五年级奥数火车过桥问题练习题及答案
小学五年级关于过桥问题的奥数例题及练习题

小学五年级关于过桥问题的奥数例题及练习题【篇一】小学五年级关于过桥问题的奥数例题及练习题①一列火车以同样的速度通过第一座长600米的大桥用40秒,通过第二座长900米的大桥用了50秒,这列火车的长度?②铁路桥长1000米,一列火车从桥上通过测得火车从开始上桥到完全下桥用1分钟,整列火车完全在桥上的时间为40秒,求火车的速度和长度?例题2:有两列客车,车长分别为206米和284米,两列火车分别以每秒24米和每秒25米的速度相向而行在双轨铁路上,交会时以车头相遇到车尾相离共需多少时间?①一列慢车车长120米,车速每秒15米,一列快车车长160米,车速每秒20米,两车相向而行从车头相遇到车尾相离共需多少时间?②一列慢车车长125米,车速每秒17米,一列快车车长140米,车速每秒22米,慢车在前面行驶,快车在后面追上到完全超过需要多少秒?【篇二】小学五年级关于过桥问题的奥数例题及练习题①一列火车车长190米,每秒行10米,要通过720米的大桥,需要多少秒?②一列火车长160米,以每秒20米的速度穿过一条长400米的隧道,问火车穿过隧道需要多少秒?③一列火车经过一个路标要5秒,通过一座300米的山洞要20秒。
经过800米的大桥要多少秒?例题2:小明站在铁路边,一列火车从他身边开过用了3分钟,已知火车长480米,用同样的速度通过一座大桥用了8分钟,这座大桥的长度是多少?①一列火车长800米从路边一棵大树旁通过用了1.6分钟,以同样的速度通过一座大桥,共用了5分钟,求大桥长多少米?②一列火车经过一根电线杆用了15秒,通过一座长300米的大桥用45秒,求这列火车的长度?【篇三】小学五年级关于过桥问题的奥数例题及练习题①小强以每分60米的速度沿铁路边散步,一列长144米的客车从后面追上他,并超过他用了8秒,求火车的速度?②师范附小五年级1222名同学排队春游,他们排成二路纵队通过公路大桥,前后两名同学间相距1米,他们通过大桥共用去20分钟,如果队伍的前进速度是每分钟50米,求桥长是多少米?③一列客车长120米,每秒行30米,一列货车长200米,每秒行20米。
五年级奥数火车过桥问题典型例题带答案解析

小学奥数五年级火车过桥典型例题带答案解析例题1:一列火车通过530米的桥需40秒钟,以同样的速度穿过380米的山洞需30秒钟,求这列火车的速度是多少米/秒,火车全长是多少米?解析:火车在40秒内所行路程=530米+一个车身长,在30秒内行的路程=380米+一个车身长。
火车通过桥,是从车头上桥算起到车尾离开桥;穿过山洞,是从车头进洞算起到车尾离洞。
而车身长度不变,桥比山洞长530-380=150(米),火车通过150米用的时间是40-30=10(秒),因此火车的速度是每秒行驶:150÷10=15(米),车身长15×40-530=70(米)或15×30-380=70(米)。
列式计算:火车的速度:(530-380)÷(40-30)=150÷10=15(米)火车的车身长:15×30-380=450-380=70(米)答:这列火车的速度是每秒15米,车身长是70米。
例题2:少先队员346人排成两路纵队去参观科技成果展览。
队伍行进的速度是每分钟行23米,前后两人都相距1米。
现在队伍需要通过一座长702米的桥,整个队伍从上桥到离桥共需几分钟?解析:把整个队伍的长度看成是“车长”,先求出“车长”.因为每路纵队有346÷2=173人,前后两人都相距1米,所以,整个队伍的长度是1×(173-1)=172米.队伍完全过桥,是从队伍头上桥算起到队伍尾离开桥,车长求出后,根据队伍路程÷速度=时间,就可以求出过桥的时间了。
列式计算:队伍长:1×﹙346÷2-1﹚=1×﹙173-1﹚=172﹙米﹚过桥的时间:﹙702+172﹚÷23=874÷23=38﹙分钟﹚答:整个队伍从上桥到离桥共需要38分钟。
例题3:甲车每秒行22米,乙车每秒行16米,若两车齐头并进,则甲车行30秒超过乙车,若两车齐尾并进,则甲车行26秒超过乙车,求两车车长各多少米?解析:火车完全过桥问题公式:火车过桥(或遂道)所用的时间=[桥长(遂道长)+火车身长]÷火车速度;火车完全在桥上行驶问题公式:火车过桥(或遂道)所用的时间=[桥长(遂道长)—火车身长]÷火车速度;两列火车相向而行公式:相遇到相离的时间=两火车车身长度之和÷两车速度和。
