真核细胞表达系统的类型与常用真核细胞表达载体

合集下载

真核细胞常见表达载体

真核细胞常见表达载体

真核细胞常见表达载体真核细胞, 表达载体1、pCMVp-NEO-BAN载体特点:该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。

更重要的是,由于该真核细胞表达载体中抗neo 基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。

插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。

注意在此载体中有二个EcoR1位点存在。

2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40origin使该载体在任何表达SV40 T抗原的真核细胞内进行复制。

Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。

此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。

借此可确定外源基因在细胞内的表达和/或组织中的定位。

亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。

3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点:pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。

真核细胞常见的表达载体及真核细胞表达外源基因的调控(精)

真核细胞常见的表达载体及真核细胞表达外源基因的调控(精)

真核细胞常见表达载体1. pCMVp-NEO-BAN载体特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。

更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。

插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。

注意在此载体中有二个EcoR1位点存在。

2. pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。

Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。

此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。

借此可确定外源基因在细胞内的表达和/或组织中的定位。

亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1。

Excitation maximum = 488 nm; Emission maximum = 507图示为启动子分泌信号肽和多克隆位点区域:Ase1.pCMV…ccg cta gcg cta ccg gtc gcc acc atg- .EGFP…BamH1…SV40 poly A+Nhe1 Age13. pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体

真核细胞表达系统的类型与常用真核细胞表达载体标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统摘要: 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。

原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。

自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。

并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。

随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。

利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。

在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。

该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。

其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。

但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。

为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。

昆虫表达系统

昆虫表达系统

昆虫杆状病毒表达系统的分子基础
• 目前已知基因组全序列的杆状病毒有苜蓿丫纹夜蛾核型多角体病毒 (Ac MNPV)、 家蚕核多角体病毒(BmNPV)、 黄杉毒蛾多核衣壳核多角体病毒 (OpMNPV)、 舞毒蛾多核衣壳核多角体病毒( Ld MNPV)、 甜菜夜蛾多核衣壳 核多角体病毒( Se MNPV)、 棉铃虫核型多角体病毒(HaNPV)以及斜纹夜蛾核 型多角体病毒( SplM t NPV) 杆状病毒在其生活史中共有两种形式的表型存在,在感染的初期( 0~ 24h), 主 要以细胞释放型病毒粒子( cell-released virus , CRV)为主, 也称为胞外型病毒 ( extracel lular vir us , ECV)或出芽型病毒 ( Budded vir us , BV); 在感染的晚 期主要以包埋型病毒( occlude d vir us , OV)的形式存在。杆状病毒的这两种 表型的形态、 蛋白组成、 病毒囊膜的来源、 感染组织特异性以及病毒入侵 宿主细胞的方式都不相同。 由于两种表型的病毒在结构组成上的差异, 所以杆状病毒在不同的时期需要表 达不同类型的蛋白来满足病毒颗粒不同形式的组装。昆虫杆状病毒的基因表 达共分为 4个时期: 极早期、 早期、 晚期、 迟晚期。4个时期的基因一环扣 一环,按时间先后, 以级联方式严格制约。早期表达的基因有 ie- 1、 me53、 pe38、 ie- 2等, 晚期表达的基因有 vp39 、vp80、 polh、 p10等, 这些不同的 基因所表达的蛋白各自具有不同的功能, 有些表达产物具有调控的功能, 而有 些仅仅只具有结构蛋白的作用。 在杆状病毒所表达的一系列蛋白中,有一类蛋白具有较高的表达量,并且均为病 毒基因组复制所非必需, 其中最具代表性的有多角体蛋白与 P10蛋白, 均属于 晚期表达的蛋白,受晚期启动子的调控。昆虫的杆状病毒表达系统正是利用了 这类蛋白的优点, 从而提供了外源 DNA插入座位。

