九年级数学第21、22、23综合考试试卷

合集下载

24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

24-25九年级数学第一次月考卷(考试版A4)【人教版九年级上册第二十一章~第二十二章】(贵州专用)

2024-2025学年九年级数学上学期第一次月考卷(贵州专用)(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:人教版九年级上册第二十一章~第二十二章。

5.难度系数:0.8。

第一部分(选择题共36分)一、选择题:本题共12小题,每小题3分,共36分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.若关于x的方程(m﹣2)x2+mx﹣1=0是一元二次方程,则m的取值范围是( )A.m≠2B.m=2C.m≥2D.m≠02.将抛物线y=x2+2x﹣1向右平移3个单位后得到新抛物线的顶点坐标为( )A.(﹣4,﹣1)B.(﹣4)C.(2,1)D.(2,﹣2)3.若一元二次方程ax2+bx+c=0(a≠0)的一个根是x=1,则a+b+c的值是( )A.0B.﹣1C.1D.不能确定4.延时课上,4个同学以接龙的方式解一元二次方程,每人负责完成一个步骤,如图所示,其中有一位同学所负责的步骤是错误的,则这位同学是( )A.小张B.小王C.小李D.小赵5.关于x的一元二次方程x2+bx﹣8=0的根的情况,下列判断正确的是( )A.只有一个实数根B.没有实数根C.有两个相等的实数根D.有两个不相等的实数根6.已知a,b,c为实数,且b+c=5﹣4a+3a2,c﹣b=1﹣2a+a2,则a,b,c之间的大小关系是( )A.a<b≤c B.b<a≤c C.b≤c<a D.c<a≤b7.新能源汽车销量的快速增长,促进了汽车企业持续的研发投入和技术创新.某上市公司今年1月份一品牌的新能源车单台的生产成本是13万元,由于技术改进和产能增长,生产成本逐月下降,3月份的生产成本为12.8万元.假设该公司今年一季度每个月生产成本的下降率都相同,设每个月生产成本的下降率为x,则根据题意所列方程正确的是( )A.13(1﹣x)2=12.8B.13(1﹣x2)=12.8C.12.8(1﹣x2)=13D.13(1+x)2=12.88.一次函数y=ax+b与二次函数y=ax2+bx在同一坐标系中的图象大致为( )A.B.C.D.9.已知抛物线y=ax2﹣2ax+b(a<0)的图象上三个点的坐标分别为A(3,y1),,C,则y1,y2,y3的大小关系为( )A.y3<y1<y2B.y2<y1<y3C.y1<y3<y2D.y1<y2<y310.点A(a,b1),B(a+2,b2)在函数y=﹣x2+2x+3的图象上,当a≤x≤a+2时,函数的最大值为4,最小值为b1,则a的取值范围是( )A.0≤a≤2B.﹣1≤a≤2C.﹣1≤a≤1D.﹣1≤a≤011.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列4个结论:①abc>0;②b<a+c;③4a+2b+c >0;④b2﹣4ac>0;其中正确的结论有( )A.1个B.2个C.3个D.4个12.如图所示,在菱形ABCD中,AB=6,∠BAD=120°,△AEF为正三角形,点E、F分别在菱形的边BC.CD上滑动,且E、F不与B.C、D重合.当点E、F在BC、CD上滑动时,△CEF的面积最大值是( )A.4B.C.3D.第二部分(非选择题共114分)二、填空题:本题共4小题,每小题4分,共16分。

华师大版初中数学九上第23章综合测试试题试卷含答案1

华师大版初中数学九上第23章综合测试试题试卷含答案1

第23章综合测试一、选择题(共10小题)1.点()4,3P --所在的象限是()A .第一象限B .第二象限C .第三象限D .第四象限2.如图,矩形ABCD 的两边BC 、CD 分别在x 轴、y 轴上,点C 与原点重合,点2()1,A -,将矩形ABCD 沿x 轴向右翻滚,经过一次翻滚点A 对应点记为1A ,经过第二次翻滚点A 对应点记为2A …依此类推,经过5次翻滚后点A 对应点5A 的坐标为()A .(5,2)B .(6,0)C .(8,0)D .(8,1)3.如图是在方格纸上画出的小旗图案,若用(0,0)表示A 点,(0,4)表示B 点,那么C 点的位置可表示为()A .(0,3)B .(2,3)C .(3,2)D .(3,0)4.一个平行四边形三个顶点的坐标分别是(0,0),(2,0),(1,2),第四个顶点在x 轴下方,则第四个顶点的坐标为()A .(1,2)--B .(1,)2-C .(3,2)D .()1,2-5.如图,已知AD 是ABC △的中线,AE EF FC ==,下面给出三个关系式:①:1:2AG AD =;②:1:3GE BE =;③:4:3BE BG =,其中正确的是()A .①②③B .①②C .②③D .①③6.如图,在ABC △中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC ⊥于H ,16FD =,则HE 等于()A .32B .16C .8D .107.