小学数学《火车过桥》练习题(含答案)

小学数学《火车过桥》练习题(含答案)内容概述过桥问题也是行程问题的一种。
首先要弄清列车通过一座桥是指从车头上桥到车尾离桥。
列车过桥的总路程是桥长加车长,这是解决过桥问题的关键。
过桥问题也要用到一般行程问题的基本数量关系:过桥的路程= 桥长+ 车长车速= (桥长+ 车长)÷过桥时间通过桥的时间=(桥长+ 车长)÷车速桥长= 车速×过桥时间—车长车长= 车速×过桥时间—桥长后三个都是根据第二个关系式逆推出的。
火车过桥又可以细分如下4种情况:⑴火车过桥时间是指从车头上桥起到车尾离桥所用的时间,因此过桥的路程= 桥长+ 车长。
⑵火车与人错身时,忽略人本身的长度,两者路程和=火车本身长度。
⑶火车与火车上的人错身时,只要认为人具备所在火车的速度,而忽略本身的长度,那么他所看到的错车的相应路程仍只是对面火车的长度。
⑷火车与火车错身时,两者路程和=两车车身长度之和。
对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
.例题精讲【例1】一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.【例2】一个车队以5米/秒的速度缓缓通过一座长200米的大桥,共用145秒.已知每辆车长5米,两车间隔8米.问:这个车队共有多少辆车?【例3】一列火车驶过长900米的铁路桥,从车头上桥到车尾离桥共用1分25秒钟,紧接着列车又穿过一条长1800米的隧道,从车头进隧道到车尾离开隧道用了2分40秒钟,求火车的速度及车身的长度?【例4】一列火车的长度是800米,行驶速度为每小时60千米,铁路上有两座隧洞.火车通过第一个隧洞用2分钟;通过第二个隧洞用3分钟;通过这两座隧洞共用6分钟,求两座隧洞之间相距多少米?【例5】已知一列长200米火车,穿过一个隧道,测得火车从开始进入隧道到完全出来共用60秒,整列火车完全在隧道里面的时间为40秒,求火车的速度?【例6】已知某铁路桥长1000米,一列火车从桥上通过,测得火车从开始上桥到完全下桥共用120秒,整列火车完全在桥上的时间为80秒,求火车的速度和长度?【例7】一名铁道工人以每分钟10米的速度沿道边小路行走,(1)身后一辆火车以每分钟100米的速度超过他,从车头追上铁道工人到车尾离开共用时4秒,那么车长多少米?(2)过了一会,另一辆货车迎面开来,从与铁道工人相遇到离开,共用时3秒.那么车长是多少?【例8】一列快车全长250米,每秒行15米;一列慢车全长263米,每秒行12米.(1)两列火车相向而行,从车头相遇到车尾离开,要几秒钟?(2)两列火车同向而行,从快车车头追上慢车车尾到快车车尾追上慢车车头,需要几秒钟?【例9】某列火车通过342米的隧道用了23秒,接着通过234米的隧道用了17秒,这列火车与另一列长88米,速度为每秒22米的列车错车而过,问需要几秒钟?【例10】有两列同方向行驶的火车,快车每秒行33米,慢车每秒行21米.如果从两车头对齐开始算,则行20秒后快车超过慢车;如果从两车尾对齐开始算,则行25秒后快车超过慢车.那么,两车长分别是多少?如果两车相对行驶,两车从车头重叠起到车尾相离需要经过多少时间?【例11】一列快车和一列慢车相向而行,快车的车身长是280米,慢车的车身长是385米。
小学奥数 火车问题 精选练习例题 含答案解析(附知识点拨及考点)

