刚体对轴的转动惯量,下列说法中正确的是(A )只取决于刚体的质量,与质量的空间分布和轴的位置无关.(B )取决于刚体的质量和质量的空间分布,与轴的位置无关.(C )取决于刚体的质量、质量的空间分布和轴的位置.(D )只取决于转轴的位置,与刚体的质量和质量的空间分布无关.[ ]6、有两个力作用在一个有固定转轴的刚体上:(1) 这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2) 这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3) 当这两个力的合力为零时,它们对轴的合力矩也一定是零;(4) 当这两个力对轴的合力矩为零时,它们的合力也一定是零.在上述说法中,(A) 只有(1)是正确的.(B) (1) 、(2)正确,(3) 、(4) 错误.(C) (1)、(2) 、(3) 都正确,(4)错误.(D) (1) 、(2) 、(3) 、(4)都正确. [ ]7、有两个半径相同,质量相等的细圆环A 和B .A 环的质量分布均匀,B 环的质量分布不均匀.它们对通过环心并与环面垂直的轴的转动惯量分别为J A 和J B ,则(A) J A >J B . (B) J A <J B .1-4 图5-4图19-4 图 (C) J A = J B . (D) 不能确定J A 、J B 哪个大. [ ]8、一力N j i F )53(ϖϖϖ+=,其作用点的矢径为m j i r )34(ϖϖϖ-=,则该力对坐标原点的力矩为:[ ] (A )m N k ⋅-ϖ3 (B )m N k ⋅ϖ29 (C )m N k ⋅ϖ19 (D )m N k ⋅ϖ39、一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度ω按图示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度ω (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ]10、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?(A) 角速度从小到大,角加速度从大到小.(B) 角速度从小到大,角加速度从小到大.(C) 角速度从大到小,角加速度从大到小.(D) 角速度从大到小,角加速度从小到大. [ ]11、如图4-19所示P 、Q 、R 、S l RS QR PQ ===,则系统对o o '轴的转动惯量为:[ ](A )250ml (B )214ml(C )210ml (D )29ml12、如图4-1所示,A 、B 为两个相同的绕着轻绳的定滑轮,A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且Mg F =。

大学物理第四章 刚体的转动部分的习题及答案

大学物理第四章 刚体的转动部分的习题及答案

第四章 刚体的转动一、简答题:1、简述刚体定轴转动的角动量守恒定律并给出其数学表达式?答案:刚体定轴转动时,若所受合外力矩为零或不受外力矩,则刚体的角动量保持不变。

2、写出刚体绕定轴转动的转动定律文字表达与数学表达式?答案:刚体绕定轴转动的转动定律:刚体绕定轴转动时,刚体的角加速度与它所受的合外力矩成正比,与刚体的转动惯量成反比。

表达式为:αJ M =。

3、写出刚体转动惯量的公式,并说明它由哪些因素确定?答案:dm r J V⎰=2①刚体的质量及其分布;②转轴的位置;③刚体的形状。

二、选择题1、在定轴转动中,如果合外力矩的方向与角速度的方向一致,则以下说法正确的是 ( A )A.合力矩增大时,物体角速度一定增大;B.合力矩减小时,物体角速度一定减小;C.合力矩减小时,物体角加速度不一定变小;D.合力矩增大时,物体角加速度不一定增大2、关于刚体对轴的转动惯量,下列说法中正确的是 ( C ) A.只取决于刚体的质量,与质量的空间分布和轴的位置无关; B.取决于刚体的质量和质量的空间分布,与轴的位置无关; C.取决于刚体的质量,质量的空间分布和轴的位置;D.只取决于转轴的位置,与刚体的质量和质量的空间分布无关;3、有一半径为R 的水平圆转台,可绕通过其中心的竖直固定光滑轴转动, 转动惯量为J ,开始时转台以匀角速度0ω转动,此时有一质量为m 的人站住转台中心,随后人沿半径向外跑去,当人到达转台边缘时,转台的角速度为 ( A ) A.()2mR J J +ω B.()2Rm J J +ω C.20mR J ω D.0ω4、均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? ( A )A.角速度从小到大,角加速度从大到小.B.角速度从小到大,角加速度从小到大.C.角速度从大到小,角加速度从大到小.D.角速度从大到小,角加速度从小到大.5、一圆盘正绕垂直于盘面的水平光滑固定轴O 转动,如图射来两个质量相同,速度大小相同,方向相反并在一条直线上的子弹,子弹射入圆盘并且留在盘内,则子弹射入后的瞬间,圆盘的角速度( C )A.增大B.不变C.减小 (D) 、不能确定6、在地球绕太阳中心作椭圆运动时,则地球对太阳中心的 ( B ) A.角动量守恒,动能守恒 B.角动量守恒,机械能守恒 C.角动量不守恒,机械能守恒 D.角动量守恒,动量守恒7、有两个半径相同,质量相等的细圆环A 和B ,A 环的质量分布均匀,B 环的质量分布不均匀,它们对通过环心并与环面垂直的轴的转动惯量分别为A J 和B J ,则 ( C )A.B A J J >;B.B A J J <;C.B A J J =;D.不能确定A J 、B J 哪个大。