如图,在Rt ABC △中,90B ∠=︒,6AB =,8BC =,点D 在BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是()A .10B .8C .6D .58.如图:已知10AB =,点C 、D 在线段AB 上且2AC DB ==;P 是线段CD 上的动点,分别以AP 、PB 为边在线段AB 的同侧作等边AEP 和等边PFB ,连接EF ,设EF 的中点为G ;当点P 从点C 运动到点D 时,则点G 移动路径的长是()A .5B .4C .3D .09.点5(2,)P -关于y 轴的对称点的坐标是()A .()2,5-B .(2,5)C .()5,2-D .(2,5)--10.将点1(1,)A -向上平移2个单位后,再向左平移3个单位,得到点B ,则点B 的坐标为()A .()2,1-B .(2,1)--C .(2,1)D .(2,)1-二、填空题(共8小题)11.点()2,3-=________;49的平方根为________.12.如图,动点P 在平面直角坐标系中按图中箭头所示方向运动,第1次从原点运动到点(1,1),第2次接着运动(2,0),第3次接着运动到点(3,2),…,按这样的运动规律,经过第2018次运动后,动点P 的坐标是________.13.如图是一个围棋棋盘的局部,若把这个围棋棋盘放置在一个平面直角坐标系中,白棋①的坐标是(2,2)--,白棋③的坐标是(1,4)--,则黑棋②的坐标是________.14.如图,在ABC △中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上一点,1CF =,DF 交CE 于点G ,且EG CG =,则BC =________.15.直角ABC △中,90BAC ∠=︒,D 、E 、F 分别为AB 、BC 、AC 的中点,已知3DF =,则AE =________.16.如图,ABC △中,D 、E 分别是BC 、AC 的中点,BF 平分ABC ∠,交DE 于点F ,若10AB =,8BC =,则EF 的长是________.17.若点,(3)2P a +与点1,1()Q b -+关于y 轴对称,则a b +=________.18.点4()1,A -向右平移2个单位后,再向上平移1个单位,得1A ,则1A 点的坐标为________.三、解答题(共8小题)19.已知平面直角坐标系中有一点1,23()M m m -+.(1)当m 为何值时,点M 到x 轴的距离为1?(2)当m 为何值时,点M 到y 轴的距离为2?20.如图所示,在直角坐标系中,第一次将OAB △变换成11OA B △,第二次将11OA B △变换成22OA B △,第三次将22OA B △变换成33OA B △,已知()1,3A ,1()2,3A ,2()4,3A ,3()8,3A ,()2,0B ,1()4,0B ,2()8,0B ,3()16,0B .(1)观察每次变换前后的三角形有何变化,找出规律,按此变换规律将44OA B △变换成55OA B △,则5A 的坐标是________,5B 的坐标是________.(2)若按第(1)题的规律将OAB △进行了n 次变换,得到n n OA B △,比较每次变换中三角形顶点坐标有何变化,找出规律,请推测n A 的坐标是________,n B 的坐标是________.21.如图是某个海岛的平面示意图,如果哨所1的坐标是(1,3),哨所2的坐标是()2,0-,请你先建立平面直角坐标系,并用坐标表示出小广场、雷达、营房、码头的位置.22.如图所示,在ABC △中,点D 在BC 上且CD CA =,CF 平分ACB ∠,AE EB =,求证:12EF BD =.23.如图,在ABC △中,BC AC >,点D 在BC 上,且DC AC =.(1)利用直尺与圆规先作ACB ∠的平分线,交AD 于F 点,再作线段AB 的垂直平分线,交AB 于点E ,最后连接EF .(2)若线段BD 的长为6,求线段EF 的长.24.如图:E 在线段CD 上,EA 、EB 分别平分DAB ∠和CBA ∠,90AEB ∠=︒,设AD x =,BC y =,且2()340x y -+-=.(1)求AD 和BC 的长;(2)你认为AD 和BC 还有什么关系?并验证你的结论;(3)你能求出AB 的长度吗?若能,请写出推理过程;若不能,请说明理由.25.如图,在平面直角坐标系中,函数y x =的图象l 是第一、三象限的角平分线.实验与探究:由图观察易知()0,2A 关于直线l 的对称点A '的坐标为(2,0),请在图中分别标明()5,3B 、5()2,C -关于直线l 的对称点B '、C '的位置,并写出它们的坐标:B '________、C '________;归纳与发现:结合图形观察以上三组点的坐标,你会发现:坐标平面内任一点,()P m n 关于第一、三象限的角平分线L 的对称点P '的坐标为________.26.如图所示,在平面内有四个点,它们的坐标分别是0()1,A -,(2B +,()2,1C ,()0,1D .(1)依次连结A 、B 、C 、D ,围成的四边形是一个________形;(2)求这个四边形的面积;(3第23章综合测试答案解析一、1.