各种表达载体介绍

各种表达载体介绍

pET 载体中,目标基因克隆到 T7 噬菌体强转录和翻译信号控制之下,并通过在宿主细胞提供 T7 RNA 聚合酶来诱导表达。

Novagen 的 pET 系统不断扩大,提供了用于表达的新技术和选择,目前共包括 36 种载体类型、 15 种不同宿主菌和设计用于有效检测和纯化目标蛋白的许多其它相关产品。

优点· 是原核蛋白表达引用最多的系统· 在任何大肠杆菌表达系统中,基础表达水平最低· 真正的调节表达水平的“变阻器”控制· 提供各种不同融合标签和表达系统配置· 可溶性蛋白生产、二硫键形成、蛋白外运和多肽生产等专用载体和宿主菌· 许多载体以 LIC 载体试剂盒提供,用于迅速定向克隆 PCR 产物· 许多宿主菌株以感受态细胞形式提供,可立即用于转化阳性 pFORCE TM 克隆系统具有高效克隆 PCR 产物、阳性选择重组体和高水平表达目标蛋白等特点。

pET 系统概述pET 系统是在大肠杆菌中克隆和表达重组蛋白的最强大系统。

根据最初由 Studier 等开发的 T7 启动子驱动系统, Novagen 的 pET 系统已用于表达成千上万种不同蛋白。

控制基础表达水平pET 系统提供 6 种载体 - 宿主菌组合,能够调节基础表达水平以优化目标基因的表达。

没有单一策略或条件适用于所有目标蛋白,所以进行优化选择是必要的。

宿主菌株质粒在非表达宿主菌中构建完成后,通常转化到一个带有 T7 RNA 聚合酶基因的宿主菌(λ DE3 溶原菌)中表达目标蛋白。

在λ DE3 溶原菌中, T7 RNA 聚合酶基因由 lacUV5 启动子控制。

未诱导时便有一定程度转录,因此适合于表达其产物对宿主细胞生长无毒害作用的一些基因。

而宿主菌带有 pLysS 和 pLyE 时调控会更严紧。

pLys 质粒编码 T7 溶菌酶,它是 T7 RNA 聚合酶的天然抑制物,因此可降低其在未诱导细胞中转录目标基因的能力。

真核表达载体

真核表达载体

真核细胞常见表达载体1、pCMVp-NEO-BAN载体特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。

更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。

插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。

注意在此载体中有二个EcoR1位点存在。

2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。

Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。

此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。

借此可确定外源基因在细胞内的表达和/或组织中的定位。

亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。

3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。

载体选择

载体选择

1、pCMVp-NEO-BAN载体特点: 该真核细胞表达载体分子量为6600碱基对,主要由CMVp启动子、兔β-球蛋白基因内含子、聚腺嘌呤、氨青霉素抗性基因和抗neo基因以及pBR322骨架构成,在大多数真核细胞内都能高水平稳定地表达外源目的基因。

更重要的是,由于该真核细胞表达载体中抗neo基因存在,转染细胞后,用G418筛选,可建立稳定的、高表达目的基因的细胞株。

插入外源基因的克隆位点包括Sal1、BamH1和EcoR1位点。

注意在此载体中有二个EcoR1位点存在。

2、pEGFP, 增强型绦色荧光蛋白表达载体(Enhanced Fluorecent Protein Vector)特点: pEGFP表达载体中含有绿色荧光蛋白,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。

Neo抗性盒由SV40早期启动子、Tn5的neomycin/kanamycin抗性基因以及HSV-TK基因的聚腺嘌呤信号组成,能应用G418筛选稳定转染的真核细胞株。