(练习)刚体转动

(练习)刚体转动

d π 2 t 由 dt 150 π t 2 t dt 得 d 0 150 0 π 3 t rad 450
在 300 s 内转子转过的转数
π 3 4 N (300 ) 3 10 2π 2π 450

例6 半径为R,质量为m的均 匀圆盘在水平桌面上绕中心轴 转动,盘与桌面间的摩擦系数为 μ ,求转动中的摩擦力矩的大小. 解:设盘厚度为h,以盘轴心 为圆心取半径为r, 宽为dr的 微圆环,其质量为
(mA mC 2)mB g FT2 mA mB mC 2 mA mB g 令 mC 0,得 FT1 FT2 mA mB
FT1
PC
FC
FT2
例3 一根长为l 质量为m 的均匀细直棒,其一端有一固定的光 滑水平轴,因而可以在竖直平面内转动。最初棒静止在水平位 置,求它由此下摆 角时的角加速度和角速度。( J 1 ml 2 ) 解: 棒下摆为加速过程,外力矩为 重力对O 的力矩。
x O
3

mg
x
重力对整个棒的合力矩与全部重力集中 作用在质心所产生的力矩一样。 重力力矩为: M mgx
1 M mgl cos 2 d d d d dt d dt d
1 mgl cos M 2 3g cos (为一变量) 1 J 2l ml 2 3
由动能定理

O

m
l
x

C
mg
l A 0 Md 0 mgcosd 2 1 2 lmg 1 2 J ml sin 0 J 0 3 2 2 3gsin 1/ 2 3gsin 2 ( ) l l
此题也可用机械能守恒定律方便求解

长春工业大学一年级物理答案1

长春工业大学一年级物理答案1

练习一 质点运动学1.一质点的运动方程为 (SI ),则t =1秒时的速度 ,1至3秒内的平均速度为 ,平均加速度为 。

2.质点沿半径R =0.01米的圆周运动,其运动方程θ =2+4t 3,θ、t 分别以弧度和秒计。

则t =2秒时,其切向加速度量值a t = ;法向加速度量值 a n = ;当a t =a /2(a 为总加速度量值)时,θ = 。

3.(2)物体沿一闭合路径运动,经∆t 时间后回到出发点A ,如图所示,初速度1v ,末速度2v,且||||21v v=,则在∆t 时间内其平均速度v 与平均加速度a分别为:4.(3)质点作曲线运动,元位移d r ,元路程d s ,位移∆ r ,路程∆ s ,它们之间量值相等的是: (1)⎢∆ r ⎢=⎢∆ s ⎢;(2)⎢d r ⎢=∆ s ;(3)⎢d r ⎢=d s ; (4)⎢d r ⎢=⎢∆ r ⎢;(5)⎢∆ r ⎢=d s 。

5.(4)一质点沿x 轴运动的规律是542+-=t t x (SI 制)。

则前三秒内它的(1)位移和路程都是3m ; (2)位移和路程都是-3m ; (3)位移是-3m ,路程是3m ; (4)位移是-3m ,路程是5m 。

图像:所以时,当时,当解:t v v t t v t dtdxv --====+==,40,20426.在离水面高为h 米的岸边,有人用绳拉船靠岸,船在离岸边s 米处,当人以v 0米/秒的速率收绳时,试求船的速度、加速度。

7.质点沿直线运动,初速度v 0,加速度v k a -=,k为正常数,求:(1)质点完全静止所需的时间;(2)这段时间内运动的距离。

8.质点的运动方程为x=2t, y=19-2t 2(SI)(1)写出质点的运动轨道方程;(2)写出t=2秒时刻质点的位置矢量,并计算第2秒内的平均速度量值;x(2)=4, y(2)=11 所以x(1)=2, y(1)=17所以所以(3)计算2秒末质点的瞬时速度和瞬时加速度;(4)在什么时刻,质点的位置矢量与其速度矢量恰好垂直?这时它们的X、Y分量各是多少?垂直:练习二质点动力学1.质量为m的宇宙飞船返回地球时将发动机关闭,可以认为它仅在引力场中运动。