【答案】C【解析】应先判断出所求的点的横纵坐标的符号,进而判断点所在的象限.解:因为点()4,3P --所横纵坐标分别为(负,负),符合在第三象限的条件.故选:C .2.【答案】D【解析】根据题意可以画出相应的图形,然后观察图形即可得到经过5次翻滚后点A 对应点A 5的坐标,从而解答本题.解:如下图所示:由题意可得上图,经过5次翻滚后点A 对应点5A 的坐标对应上图中的坐标,故5A 的坐标为:(8,1).故选项A 错误,选项B 错误,选项C 错误,选项D 正确.故选:D .3.【答案】C【解析】根据已知两点坐标建立坐标系,然后确定其它点的坐标.解:用(0,0)表示A 点,(0,4)表示B 点,则以点A 为坐标原点,AB 所在直线为y 轴,向上为正方向,x 轴是过A 点的水平直线,向右为正方向.所以点C 的坐标为(3,2).故选:C .4.【答案】B【解析】根据点在坐标可知,过(0,0),(2,0)的直线平行与x 轴且距离为2,第四个顶点在x 轴下方,所以平行四边形的对角线互相垂直平分,即第四个顶点的坐标为(1,)2-.解:根据题意可作图(如图),点在坐标可知,因为()1,2B ,而第四个顶点在x 轴下方,所以平行四边形的对角线互相垂直平分,即B 点、D 点关于x 轴对称,点D 的坐标为(1,)2-,故选B .5.【答案】D【解析】根据已知对各个关系式进行分析,从而得到正确的选项.解:AD 是ABC △的中线,BD DC ∴=,EF FC = ,DF ∴为CBE △的中位线,DF BE ∴∥,CDF CBE ∴△∽△,AGE ADF △∽△,::1:2GE DF AG AD ∴==,:1:2DF BE =,:1:4GE BE ∴=,:4:3BE BG ∴=,∴①③正确故选:D .6.【答案】B【解析】根据三角形中位线定理求出AC ,根据直角三角形的性质计算即可.解:D ,F 分别为BC ,AB 边的中点,232AC DF ∴==,AH BC ⊥ ,90AHC ∴∠=︒,又E 为AC 边的中点,1162HE AC ∴==.故选:B .7.【答案】C【解析】平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD BC ⊥时,OD 最小,即DE 最小,根据三角形中位线定理即可求解.解:平行四边形ADCE 的对角线的交点是AC 的中点O ,当OD BC ⊥时,OD 最小,即DE 最小.OD BC ⊥ ,BC AB ⊥,OD AB ∴∥,又OC OA = ,OD ∴是ABC △的中位线,132OD AB ∴==,26DE OD ∴==.故选:C .8.【答案】C【解析】分别延长AE 、BF 交于点H ,易证四边形EPFH 为平行四边形,得出G 为PH 中点,则G 的运行轨迹为三角形HCD 的中位线MN .再求出CD 的长,运用中位线的性质求出MN 的长度即可.解:如图,分别延长AE 、BF 交于点H .60A FPB ∠=∠=︒ ,AH PF ∴∥,60B EPA ∠=∠=︒ ,BH PE ∴∥,∴四边形EPFH 为平行四边形,EF ∴与HP 互相平分.G 为EF 的中点,G ∴也正好为PH 中点,即在P 的运动过程中,G 始终为PH 的中点,所以G 的运行轨迹为三角形HCD 的中位线MN ,10226CD =--= ,3MN ∴=,即G 的移动路径长为3.故选:C .9.【答案】D【解析】熟悉:平面直角坐标系中任意一点,()P x y ,关于y 轴的对称点的坐标是()x y -,.解:点5(2)P -,关于y 轴的对称点的坐标是:(25)--,.故选:D .10.【答案】A【解析】让A 点的横坐标减3,纵坐标加2即为点B 的坐标.解:由题中平移规律可知:点B 的横坐标为132-=-;纵坐标为121-+=,∴点B 的坐标是(21)-,.故选:A .二、11.【答案】二0.1-23±【解析】根据第二象限内的点的横坐标小于零,纵坐标大于零,可得答案;根据开立方运算,可得答案;根据开平方运算,可得答案.解:点(23)-,在第0.1=-;的平方根为23±.故答案为:二,0.1-,23±.12.【答案】(2018)0,【解析】利用点的坐标变换得到点的横坐标与运动的次数相同,纵坐标为1,0,2,0循环,则利用201845042=⨯+可确定第2018次运动后的纵坐标,问题得解.解:点P 坐标运动规律可以看做每运动四次一个循环,每个循环向右移动4个单位,则201850442=⨯+,所以,前504次循环运动点P 共向右运动50442016⨯=个单位,剩余两次运动向右走2个单位,且在x 轴上,故点P 坐标为(2018)0,故答案为:(2018)0,.13.【答案】(1)3-,【解析】以白棋①向左2个单位,向下2个单位为坐标原点建立平面直角坐标系,然后写出黑棋②的坐标即可.解:建立平面直角坐标系如图,黑棋②的坐标是(1)3-,.故答案为:(1)3-,.14.【答案】2【解析】通过全等三角形DEG △和FCG △,可得出1CF DE ==;根据DE 是ABC △的中位线,可求出:1:2DE BC =.解:D 、E 分别是AB 和AC 的中点DE BC ∴∥,12DE BC =,ADE ABC ∴△∽△,GED GCF △≌△,1DE CF ∴==,12CF BC ∴=,2BC ∴=.故答案为2.15.