1、会熟练解决基本的火车过桥问题.2、掌握人和火车、火车与火车的相遇追及问题与火车过桥的区别与联系.3、掌握火车与多人多次相遇与追及问题火车过桥常见题型及解题方法 (一)、行程问题基本公式:路程=速度⨯时间总路程=平均速度⨯总时间;(二)、相遇、追及问题:速度和⨯相遇时间=相遇路程速度差⨯追及时间=追及路程;(三)、火车过桥问题1、火车过桥(隧道):一个有长度、有速度,一个有长度、但没速度,解法:火车车长+桥(隧道)长度(总路程) =火车速度×通过的时间;2、火车+树(电线杆):一个有长度、有速度,一个没长度、没速度,解法:火车车长(总路程)=火车速度×通过时间;2、火车+人:一个有长度、有速度,一个没长度、但有速度,(1)、火车+迎面行走的人:相当于相遇问题,解法:火车车长(总路程) =(火车速度+人的速度)×迎面错过的时间;(2)火车+同向行走的人:相当于追及问题,解法:火车车长(总路程) =(火车速度—人的速度) ×追及的时间;(3)火车+坐在火车上的人:火车与人的相遇和追及问题解法:火车车长(总路程) =(火车速度±人的速度) ×迎面错过的时间(追及的时间);4、火车+火车:一个有长度、有速度,一个也有长度、有速度,(1)错车问题:相当于相遇问题,解法:快车车长+慢车车长(总路程) = (快车速度+慢车速度) ×错车时间;(2)超车问题:相当于追及问题,解法:快车车长+慢车车长(总路程) = (快车速度—慢车速度) ×错车时间;老师提醒学生注意:对于火车过桥、火车和人相遇、火车追及人以及火车和火车之间的相遇、追及等等这几种类型的题目,在分析题目的时候一定得结合着图来进行。
知识精讲教学目标火车问题模块一、火车过桥(隧道、树)问题【例1】一列火车长200米,以60米每秒的速度前进,它通过一座220米长的大桥用时多少?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】分析:(1)如右图所示,学生们可以发现火车走过的路程为:200+220=420(米),所以用时420÷60=7(秒).【答案】7秒【巩固】一列火车长360米,每秒钟行驶16米,全车通过一条隧道需要90秒钟,求这条隧道长多少米?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】已知列车速度是每秒钟行驶16米和全车通过隧道需要90秒钟.根据速度⨯时间=路程的关系,可以求出列车行驶的全路程.全路程正好是列车本身长度与隧道长度之和,即可求出隧道的长度.列车90秒钟行驶:16901440-=(米).⨯=(米),隧道长:14403601080【答案】1080米【巩固】一列火车经过南京长江大桥,大桥长6700米,这列火车长100米,火车每分钟行400米,这列客车经过长江大桥需要多少分钟?火车行驶路程火车火车桥【考点】行程问题之火车问题【难度】2星【题型】解答【解析】建议教师帮助学生画图分析.从火车头上桥,到火车尾离桥,这是火车通过这座大桥的全过程,也就是过桥的路程=桥长+车长.通过“过桥的路程”和“车速”就可以求出火车过桥的时间.所以过桥路程为:67001006800÷=(分钟).+=(米),过桥时间为:680040017【答案】17分钟【巩固】长150米的火车以18米/秒的速度穿越一条300米的隧道.那么火车穿越隧道(进入隧道直至完全离开)要多长时间?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】火车穿越隧道经过的路程为300150450+=(米),已知火车的速度,那么火车穿越隧道所需时间为÷=(秒).4501825【答案】25秒【巩固】一列长240米的火车以每秒30米的速度过一座桥,从车头上桥到车尾离桥用了1分钟,求这座桥长多少米?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】火车过桥时间为1分钟60=秒,所走路程为桥长加上火车长为60301800⨯=(米),即桥长为-=(米).180********【答案】1560米【巩固】一列火车长160米,全车通过一座桥需要30秒钟,这列火车每秒行20米,求这座桥的长度.【考点】行程问题之火车问题【难度】2星【题型】解答【解析】建议教师帮助学生画图分析.由图知,全车通过桥是指从火车车头上桥直到火车车尾离桥,即火车行驶的路程是桥的长度与火车的长度之和,已知火车的速度以及过桥时间,所以这列车30秒钟走过:2030600-=(米).⨯=(米),桥的长度为:600160440【答案】440米【例2】四、五、六3个年级各有100名学生去春游,都分成2列(竖排)并列行进.四、五、六年级的学生相邻两行之间的距离分别是1米、2米、3米,年级之间相距5米.