此外,载体中的pUC origin 能保证该载体在大肠杆菌中的复制,而位于此表达盒上游的细菌启动子能驱动kanamycin抗性基因在大肠杆菌中的表达。

用途: 该表达载体EGFP上游有Nde1、Eco47111和Age1克隆位点,将外源基因扦入这些位点,将合成外源基因和EGFP的融合基因。

借此可确定外源基因在细胞内的表达和/或组织中的定位。

亦可用于检测克隆的启动子活性(取代CMV启动子,Acet1-Nhe1)。

3、pEGFT-Actin, 增强型绿色荧光蛋白/人肌动蛋白表达载体特点: pEGFP-Actin表达载体中含有绿色荧光蛋白和人胞浆β-肌动蛋白基因,在PCMV启动子驱动下,在真核细胞中高水平表达。

载体骨架中的SV40 origin使该载体在任何表达SV40 T 抗原的真核细胞内进行复制。

真核表达载体

真核表达载体

常用的哺乳动物细胞表达载体和组成成分有SV40病毒表达载体、痘病毒表达载体、逆转录病毒表达载体,常见的哺乳动物表达载体的组成成分有:原核DNA序列、启动子、增强子、拼接信号、终止信号和多聚腺苷酸化信号、筛选标记及真核病毒序列等。

(1)原核DNA序列:为了能在大肠杆菌中增殖,得到大量能转染哺乳动物细胞的重组DNA,哺乳动物表达载体中通常有一段原核序列,包括一个能在大肠杆菌中自身复制的复制子,便于挑选含重组DNA细菌的抗生素抗性基因,以及便于把真核序列插入载体的少数单一限制性酶切位点。

当具备这些序列以后,外源的真核基因序列可由单一酶切位点插入载体中,形成的重组DNA可在大肠杆菌中增殖,经抗生素筛选后进行DNA提取,即可得到大量的所需的哺乳动物细胞表达载体。

(2)启动子:真核生物的启动子区域位于TATA区上游100bp到230bp之间,TAT区位于转录起始点上游25-30bp处。

启动子的转录效率因细胞而异。

因此需根据宿主细胞类型选择不同的启动子。

(3)增强子:增强子是使启动子的基因转录效率显著提高的一类顺式作用元件,有多个独立核苷酸序列组成。

它们的作用通常不具有方向性,在位于转录起始点的下游或离启动子很远时仍有活性。

许多增强子只能在特定的组织或细胞中起作用,即具有组织细胞的特异性,因此在构建真核表达载体的时候,应根据宿主细胞来选择增强子。

(4)剪接信号:真核基因由许多内含子和外显子组成。

被转录成mRNA前体以后,需通过剪除内含子、连接外显子才能成为成熟的mRNA。

一般mRNA拼接需要的基本序列位于内含子的5’和3’末端,因此,改变拼接位点5’和3’末端两侧的外显子序列可能会影响邻近拼接位点的使用效率,在替换外显子时应注意。

(5)终止信号和多聚腺苷化的信号:转录的终止信号常常位于多聚腺苷化位点下游的一端长度为几百个核苷酸碱基的DNA区域内。

多聚腺苷化需要两种序列:位于腺苷化位点下游的GU丰富区或U丰富区和位于腺苷化位点上游11-30个核苷酸处的一个有6个核苷酸碱基组成并高度保守的AAUAAA序列。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

真核细胞表达系统的类型与常用真核细胞表达载体标签:真核细胞酵母表达系统细胞表达载体真核表达系统昆虫表达系统动物表达系统摘要 : 原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。