【答案】3【解析】由三角形中位线定理得到12DF BC =;然后根据直角三角形斜边上的中线等于斜边的一半得到12AE BC =,则DF AE =.解:如图, 在直角ABC △中,90BAC ∠=︒,D 、F 分别为AB 、AC 的中点,DF ∴是ABC △的中位线,12DF BC ∴=,又 点E 是直角ABC △斜边BC 的中点,12AE BC ∴=,3DF = ,DF AE ∴=.故填:3.16.【答案】1【解析】根据三角形中位线定理求出DE 、DE AB ∥,根据平行线的性质、角平分线的定义得到4DF DB ==,计算即可.解:D 、E 分别是BC 、AC 的中点,152DE AB ∴==,DE AB ∥,142BD BC ==,ABF DFB ∴∠=∠,BF 平分ABC ∠,ABF DBF ∴∠=∠,DBF DFB ∴∠=∠,4DF DB ∴==,1EF DE DF ∴=-=.故答案为:1.17.【答案】1【解析】根据“关于y 轴对称的点,纵坐标相同,横坐标互为相反数”列方程求出a 、b ,然后相加计算即可得解.解: 点2()3P a +,与点()11Q b -+,关于y 轴对称,21a ∴+=,13b +=,解得1a =-,2b =,所以1)21(a b +=-+=.故答案为:1.18.【答案】(1)5,【解析】根据横坐标,右移加,左移减;纵坐标,上移加,下移减进行计算.解:点()14A -,向右平移2个单位后,再向上平移1个单位,得1A ,则1A 点的坐标为12,1()4-++,即(1)5,.故答案为:(1)5,.三、19.【答案】解:(1)||231m += ,231m +=或231m +=-,1m ∴=-或2m =-;(2)2|1|m -= 12m -=或12m -=-,3m ∴=或1m =-.【解析】(1)让纵坐标的绝对值为1列式求值即可;(2)让横坐标的绝对值为2列式求值即可.20.【答案】(1)(32,3)(64,0)(2)(2),3n 1(20),n +【解析】(1)对于1A ,2A ,n A 坐标找规律可将其写成竖列,比较从而发现n A 的横坐标为2n ,而纵坐标都是3,同理1B ,2B ,n B 也一样找规律.解:因为()1,3A ,1()2,3A ,2()4,3A ,3()8,3A …纵坐标不变为3,同时横坐标都和2有关,为2n ,那么5()32,3A ;因为()2,0B ,1()4,0B ,2()8,0B ,3()16,0B …纵坐标不变,为0,同时横坐标都和2有关为12n +,那么B 的坐标为5()64,0B ;故答案为:(32,3),(64,0);(2)根据第一问得出总结规律即可知A 的坐标是(2),3n ,B 的坐标是1(20),n +.解:由上题第一问规律可知n A 的纵坐标总为3,横坐标为2n ,n B 的纵坐标总为0,横坐标为12n +,n A ∴的坐标是(2),3n ,n B 的坐标是1(20),n +.故答案为:(2),3n ,1(20),n +.21.【答案】解:建立如图所示的平面直角坐标系:小广场(0,0)、雷达(4,0)、营房(2,)3-、码头(1,2)--.【解析】建立直角坐标系的关键是确定原点,x 轴和y 轴,确定单位长度即可得出答案.22.【答案】证明:CD CA = ,CF 平分ACB ∠,F ∴是AD 中点,AE EB = ,E ∴是AB 中点,EF ∴是ABD △的中位线,12EF BD ∴=.【解析】首先根据等腰三角形的性质可得F 是AD 中点,再根据三角形的中位线定理可得12EF BD =.23.【答案】解:(1)所作图形如下:(2)CF 平分ACB ∠,ACF BCF ∴∠=∠,又DC AC = ,CF ∴是ACD △的中线∴点F 是AD 的中点点E 是AB 的垂直平分线与AB 的交点∴点E 是AB 的中点EF ∴是ABD △中位线132EF BD ∴==.【解析】(1)用圆规在角的两边上分别截取相等的线段,以交点为圆心,大于两交点之间的距离的一半为半径画弧交于一点,连接顶点及交点即可得到角的平分线.(2)连接CE ,根据三角形中位线定理及角平分线的性质可以判定EF 是三角形的中位线,从而求出中位线的长.24.【答案】解:(1)AD x = ,BC y =,且2()340x y -+-=,3AD ∴=,4BC =.(2)AD BC ∥,理由是: 在AEB △中,90AEB ∠=︒,90EAB EBA ∴∠+∠=︒,又EA 、EB 分别平分DAB ∠和CBA ∠,180DAB ABC ∴∠+∠=︒.AD BC ∴∥.(3)能.如图,过E 作EF AD ∥,交AB 于F ,AD BC ∥(已证),EF AD ∥,AD EF BC ∴∥∥,则DAE AEF ∠=∠,EBC BEF ∠=∠,EA 、EB 分别平分DAB ∠和CBA ∠,EAF AEF ∴∠=∠,EBF BEF ∠=∠,AF EF FB ∴==,又EF AD BC ∥∥,EF ∴是梯形ABCD 的中位线,722AD BC EF +∴==,7AB ∴=.【解析】(1)根据题意可知30x -=,40y -=,易求解AD 和BC 的长;(2)根据90AEB ∠=︒,可得90EAB EBA ∠+∠=︒,因为EA 、EB 分别平分DAB ∠和CBA ∠,则180DAB ABC ∠+∠=︒,所以AD BC ∥;(3)如图,过E 作EF AD ∥,交AB 于F ,则DAE AEF ∠=∠,EBC BEF ∠=∠,因为EA 、EB 分别平分DAB ∠和CBA ∠,所以AF EF FB ==,再根据梯形中位线定理易求AB 的长.25.