他们每分钟都行走90米,整个队伍通过某座桥用4分钟,那么这座桥长米.【考点】行程问题之火车问题【难度】2星【题型】解答【关键词】希望杯,六年级,一试【解析】100名学生分成2列,每列50人,应该产生49个间距,所以队伍长为⨯-=(米).49149249352304⨯+⨯+⨯+⨯=(米),那么桥长为90430456【答案】56米【巩固】一个车队以6米/秒的速度缓缓通过一座长250 米的大桥,共用152秒.已知每辆车长6米,两车间隔10米.问:这个车队共有多少辆车?【考点】行程问题之火车问题【难度】2星【题型】解答【解析】由“路程=时间⨯速度”可求出车队152 秒行的路程为6 152 912=⨯ (米),故车队长度为912-250= 662(米).再由植树问题可得车队共有车(662 -6) ÷(6 +10) +1 =42(辆).【答案】42辆【巩固】一个车队以4米/秒的速度缓缓通过一座长200米的大桥,共用115秒。
交大之星-小学奥数精讲精练(五年级) 第九章 行程问题 火车过桥

第九章行程问题•火车过桥典型题训练1(难度等级★★)例一座大桥长2400米,一列火车以900米/分钟的速度通过大桥,从车头开上桥到车尾离开桥共需3分钟。
这列火车长多少米?解从火车车头开上桥到车尾离开桥,火车行驶的路程正好等于火车自身车长与桥长之和,而路程可根据“路程=速度×时间”求解。
火车行驶的路程:900×3=2700(米)火车车长:2700-2400=300(米)答:这列火车长300米。
提示:过桥问题的主要关系式有:桥长+车长=路程,速度×过桥时间=路程。
这里的路程指从火车车头上桥开始到火车车尾离开桥为止,即火车行驶的路程。
1.一列货车全长240米,每秒行驶15米,列车连续通过一条隧道和一座桥,共用40秒,桥长150米。
这条隧道全长多少米?2.一列火车全长280米,从路边站立的一个人旁边完全经过用了10秒,以同样的速度完全通过一座长3080米的大桥(从车头上桥到车尾离桥),需要几分钟?3.一列货车全长800米,完全通过一座长1700米的大桥用了5分钟。
过桥后,这列货车以同样的速度从路边站立的一个人旁边经过,完全经过这个人需要多少分钟?典型题训练2(难度等级★★★)例某列火车完全通过(从车头进隧道到车尾离开隧道)360米的第一条隧道用了24秒,接着完全通过第二条长216米的隧道用了16秒,这列火车的长度是多少米?解火车通过第二个隧道比第一个隧道少用了8秒,是因为隧道短了360-216=144(米),即这8秒钟走了144米。
这样可以求出火车的速度,进而求出火车24秒行驶的距离,这段距离包含了火车的长度和第一个隧道的长度,这样就求出了火车的长度。
火车的速度:(360-216)÷(24-16)=18(米/秒)火车在24秒行驶的距离:24×18=432(米)火车的长度:432-360=72(米)答:这列火车长72米。
1.一列客车完全通过一条528米长的隧道用了29秒,接着完全通过396米长的隧道用了23秒。
五年级奥数题及答案

五年级奥数题及答案过桥问题(1)1. 一列火车经过南京长江大桥,大桥长6700米,这列火车长140米,火车每分钟行400米,这列火车通过长江大桥需要多少分钟?分析:这道题求的是通过时间。
根据数量关系式,我们知道要想求通过时间,就要知道路程和速度。
路程是用桥长加上车长。
火车的速度是已知条件。
总路程:(米)通过时间:(分钟)答:这列火车通过长江大桥需要17.1分钟。
2. 一列火车长200米,全车通过长700米的桥需要30秒钟,这列火车每秒行多少米?分析与解答:这是一道求车速的过桥问题。
我们知道,要想求车速,我们就要知道路程和通过时间这两个条件。
可以用已知条件桥长和车长求出路程,通过时间也是已知条件,所以车速可以很方便求出。
总路程:(米)火车速度:(米)答:这列火车每秒行30米。
3. 一列火车长240米,这列火车每秒行15米,从车头进山洞到全车出山洞共用20秒,山洞长多少米?分析与解答:火车过山洞和火车过桥的思路是一样的。
火车头进山洞就相当于火车头上桥;全车出洞就相当于车尾下桥。