原核表达系统是常被用来研究基因功能的成熟系统,由于原核表达系统具有包涵体蛋白不易纯化、蛋白修饰不完整等缺陷,人们也开始利用真核细胞表达系统来研究基因。

自上世纪70年代基因工程技术诞生以来,基因表达技术已渗透到生命科学研究的各个领域。

并随着人类基因组计划实施的进行,在技术方法上得到了很大发展,时至今日已取得令人瞩目的成就。

随着人类基因组计划的完成,越来越多的基因被发现,其中多数基因功能不明。

利用表达系统在哺乳动物细胞内表达目的基因是研究基因功能及其相互作用的重要手段。

在各种表达系统中,最早被采用进行研究的是原核表达系统,这也是目前掌握最为成熟的表达系统。

该项技术的主要方法是将已克隆入目的基因DNA段的载体(一般为质粒)转化细菌(通常选用的是大肠杆菌),通过iptg诱导并最终纯化获得所需的目的蛋白。

其优点在于能够在较短时间内获得基因表达产物,而且所需的成本相对比较低廉。

但与此同时原核表达系统还存在许多难以克服的缺点:如通常使用的表达系统无法对表达时间及表达水平进行调控,有些基因的持续表达可能会对宿主细胞产生毒害作用,过量表达可能导致非生理反应,目的蛋白常以包涵体形式表达,导致产物纯化困难;而且原核表达系统翻译后加工修饰体系不完善,表达产物的生物活性较低。

为克服上述不足,许多学者将原核基因调控系统引入真核基因调控领域,其优点是:①根据原核生物蛋白与靶DNA间作用的高度特异性设计,而靶DNA与真核基因调控序列基本无同源性,故不存在基因的非特异性激活或抑制;②能诱导基因高效表达,可达105倍,为其他系统所不及;③能严格调控基因表达,即不仅可控制基因表达的“开关”,还可人为地调控基因表达量。

因此,利用真核表达系统来表达目的蛋白越来越受到重视。

目前,基因工程研究中常用的真核表达系统有酵母表达系统、昆虫细胞表达系统和哺乳动物细胞表达系统。

1.酵母表达系统最早应用于基因工程的酵母是酿酒酵母,后来人们又相继开发了裂殖酵母、克鲁维酸酵母、甲醇酵母等,其中,甲醇酵母表达系统是目前应用最广泛的酵母表达系统。

目前甲醇酵母主要有H Polymorpha,Candida Bodini,Pichia Pastris3种。

以Pichia Pastoris应用最多。

甲醇酵母的表达载体为整合型质粒,载体中含有与酵母染色体中同源的序列,因而比较容易整合入酵母染色体中。

大部分甲醇酵母的表达载体中都含有甲醇酵母醇氧化酶基因一1(A0x1),在该基因的启动子(PAXOI)作用下,外源基因得以表达。

PAXOI是一个强启动子,在以葡萄糖或甘油为碳源时。

甲醇酵母中AOx1基因的表达受到抑制,而在以甲醇为唯一碳源时PAXOI可被诱导激活,因而外源基因可在其控制下表达,将目的基因多拷贝整合入酵母染色体后可以提高外源蛋白的表达水平及产量。

此外甲醇酵母的表达载体都为E.coli/Pichia Pastoris的穿梭载体,其中含有E.coli复制起点和筛选标志,可在获得克隆后采用E.coli细胞大量扩增.目前,将质粒载体转入酵母菌的方法主要有原生质体转化法、电击法及氯化锂法等。