【答案】5()3,B ')2(5,C '-(),n m 【解析】根据平面直角坐标系内关于y x =对称的点的坐标的特点,横坐标变为纵坐标,纵坐标变为横坐标,即可得出答案.实验与探究:如图:5()3,B ',)2(5,C '-,归纳与发现:结合图形观察以上三组点的坐标可知坐标平面内任一点,()P m n 关于第一、三象限的角平分线L 的对称点P '的坐标为(),n m .26.【答案】(1)梯(2)),(10A - ,(2B +,()2,1C ,()0,1D ,3AB ∴=,2CD =,∴四边形ABCD 的面积1153()(32)1222AB CD OD =+⋅=+⨯=;(3)'(1A --,'(2,0)B ,'(2C ,'(D .【解析】(1)顺次连接AB 、BC 、CD 、DA ,结合图形可得四边形BCD 是梯形;解:如图所示;依次连结A 、B 、C 、D ,围成的四边形是一个梯形.故答案为梯;(2)求出AB 和CD 的长,根据梯形的面积计算公式求解即可;(3)将四边形各顶点的横坐标减去。

沪科版 九年级上册 数学第21 22章测试卷(word版)

沪科版 九年级上册 数学第21 22章测试卷(word版)

学校 姓名 成绩九年级数学第21 22章测试卷(本卷共八大题23小题,考试时间120分钟,满分150分)一、选择题(本大题共10小题,每小题4分,满分40分)1.若x∶y =1∶3,2y =3z ,则 2x +yz -y 的值是( )A .-5B .-10 3 C . 103D .5 2.若二次函数y =x 2+4x -1配方后为y =(x +h )2+k ,则h 、k 的值分别为( ) A .2,5 B .4,-5 C .2,-5 D .-2,-5 3.二次函数y =x 2+2x -5有( )A .最大值-5B .最小值-5C .最大值-6D .最小值-6 4.如图,已知点C 是线段AB 的黄金分割点,且BC >AC .若S 1表示以BC 为边的正方形面积,S 2表示长为AB 、宽为AC 的矩形面积,则S 1与S 2的大小关系为( ) A .S 1>S 2 B .S 1=S 2 C .S 1<S 2 D .不能确定 5.如图,已知直线y =-2x +4与x 轴、y 轴分别相交于A 、B 两点,C 为OB 上一点,且∠1=∠2,则S △ABC =( )A .1B .2C .3D .46.如图,在△ABC 中,A 、B 两个顶点在x 轴的上方,点C 的坐标是(-1,0).以点C 为位似中心,在x 轴的下方作△ABC 的位似图形△A 1B 1C ,并把△ABC 的边长放大到原来的2倍.设点B 的对应点B 1的横坐标是a ,则点B 的横坐标是( )A .- 1 2(a -1)B .- 1 2aC .- 1 2(a +1)D .- 12(a +3)7.若当x >1时二次函数y =-x 2+2bx +c 的值随x 值的增大而减小,则b 的取值范围是( ) A .b ≥-1 B .b ≤-1 C .b ≥1 D .b ≤18.如图,AB =4,射线BM 和AB 互相垂直,点D 是AB 上的一个动点,点E 在射线BM 上,BD =2BE ,作EF ⊥DE 并截取EF =DE ,连接AF 并延长交射线BM 于点C .设BE =x ,BC =y ,则y 关于x 的函数解析式是( )A .y =- 12x x -4B .y =- 2x x -1C .y =- 3x x -1D .y =- 8xx -49.如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反比例函数y = kx (k >0,x >0)的图象过点A (m ,2)和CD 边上的点E (n , 23),过点E 的直线l 交x 轴于点F ,交y 轴于点G (0,-2),则点F 的坐标是( )A .( 5 4,0)B .( 7 4,0)C .( 9 4,0)D .( 114,0)第9题图GOyB F CADExABCDEF PBEC MFDA 第8题图第10题图y B12AC OxCA yx BA 1B 1 O CABS 2 S 1第4题图第5题图第6题图10.如图,点P 是菱形ABCD 的对角线AC 上的一个动点,过点P 垂直于AC 的直线交菱形ABCD的边于E 、F 两点.设AC =2,BD =1,AP =x ,△AEF 的面积为y ,则y 关于x 的函数图象大致形状是( )二、填空题(本大题共4小题,每小题5分,满分20分)11.如图,AB ∥DE ,若AC =4,BC =2,DC =1,则EC =____________.12.若抛物线y =ax 2+bx +c 经过点(-3,0)且对称轴是直线x =-1,则a +b +c= .13.如图,一次函数y 1=ax +b 与反比例函数y 2= kx的图象交于A (1,4)、B (4,1)两点.若使y 1>y 2,则x 的取值范围是 .14.如图,在平面直角坐标系xOy 中,已知直线l :y =-x -1,双曲线y = 1x.