这道题求山洞的长度也就相当于求桥长,我们就必须知道总路程和车长,车长是已知条件,那么我们就要利用题中所给的车速和通过时间求出总路程。
总路程:山洞长:(米)答:这个山洞长60米。
和倍问题1. 秦奋和妈妈的年龄加在一起是40岁,妈妈的年龄是秦奋年龄的4倍,问秦奋和妈妈各是多少岁?我们把秦奋的年龄作为1倍,“妈妈的年龄是秦奋的4倍”,这样秦奋和妈妈年龄的和就相当于秦奋年龄的5倍是40岁,也就是(4+1)倍,也可以理解为5份是40岁,那么求1倍是多少,接着再求4倍是多少?(1)秦奋和妈妈年龄倍数和是:4+1=5(倍)(2)秦奋的年龄:40÷5=8岁(3)妈妈的年龄:8×4=32岁综合:40÷(4+1)=8岁8×4=32岁为了保证此题的正确,验证(1)8+32=40岁(2)32÷8=4(倍)计算结果符合条件,所以解题正确。
五年级数学(上)奥数思维拓展《列车过桥问题》测试题(含答案)

五年级数学(上)奥数思维拓展《列车过桥问题》测试题(含答案)一.选择题(共7小题)1.一列火车长160米,每秒行20米,全车通过440米的大桥,需要()秒。
A.8B.22C.30D.无法确定2.一座桥长2000米,一列火车以每秒20米的速度通过这座桥,火车车身长200米、则火车从上桥到离开桥需要()秒.A.110B.100C.90D.853.一列火车长360米,每秒行15米,火车全部通过长1560米的隧道要用()秒.A.200B.128C.1294.一列火车长200米,以每分钟1200米的速度经过一座大桥,从车头进到车尾出一共用了2分钟.求桥的长度是多少米?正确的算式是()A.1200×2+200B.1200×2﹣200C.(1200+200)×2D.(1200﹣200)×25.两列火车长度分别为200米和180米,相向而行,它们在双轨铁路上从车头相遇到车尾离开的时间为10秒,已知一列火车的速度为16米/秒,则另一列火车的速度是()米/秒.A.16B.18C.20D.226.育才小学有1828人,排成4路纵队,每横排之间相距0.5米,队伍每分钟走60米,走过一座桥,从队头上桥到队尾离开桥共8分钟。
这座桥长()米。
A.250.5B.251.5C.251D.2527.一列火车全长215米,以每秒15.5米的速度通过长544.5米的大桥,求从车头上桥到车尾离开大桥共需时多少秒?算式是()A.215+544.5÷15.5B.215÷15.5+544.5C.(215+544.5)÷15.5二.填空题(共6小题)8.2021年底将建成的杭绍台高铁,全线最长的隧道——东茗隧道长达18226米,是我国华东地区最长的高铁隧道。
如果一列动车以5270米/分的速度通过隧道,从车头开进隧道到车尾离开隧道共需3.5分钟,这列动车的长度是米。
(提示:如果你觉得有困难,可以画图试试)9.一列火车通过196米的桥需要80秒,用同样的速度通过172米的隧道需要76秒,这列火车的车长是米。
火车过桥(含答案)

火车过桥(隧道)问题答案一、超车问题(同向运动,追及问题)例1 一列慢车车身长125米,车速是每秒17米;一列快车车身长140米,车速是每秒22米。
慢车在前面行驶,快车从后面追上到完全超过需要多少秒?解析:快车从追上到超过慢车时,快车比慢车多走两个车长的和,而每秒快车比慢车多走(22-17)千米,所以快车追上慢车并且超过慢车用的时间是可求的。
(125+140)÷(22-17)=53(秒)练习1 甲火车从后面追上到完全超过乙火车用了110秒,甲火车身长120米,车速是每秒20米,乙火车车速是每秒18米,乙火车身长多少米?答案:(20-18)×110-120=100(米)练习2 甲火车从后面追上到完全超过乙火车用了31秒,甲火车身长150米,车速是每秒25米,乙火车身长160米,乙火车车速是每秒多少米?答案:25-(150+160)÷31=15(米)小结:超车问题中,路程差=车身长的和超车时间=车身长的和÷速度差二、错车问题(反向运动,相遇问题)例1 两列火车相向而行,甲车车身长220米,车速是每秒10米;乙车车身长300米,车速是每秒16米。