刚体定轴转动练习题及答案

刚体定轴转动练习题及答案

刚体定轴转动练习题一、选择题1、一刚体以每分钟60转绕Z 轴做匀速转动(ωϖ沿Z 轴正方向)。

设某时刻刚体上一点P 的位置矢量为k j i r ϖϖϖϖ543++=,其单位为m 210-,若以s m /102-为速度单位,则该时刻P 点的速度为:( ) A υϖ=94.2i ϖ+125.6j ϖ+157.0k ϖ; B υϖ=34.4k ϖ; C υϖ=-25.1i ϖ+18.8j ϖ; D υϖ=-25.1i ϖ-18.8j ϖ;2、一均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示。

今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的?( )A 角速度从小到大,角加速度从大到小。

B 角速度从小到大,角加速度从小到大。

C 角速度从大到小,角加速度从大到小。

D 角速度从大到小,角加速度从小到大。

3、刚体角动量守恒的充分而必要的条件是:( )A 刚体不受外力矩的作用B 刚体所受合外力矩为零C 刚体所受的合外力和合外力矩均为零D 刚体的转动惯量和角速度均保持不变4、某刚体绕定轴做匀变速转动时,对于刚体上距转轴为r 出的任一质元m ∆来说,它的法向加速度和切向加速度分别用n a 和t a 来表示,则下列表述中正确的是 ( )(A )n a 、t a 的大小均随时间变化。

(B )n a 、t a 的大小均保持不变。

(C )n a 的大小变化, t a 的大小恒定不变。

(D )n a 的大小恒定不变, t a 的大小变化。

5、有两个力作用在一个有固定转轴的刚体:(1)这两个力都平行于轴作用时,它们对轴的合力矩一定是零;(2)这两个力都垂直于轴作用时,它们对轴的合力矩可能是零;(3)当这两个力的合力为零时,它们对轴的合力矩也一定是零;(1) 当这两个力对轴的合力矩为零时,它们的合力也一定是零。

A 只有(1)是正确的。

B (1),(2)正确,(3),(4)错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

练习 四
一、选择题 1. 力kN j i F )53( +=,其作用点的矢径为m j i r )34( -=,则该力对坐标原点的力矩大小为
(A)m kN ⋅-3; (B )m kN ⋅29; (C)m kN ⋅19; (D)m kN ⋅3。

2. 圆柱体以80rad /s 的角速度绕其轴线转动,它对该轴的转动惯量为24m kg ⋅。

由于恒力矩的作用,在
10s 内它的角速度降为40rad /s 。

圆柱体损失的动能和所受力矩的大小为( )
(A)80J ,80m N ⋅;(B)800J ,40m N ⋅;(C)4000J ,32m N ⋅;(D)9600J ,16m N ⋅。

3. 一匀质圆盘状飞轮质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 (A)22.16π J ; (B)21.8πJ ;(C )1.8J ; (D )28.1πJ 。

4. 如图所示,一轻绳跨过两个质量均为m 、半径均为R 两端分别系着质量分别为m 和2m 的重物,不计滑轮转轴的摩擦。

且绳与两滑轮间均无相对滑动,则两滑轮之间绳的张力。

( )
(A)mg ; (B)3mg /2; (C)2mg ; (D)11mg /8。

二、填空题
1.半径为r =1.5m 的飞轮,初角速度ω0=10rad/s ,角加速度β= -5rad/s 2角位移为零,则在t = 时角位移再次为零,而此时边缘上点的线速度v = 。

2.一飞轮作匀减速运动,在5s 内角速度由40πrad/s 减到10πrad/s ,则飞轮在这5s 内总共转过了 圈,飞轮再经 的时间才能停止转动。

4.一根匀质细杆质量为m 、长度为l ,可绕过其端点的水平轴在竖直平面内转动。

则它在水平位置时所受的
重力矩为 ,若将此杆截取2/3,则剩下1/3在上述同样位置时所受的重力矩为 。

5.长为l 的匀质细杆,可绕过其端点的水平轴在竖直平面内自由转动。

如果将细杆置与水平位置,然后让
其由静止开始自由下摆,则开始转动的瞬间,细杆的角加速度为 ,细杆转动到竖直位置时角
速度为 。

三.计算题
1. 一个飞轮直径为0.30m 、质量为5.00kg 止均匀地加速,经0.50s 转速达10rev/s 。

假定飞轮可看作实心圆柱体,求:
(1)飞轮的角加速度及在这段时间内转过的转数;
(2)拉力大小及拉力所作的功; (3)从拉动后t =10s 时飞轮的角速度及轮边缘上一点的速度大小和加速度大小。