在l 上取点A 1,过点A 1作x 轴的垂线交双曲线于点B 1,过点B 1作y 轴的垂线交l 于点A 2,请继续操作并探究:过点A 2作x 轴的垂线交双曲线于点B 2,过点B 2作y 轴的垂线交l 于点A 3,…,这样依次得到l 上的点A 1,A 2,A 3,…,A n ,….记点A n 的横坐标为a n ,若a 1=2,则a 2014= .三、(本大题共2小题,每小题8分,满分16分)15.如图,在边长为1个单位长度的小正方形组成的网格中,给出了格点△ABC (注:网格线的交点称为格点).(1)将△ABC 向上平移3个单位得到△A 1B 1C 1,请画出△A 1B 1C 1;(2)请画出一个格点△A 2B 2C 2,使△A 2B 2C 2∽△ABC ,且相似比不为1.16.已知反比例函数y = kx的图象与二次函数y =ax 2+x -1的图象相交于点(2,2).(1)求a 和k 的值;OOOOxx x x y y y y 1 2 1 2 1 2 1 2 A .B .C .D . y第14题图第13题图xOABOyA 1B 1A 2l xAB C第15题图(2)判断反比例函数的图象是否经过二次函数图象的顶点并说明理由.四、(本大题共2小题,每小题8分,满分16分)17.如图,抛物线y =-x 2+2x +c与x 轴交于点A (-1,0)、B ,对称轴与x 轴交于点D ,过顶点C 作CE ⊥y 轴于点E ,连接BE 交CD 于点F . (1)求该抛物线的解析式及顶点C 的坐标;(2)求△CEF 与△DBF 的面积之比.18.如图,在□ABCD 中,E 、F 分别是边BC 、CD 上的点,且EF ∥BD ,AE 、AF 分别交BD于点G 和点H .已知BD =12,EF =8,求:(1)DFAB的值;(2)线段GH 的长.ABC DEF第17题图y x第18题图ABC D E F GH五、(本大题共2小题,每小题10分,满分20分)19.反比例函数y=kx 在第一象限的图象如图所示,过点A(1,0)作x轴的垂线,交反比例函数y=kx的图象于点M,△AOM的面积为3.(1)求反比例函数的解析式;(2)设点B的坐标为(t,0),其中t>1.若以AB为一边的正方形有一个顶点在反比例函数y=kx的图象上,求t的值.20.某商店经过市场调查,整理出某种商品在第x(1≤x≤90)天的售价与销量的相关信息如下表:时间x(天)1≤x<50 50≤x≤90售价(元/件)x+40 90每天销量(件)200-2x已知该商品的进价为每件30元,设销售该商品的每天利润为y元.(1)求出y与x的函数关系式;(2)问销售该商品第几天时,当天销售利润最大,最大利润是多少?AO xMy第19题图y /℃1000六、(本题满分12分)21.(12分)如图,△ABC 和△CEF 均为等腰直角三角形,E 在△ABC 内,∠CAE +∠CBE=90°,连接BF .(1)求证:△CAE ∽△CBF . (2)若BE=1,AE=2,求CE 的长.七、(本题满分12分)22.某研究所将一种材料加热到1000℃时停止加热,并立即将材料分为A 、B 两组,采用不同工艺做降温对比实验,设降温开始后经过x min 时,A 、B 两组材料的温度分别为y A ℃、y B ℃,y A 、y B 与x 的函数关系式分别为y A =kx +b 、y B = 14(x -60)2+m (部分图象如图所示),当x =40时,两组材料的温度相同.(1)分别求y A 、y B 关于x 的函数关系式;(2)当A 组材料的温度降至120℃时,B 组材料的温度是多少? (3)在0<x <40的什么时刻,两组材料温差最大?八、(本题满分14分)23.(14分)(2016•南宁)如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x ﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.1~5:ACDBC 6~10:DDACC11.2 12.0 13.x<0或1<x<4 14.215.解:如图(注:相似三角形的画法不唯一).…每画对一个得4分.16.解:(1)∵函数y=ax2+x-1与y=kx的图象交于点(2,2),∴2=4a+2-1,2=k2.∴a=14,k=4.………3分(2)反比例函数的图象经过二次函数图象的顶点.………4分由(1)知,二次函数和反比例函数分别是y=14x2+x-1和y=4x.∵y=14x2+x-1=14(x+2)2-2,∴二次函数图象的顶点是(-2,-2).………6分在反比例函数中,当x=-2时,y=4-2=-2,∴反比例函数的图象过二次函数图象的顶点.………8分17.解:(1)根据题意,得-(-1)2+2×(-1)+c=0,即c=3.∴y=-x2+2x+3.∵y=-x2+2x+3=-(x-1)2+4,∴顶点C(1,4).………4分(2)∵A(-1,0),抛物线的对称轴为直线x=1,∴点B(3,0).∴CE=1,BD=2.∵CE∥BD,∴△CEF∽△BDF.∴S△CEF∶S△BDF=(CE∶BD)2=(1∶2)2=1∶4.………8分18.解:(1)∵EF∥BD,∴CFCD=EFBD.………2分∵BD=12,EF=8,∴CFCD=23,DFCD=13.