两列火车从碰上到错过需要多少秒?解析:甲乙两车是相向而行,两车相遇的速度为甲乙两车速度之和,所行路程为两车车长之和,所以两车从碰上到错过所行驶的路程为两车车长之和,即220+300=500(米),速度为两车速度之和,即16+10=26(米/秒),所以,时间为(220+300)÷(10+16)=20(秒)。
练习1 两列火车相向而行,从碰上到错过用了15秒,甲车车身长210米,车速是每秒18米;乙车速是每秒12米,乙车车身长多少米?答案:(18+12)×15-210=240(米)练习2 两列火车相向而行,从碰上到错过用了10秒,甲车车身长180米,车速是每秒18米;乙车车身长160米,乙车速是每秒多少米?答案:(180+160)÷10-18=16(米)小结:错车问题中,路程和=车身长的和错车时间=车身长的和÷速度和三、过人(人看作是车身长度是0的火车)例1 小王以每秒3米的速度沿着铁路跑步,迎面开来一列长147米的火车,它的行驶速度每秒18米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火车过桥问题(A 卷:填空题)
填空题
1. 一列火车长200M,它以每秒10M 的速度穿过200M 长的隧道,从车头进入
2. 某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是 15秒,客车长105M 每小时速度为28.8千M,求步行人每小时走 _______ 千M?
车15秒钟行的距离
■' 人15秒钟走的距离 ;
3. 一人以每分钟60M 的速度沿铁路步行,一列长144M 的客车对面开来,从他 身边通过用了 8秒钟,列车的速度是 ________ M 秒.
车8秒钟行的距离
■■人 8秒钟走的距离i
4. 马路上有一辆车身为15M 的公共汽车,由东向西行驶,车速为每小时18千 M,马路一旁的人行道上有甲、乙两名年轻人正在练长跑 ,甲由东向西跑,乙由西 向东跑.某一时刻,汽车追上甲,6秒钟后汽车离开了甲。
半分钟之后汽车遇到迎 面跑来的乙。
又过了 2秒钟,汽车离开了乙.问再过 __________ 后,甲、乙两人相遇.
5. 一列火车长700M,以每分钟400M 的速度通过一座长900M 的大桥.从车头 上桥到车尾离桥要 ______ 钟.
6. 一支队伍1200M 长,以每分钟80M 的速度行进.队伍前面的联络员用6分 钟的时间跑到队伍末尾传达命令.问联络员每分钟行 _______ M .
7. 一列火车通过530M 的桥需40秒钟,以同样的速度穿过380M 的山洞需30 秒钟.求这列火车的速度是 ______ M 秒,全长是 _____ M.
8. 已知快车长182M,每秒行20M,慢车长1034M 每秒行18M.两车同向而行, 当快车车尾接慢车车头时,称快车穿过慢车,则快车穿过慢车的时间是 ________ 秒.
9. 一座铁路桥全长1200M,—列火车开过大桥需花费 75秒。
火车开过路旁 电杆,只要花费15秒,那么火车全长是 ________ M.
10. 铁路沿线的电杆间隔是 40M,某旅客在运行的火车中,从看到第一根电线 杆到看到第51根电线杆正好是2分钟,火车每小时行 ________ 千M.
答案
1. 火车过隧道 ,就是从车头进隧道到车尾离开隧道止 . 如图所示, 火车通过隧道 时所行的总距离为 :隧道长
+车长.
(200+200) - 10=40(秒) 答:从车头进入隧道到车尾离开共需 40秒.
2. 根据题意, 火车和人在同向前进, 这是一个火车追人的“追及问题” . 由图示可
知:
人步行15 秒钟走的距离=车15 秒钟走的距离-车身长.
所以,步行人速度X 15=28.8 X 1000- (60 X 60) X 15-105 步行人速度=[28.8 X 1000- (60 X 60)-105] - 5=1(M/秒)
=3.6( 千M/小时)
答:步行人每小时行3.6千M.
3. 客车与人是相向行程问题, 可以把人看作是有速度而无长度的火车, 利用火车相遇问题:两车身长十两车速之和=时间,可知,
两车速之和=两车身长十时间
=(144+0) - 8
=18.
人的速度=60M/分
=1M/ 秒.
车的速度=18-1 =17(M/ 秒).
答: 客车速度是每秒17M.