2. 飞轮的质量为60kg 、直径为0.50m 、转速为1000rev/min ,现要求在5s 内使其制动,求制动力F 的大
小。

假定闸瓦与飞轮之间的摩擦系数μ=0.4图所示。

3. 如图所示,物体1和2的质量分别为1m 与2m ,滑轮的转动惯量为J ,半径为r 。

(1)如物体2与桌面间的摩擦系数为μ,求系统的加速度a 及绳中的张力1T 和2T 间无相对滑动,滑轮与转轴无摩擦);
(2)如物体2与桌面间为光滑接触,求系统的加速度a 及绳中的张力1T 和2T 。

4. 轻绳绕于半径r =20cm 的飞轮边缘,在绳端施以大小为98N 的拉力,飞轮的转动惯量
J =0.5kg ⋅m 2。

设绳子与滑轮间无相对滑动,飞轮和转轴间的摩擦不计。

试求:
(1)飞轮的角加速度;
(2)当绳端下降5m 时,飞轮的动能;
(3)如以质量m =10kg 的物体挂在绳端,试计算飞轮的角加速度。

练习 五
一、选择题
1. 关于力矩有以下几种说法,其中正确的是 ( )
(A )内力矩会改变刚体对某个定轴的角动量(动量矩);
(B )作用力和反作用力对同一轴的力矩之和必为零;
(C )角速度的方向一定与外力矩的方向相同;
(D )质量相等、形状和大小不同的两个刚体,在相同力矩的作用下,它们的角加速
度一定相等。

3. 如图所示,一根匀质细杆可绕通过其一端O 的水平轴在竖直平面内自由转动,杆长
5/3m 。

今使杆从与竖直方向成︒60角由静止释放(g 取10m/s 2),则杆的最大角速度为
(A )3rad/s
; (B)πrad/s ; (C)3.0rad/s ; (D)3/2rad/s 。

4. 对一个绕固定水平轴O 匀速转动的转盘,沿图示的同一水平直线从相反方向射入两颗质量相同、速率相等的子弹,并停留在盘中,则子弹射入后转盘的角速度应 ( ) (A) 增大; (B) 减小; (C) 不变;(D) 无法确定。

5. 一根长为l 、质量为M 的匀质棒自由悬挂于通过其上端的光滑水平轴上。

现有一质量为m 的子弹以水平速度v 0射向棒的中心,并以v 0/2的水平速度穿出棒,此后棒的最大偏转角恰为︒90,则v 0的大小为 ( )
(A)34gl m M ; (B)2gl ; (C)gl m M 2; (D)22316m
gl M 。

二、填空题
1. 长为l 、质量为m 的匀质细杆,以角速度ω绕过杆端点垂直于杆的水平轴转动,杆的动量大小为 ,杆绕转动轴的动能为 ,动量矩为 。

2. 匀质圆盘状飞轮,质量为20kg ,半径为30cm ,当它以每分钟60转的速率旋转时,其动能为 。

4. 一人站在转动的转台上,在他伸出的两手中各握有一个重物,若此人向着胸部缩回他的双手及重物,忽略所有摩擦,则系统的转动惯量____________,系统的转动角速度____________,系统的角动量____________,系统的转动动能____________。

(填增大、减小或保持不变)
三.计算题
1. 在自由旋转的水平圆盘上,站一质量为m 的人。

圆盘的半径为R ,转动惯量为J ,角速度为ω。

如果这人由盘边走到盘心,求角速度的变化及此系统动能的变化。

3. 如图所示,滑轮的转动惯量J =0.5kg ⋅m 2,半径r =30cm ,弹簧的劲度系数k =2.0N/m ,重物的质量m =2.0kg 。

当此滑轮——重物系统从静止开始启动,开时弹簧没有伸长。

滑轮与绳子间无相对滑动,其它部分摩擦忽略不计。

问物体能沿斜面下滑多远?当物体沿斜面下滑00.1m 时,它的速率有多大?
课本习题:3-3、3-11。

相关文档
最新文档