………3分∵四边形ABCD是平行四边形,∴AB=CD.∴DFAB=13.………4分(2)∵DF∥AB,∴FHAH=DFAB=13,AHAF=34.………6分∵EF∥BD,∴GHEF=AHAF=34,GH=34EF=6.………8分19.解:(1)设点M的坐标为(m,n)(其中m、n>0),则k=mn,S△AOM=12mn=12k=3.∴k=6,反比例函数解析式为y=6x.………3分(2)若以AB为一边的正方形ABCD的顶点D在反比例函y=6x的图象上,则D点与M点重合,即AB=AM.把x=1代入y=6x,得y=6.ABCA1A2C2C1B1B2∴点M 坐标为(1,6). ∴AB =AM =6.∴t =1+6=7.………6分若以AB 为一边的正方形ABCD 的顶点C 在反比例函数y = 6x的图象上,则AB =BC =t -1,点C 坐标为(t ,t -1).∴t (t -1)=6,解得 t 1=3,t 2=-2(舍去).………9分 ∴t 的值为3或7.………10分20.解:(1)当1≤x <50时,y =(200-2x )(x +40-30)=-2x 2+180x +2000;当50≤x ≤90时,y =(200-2x )(90-30)=-120x +12000.∴y =⎩⎨⎧-2x 2+180x +2000(1≤x <50),-120x +12000(50≤x ≤90).………5分(2)当1≤x <50时,二次函数的图象开口下、对称轴为x =45, ∴当x =45时,y 最大=-2×452+180×45+2000=6050; 当50≤x ≤90时,一次函数y 随x 的增大而减小, ∴当x =50时,y 最大=6000.………9分∴综上所述,该商品第45天时,当天销售利润最大,最大利润是6050元. (10)分21.【解答】(1)证明:∵△ABC 和△CEF 均为等腰直角三角形, ∴==,∴∠ACB=∠ECF=45°, ∴∠ACE=∠BCF , ∴△CAE ∽△CBF ;(2)解:∵△CAE ∽△CBF , ∴∠CAE=∠CBF ,==,又∵==,AE=2∴=,∴BF=,又∵∠CAE +∠CBE=90°, ∴∠CBF +∠CBE=90°,∴∠EBF=90°, ∴EF 2=BE 2+BF 2=12+()2=3,∴EF=,∵CE 2=2EF 2=6, ∴CE=. 22.解:(1)∵抛物线y B = 14(x -60)2+m 经过点(0,1000),∴1000= 1 4(0-60)2+m ,解得 m =100. ∴y B = 14(x -60)2+100.………2分当x =40时,y B = 14×(40-60)2+100,解得 y B =200.∵直线y A =k x +b ,经过点(0,1000)与(40,200),则⎩⎨⎧b =1000,40k +b =200,解得 ⎩⎨⎧b =1000,k =-20.∴y A =-20x +1000.………5分 (2)当A 组材料的温度降至120℃时,有 120=-20x +1000,解得 x =44.当x =44,y B = 14(44-60)2+100=164(℃),即B 组材料的温度是164℃.…8分(3)当0<x <40时,y A -y B =-20x +1000- 1 4(x -60)2-100=- 1 4x 2+10x =- 14(x -20)2+100.23.【解答】解:(1)∵顶点坐标为(1,1),∴设抛物线解析式为y=a (x ﹣1)2+1,又抛物线过原点,∴0=a (0﹣1)2+1,解得a=﹣1,∴抛物线解析式为y=﹣(x ﹣1)2+1,即y=﹣x 2+2x ,联立抛物线和直线解析式可得,解得或,∴B (2,0),C (﹣1,﹣3);(2)如图,分别过A 、C 两点作x 轴的垂线,交x 轴于点D 、E 两点,则AD=OD=BD=1,BE=OB +OE=2+1=3,EC=3,∴∠ABO=∠CBO=45°,即∠ABC=90°,∴△ABC 是直角三角形;(3)假设存在满足条件的点N ,设N (x ,0),则M (x ,﹣x 2+2x ),∴ON=|x |,MN=|﹣x 2+2x |,由(2)在Rt △ABD 和Rt △CEB 中,可分别求得AB=,BC=3,∵MN ⊥x 轴于点N∴∠ABC=∠MNO=90°,∴当△ABC和△MNO相似时有=或=,①当=时,则有=,即|x||﹣x+2|=|x|,∵当x=0时M、O、N不能构成三角形,∴x≠0,∴|﹣x+2|=,即﹣x+2=±,解得x=或x=,此时N点坐标为(,0)或(,0);②当=时,则有=,即|x||﹣x+2|=3|x|,∴|﹣x+2|=3,即﹣x+2=±3,解得x=5或x=﹣1,此时N点坐标为(﹣1,0)或(5,0),综上可知存在满足条件的N点,其坐标为(,0)或(,0)或(﹣1,0)或(5,0).。

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)