4. (1) 先把车速换算成每秒钟行多少M?
18 X 1000十3600=5(M).
(2) 求甲的速度. 汽车与甲同向而行,是追及问题.甲行6 秒钟的距离=车行6 秒钟的距离-车身长.
所以,甲速X 6=5X 6-15,
甲速=(5 X 6-15) - 6=2.5(M/ 每秒).
(3) 求乙的速度. 汽车与乙相向而行,是相向行程问题. 乙行2秒的距离=车身长-车行2秒钟的距离.
乙速X 2=15-5 X 2,
乙速=(15-5 X 2) - 2=2.5(M/ 每秒).
(4) 汽车从离开甲到离开乙之间的时间是多少?
0.5 X 60+2=32秒.
(5) 汽车离开乙时, 甲、乙两人之间的距离是多少?
(5-2.5) X (0.5 X 60+2)=80(M).
(6) 甲、乙两人相遇时间是多少?
80 - (2.5+2.5)=16(秒). 答:再过16秒钟以后,甲、乙两人相遇.
5. 从车头上桥到车尾离桥要4 分钟.
6. 队伍6分钟向前进80X 6=480M,队伍长1200M,6分钟前进了480M所以联络
员6分钟走的路程是:
1200-480=720(M)
720-6=120(M/分)
答:联络员每分钟行120M.
7. 火车的速度是每秒15M,车长70M.
8. 1034 - (20-18)=517(秒)
9. 火车速度是:1200 - 60=20(M/秒)火车全长是:20 X 15=300(M)
10. 40 X (51-1) -2X 60- 1000=60(千M/小时)
火车过桥问题(B卷:解答题)
解答题
1. 一个人站在铁道旁,听见行近来的火车鸣汽笛声后,再过57秒钟火车经过他面前.已知火车汽笛时离他1360M (轨道是笔直的)声速是每秒钟340M,求火车的速度?(得数保留整数)
2. 某人沿着铁路边的便道步行,一列客车从身后开来,在身旁通过的时间是15秒钟,客车长105M,每小时速度为28.8千M.求步行人每小时行多少千M?
3. 一人以每分钟60M的速度沿铁路边步行,一列长144M的客车对面而来,从他身边通过用了8秒钟,求列车的速度.
4. 一条单线铁路上有A, B, C, D, E 5个车站,它们之间的路程如图所示(单位: 千M).两列火车同时从A, E两站相对开出,从A站开出的每小时行60千M,从E 站开出的每小时行50千M.由于单线铁路上只有车站才铺有停车的轨道,要使对面开来的列车通过,必须在车站停车,才能让开行车轨道.因此,应安排哪个站相遇,才能使停车等候的时间最短.先到这一站的那一列火车至少需要停车多少分
钟?
225 千M 25千M 15千M 230 千M
BCD
答案
1. 火车拉汽笛时离这个人1360M.因为声速每秒种340M所以这个人听见汽笛声时,经过了(1360 - 340=)4秒.可见火车行1360M用了(57+4=)61秒,将距离除以时间可求出火车的速度.
1360 - (57+1360 - 340)=1360 - 61 〜22(M)
2. 火车=28.8 X 1000十3600=8(M/秒)
人步行15秒的距离二车行15秒的距离-车身长.
(8 X 15-105)- 15=1(M/秒)
1 X 60X 60=3600(M/小时)=3.6(千M/小时)
答:人步行每小时3.6千M.
3. 人8秒走的距离=车身长-车8秒走的距离
(144-60 - 60 X 8)- 8=17(M/秒)
答:列车速度是每秒17M.
4. 两列火车同时从A,E两站相对开出,假设途中都不停.可求出两车相遇的地点,从而知道应在哪一个车站停车等待时间最短.
从图中可知,AE的距离是:225+25+15+230=495(千M)
两车相遇所用的时间是:495 - (60+50)=4.5(小时)
相遇处距A站的距离是:60 X 4.5=270(千M)
而A,D两站的距离为:225+25+15=265(千M)
由于270千M>265千M,因此从A站开出的火车应安排在D站相遇,才能使停车等待的时间最短.
因为相遇处离D站距离为270-265=5(千M),那么,先到达D站的火车至少需要等待:5亠60 • 5亠50 = 11(小时)
60
11
一小时=11分钟
60
此题还有别的解法,同学们自己去想一想.。