甲醇酵母一般先在含甘油的培养基中生长。

培养至高浓度。

再以甲醇为碳源。

诱导表达外源蛋白。

这样可以大大提高表达产量。

利用甲醇酵母表达外源性蛋白质其产量往往可达克级。

与酿酒酵母相比其翻译后的加工更接近哺乳动物细胞,不会发生超糖基化。

利用PAXOI表达外源蛋白时,一般需很长时间才能达到峰值水平,而甲醇是高毒性、高危险性化工产品。

使得实验操作过程中存在不小的危害性。

且不宜于食品等蛋白生产。

因此那些不需要甲醇诱导的启动子受到青睐包括GAP、FLD1、PEX8、YPTI等多种。

利用三磷酸甘油醛脱氢酶(GAP)启动子代替PAXOI,不需要甲醇诱导。

培养过程中无需更换碳源,操作更为简便,可缩短外源蛋白到达峰值水平的时间。

酵母表达系统作为一种后起的外源蛋白表达系统,由于兼具原核以及真核表达系统的优点,正在基因工程领域中得到日益广泛的应用。

2.昆虫细胞表达系统杆状病毒表达系统是目前应用最广的昆虫细胞表达系统,该系统通常采用目宿银纹夜蛾杆状病毒(AcNPV)作为表达载体。

在AcNPV感染昆虫细胞的后期,核多角体基因可编码产生多角体蛋白,该蛋白包裹病毒颗粒可形成包涵体。

核多角体基因启动子具有极强的启动蛋白表达能力,故常被用来构建杆状病毒传递质粒。

克隆入外源基因的传递质粒与野生型AcNPV共转染昆虫细胞后可发生同源重组,重组后多角体基因被破坏,因而在感染细胞中不能形成包涵体,利用这一特点可挑选出含重组杆状病毒的昆虫细胞但效率比较低,且载体构建时间长,一般需要4~6周。

此外,昆虫细胞不能表达带有完整N联聚糖的真核糖蛋白。

在病毒感染晚期,由于大量外源蛋白的表达引起昆虫细胞的裂解,胞质内的物质释放出来,与目的蛋白混在一起,从而使蛋白的纯化工作变得很困难,另外水解酶的释放会降解重组蛋白。

为了克服以上这些困难,科学工整理先后尝试用丝蛾肌动蛋白基因启动子或杆状病毒ie-1基因启动子表达外源蛋白,但效果都不明显。

Farrel等介绍了一种新型的鳞翅目昆虫细胞表达系统,该系统主要包括3个调节外源蛋白表达序列:(1)Bombyx mori的肌动蛋白基因启动子;(2)Bombyx mori的核型多角体病毒(BmNPV)的立早基因ie-1(编码俄IE-1蛋白,该蛋白是种转录激活因子,可在体外激活肌动蛋白基因启动子);(3) BmNPV的同源重复序列3(HR3)可作为肌动蛋白基因启动子的增强子。

三者协同作用,可使转录活性提高 1000倍以上,从而大大地提高外源蛋白的表达水平。

另外目前还有一种新型的宿主范围广的杂合核多角体病毒(HyNPV)被应用于昆虫细胞表达系统的构建,该病毒由AcNPV及 Bni'qP发展而来。

一般情况下杆状病毒表达系统所能表达的外源蛋白只有少部分是分泌性的,大部分为非分泌性。

为了解决这个问题将Hsp70(热休克蛋白70)与外源蛋白共表达可明显提高重组蛋白的分泌水平,这是因为分泌性多肽被翻译后必须到达内质网进行加工才能被分泌至胞外。

如果到达内质网前,前体多肽就伸展开来,暴露出疏水残基,残基间的相互作用可引起多肽的凝聚,这对最终的表达水平有很大影响。

而Hsp70是一种分子伴侣,能够与新翻译的多肽结合,抑制前体肽的凝聚使前体肽顺利到达内质网进行加工,从而提高蛋白的分泌水平。

最近,人们又构建了杆状病毒-S2表达系统,该系统能将重组杆状病毒转染果蝇S2细胞,以前人们认为杆状病毒仅能在鳞翅目昆虫细胞(如 sf9、sf21)中复制,不能在其他昆虫细胞(如果蝇细胞)中复制,然而目前研究表明在一定条件下,杆状病毒也能感染果蝇细胞。

在果蝇细胞中,杆状病毒的多角体基因启动子几乎不发生作用。

杆状病毒-S2表达系统的表达载体利用的是果蝇启动子如Hsp70启动子、肌动蛋白5C启动子、金属硫蛋白基因启动子等,其中,Hsp70启动子的作用最强。

重组杆状病毒感染S2细胞后不会引起宿主细胞的裂解,且蛋白表达水平与鳞翅目细胞相似,因此,杆状病毒-S2系统是一个很有应用前景的昆虫细胞表达系统。

昆虫细胞表达系统,特别是杆状病毒表达系统由于其操作安全,表达量高,目前与酵母表达系统一样被广泛应用于基因工程的各个领域中。

3.哺乳动物细胞表达系统由哺乳动物细胞翻译后再加工修饰产生的外源蛋白质,在活性方面远胜于原核表达系统及酵母、昆虫细胞等真核表达系统,更接近于天然蛋白质。

哺乳动物细胞表达载体包含原核序列、启动子、增强子、选择标记基因、终止子和多聚核苷酸信号等。

将外源基因导入哺乳动物细胞主要通过2类方法:一是感染性病毒颗粒感染宿主细胞,二是通过脂质体法、显微注射法、磷酸钙共沉淀法及DEAE一葡聚糖法等非病毒载体的方式将基因导入到细胞中。

外源基因的体外表达一般采用质粒表达载体,如将重组质粒导入CHO 细胞可建立高效稳定的表达系统,而利用COS细胞可建立瞬时表达系统。

目前,病毒载体已成为动物体内表达外源基因的有力工具,在临床基因治疗的探索中也发挥了重要作用。

痘苗病毒由于其基因的分子量相当大(约187kb),利用它作为载体可同时插入几种外源基因,从而构建多价疫苗。

另外,逆转录病毒感染效率高,某些难转染的细胞系也可通过其导入外源基因,但要注意的是逆转录病毒可整合入宿主细胞染色体,具有潜在的危险性。

由于腺病毒易于培养、纯化,宿主范围广,故采用该类病毒构建的载体被广泛应用腺病毒载体的构建依赖于腺病毒穿梭质粒和包装载体之间的同源重组。

但是哺乳动物细胞内的这种同源重组效率很低,利用细菌内同源重组法构建重组体效率会大大提高,即将外源基因插入到腺病毒穿梭质粒中,形成转移质粒,将其线性化后与腺病毒包装质粒共转化大肠埃希菌。

另一种方法是通过CrelaxP系统构建重组腺病毒载体,在转移质粒和包装质粒中都插入laxP位点,然后将两个质粒共转染表达Cre重组酶的哺乳动物细胞,通过Cre介导两个laxP 位点之间的DNA发生重组,可获得重组腺病毒,这种重组效率比一般的细胞内同源效率高30倍。

最近,人们在杆状病毒中插入巨细胞病毒的启动子建立了高效的基因转移载体。

由于杆状病毒是昆虫病毒,在哺乳动物细胞中不会引起病毒基因的表达,而且载体的构建容易,因而利用杆状病毒进行基因转移为我们提供了很好的途径。

利用哺乳动物细胞表达外源基因时,大多数情况下不需要诱导,但当表达产物对细胞有毒性时应采取诱导,这样可避免表达产物产生早期就对细胞产生影响。

哺乳动物细胞中用到的诱导型载体主要与启动子有关如热休克蛋白启动子可在高温下被诱导,还有重金属、糖皮质激素诱导的启动子。

但这些系统存在一些共同的缺陷,如诱导表达特异性差;当系统处于关闭状态时表达有泄漏诱导剂本身有毒性,常对细胞造成损伤等。

为此,Gossen等构建了受四环素负调节的Tet-on基因表达系统,该系统由调节质粒和反应质粒组成。

调节质粒中具有编码转录激活因子(fIA)的序列,在没有四环素或强力毒素存在的情况下 tTA可引起下游目的基因表达。

随后Gossen等又对tTA的氨基酸序列进行了改造,构建了受四环素正调节的Tet-on基因表达系统,该系统在没有四环素的情况下启动子不被激活,而在加入四环素或强力毒素后目的基因高效表达。

四环素诱导的基因表达系统是目前应用最广泛的哺乳动物细胞诱导表达系统,该系统具有严密、高效可控制性强的优点。

外源蛋白的表达会对哺乳动物细胞产生不利影响,因此利用哺乳动物细胞表达外源基因时,一个主要问题便是外源基因不能持久稳定地表达。

相关文档
最新文档