九年级数学第一学期期末考试综合复习测试题(含答案)一.选择题(共10小题,每小题3分,共30分) 1.2022的相反数是( )A .2022B .2022-C .12022D .2022± 2.若代数式3125m x y -与822m nx y +-是同类项,则( )A .73m =,83n =-B .3m =,4n =C .73m =,4n =- D .3m =,4n =-3.下列四组线段中,能组成直角三角形的是( ) A .1a =,3b =,3c = B .2a =,3b =,4c = C .2a =,4b =,5c =D .3a =,4b =,5c = 4.如图所示,直线//a b ,231∠=︒,28A ∠=︒,则1(∠= )A .61︒B .60︒C .59︒D .58︒5.下列关于事件发生可能性的表述,正确的是( )A .“在地面向上抛石子后落在地上”是随机事件B .掷两枚硬币,朝上面是一正面一反面的概率为13C .在同批次10000件产品中抽取100件发现有5件次品,则这批产品中大约有500件左右的次品D .彩票的中奖率为10%,则买100张彩票必有10张中奖6.某校10名学生参加课外实践活动的时间分别为:3,3,6,4,3,7,5,7,4,9(单位:小时),这组数据的众数和中位数分别为( ) A .9和7 B .3和3 C .3和4.5 D .3和5 7.一个正多边形的每一个内角都是150︒,则它的边数为( ) A .6 B .9 C .12 D .158.若不等式组841x x x m +<-⎧⎨>⎩的解集是3x >,则m 的取值范围是( )A .3m <B .3mC .3m >D .3m9.已知关于x 的一元二次方程22(21)0x m x m --+=有实数根,则m 的取值范围是( ) A .14m 且0m ≠ B .14m C .14m < D .14m >10.如图1,一个扇形纸片的圆心角为90︒,半径为6.如图2,将这张扇形纸片折叠,使点A 与点O 恰好重合,折痕为CD ,图中阴影为重合部分,则阴影部分的面积为( )A .9632π-B .693π-C .91232π-D .94π二.填空题(共5小题,每小题3分,共15分) 11.将数据2022万用科学记数法表示为 .12.已知当3x =时,代数式35ax bx +-的值为20,则当3x =-时,代数式35ax bx +-的值是 .13.将抛物线229y x x =-+-向左平移2个单位,再向上平移1个单位后,得到的抛物线的解析式为 .14.已知ABC ∆中,点O 是ABC ∆的外心,140BOC ∠=︒,那么BAC ∠的度数为 .15.如图,在正方形ABCD 中,顶点(5,0)A -,(5,10)C ,点F 是BC 的中点,CD 与y 轴交于点E ,AF 与BE 交于点G ,将正方形ABCD 绕点O 顺时针旋转,每次旋转90︒,则第2023次旋转结束时,点G 的坐标为 .三.解答题(一)(共3小题,每小题8分,共24分) 16.计算(1)2()(2)x y x y x +--;(2)2219(1)244a a a a --÷--+.17.如图,90ACB ∠=︒,AC AD =.(1)过点D 作AB 的垂线DE 交BC 与点E ,连接AE .(尺规作图,并保留作图痕迹) (2)如果8BD =,10BE =,求BC 的长.18.如图,在四边形ABCD 中,AC 与BD 交于点O ,BE AC ⊥,DF AC ⊥,垂足分别为点E ,F ,且BE DF =,ABD BDC ∠=∠.求证:四边形ABCD 是平行四边形.四.解答题(二)(共3小题,每小题9分,共27分) 19.阳光中学为了丰富学生的课余生活,计划购买围棋和中国象棋供棋类兴趣小组活动使用,若购买3副围棋和5副中国象棋需要98元;若购买1副围棋和2副中国象棋需要36元.(1)求每副围棋和每副中国象棋各多少元;(2)阳光中学决定购买围棋和中国象棋共40副,总费用不超过538元,且围棋的副数不低于象棋的副数,问阳光中学有几种购买方案;(3)请求出最省钱的方案需要多少钱?20.我市某中学举行“中国梦⋅我的梦”的演讲比赛,赛后整理参赛学生的成绩,将学生的成绩分为A,B,C,D四个等级,并将结果绘制成如图所示的条形统计图和扇形统计图,但均不完整,请你根据统计图解答下列问题.(1)参加比赛的学生人数共有名,在扇形统计图中,表示“D等级”的扇形的圆心角为度,图中m的值为;(2)补全条形统计图;(3)组委会决定从本次比赛中获得A等级的学生中,选出两名去参加市中学生演讲比赛,已知A等级中男生只有1名,请用画树状图或列表的方法求出所选学生恰是一男一女的概率.21.22.某网店专售一款新型钢笔,其成本为20元/支,销售中发现,该商品每天的销售量y与销售单价x(元/支)之间存在如下关系:10400y x=-+,自武汉爆发了“新型冠状病毒”疫情该网店店主决定从每天获得的利润中抽出200元捐赠给武汉,同时又让顾客得到实惠,当销售单价定位多少元时,捐款后每天剩余利润为550元?五.解答题(三)(共2小题,每小题12分,共24分)22.如图,以点O为圆心,AB长为直径作圆,在O上取一点C,延长AB至点D,连接DC,过点A作O的切线交DC的延长线于点E,且DCB DAC∠=∠.(1)求证:CD是O的切线;(2)若6AD=,2:3BC CA=,求AE的长.23.如图,在平面直角坐标系中,直线33y x =--与x 轴交于点A ,与y 轴交于点C .抛物线2y x bx c =++经过A 、C 两点,且与x 轴交于另一点B (点B 在点A 右侧). (1)求抛物线的解析式;(2)若点M 是线段BC 上一动点,过点M 的直线ED 平行y 轴交x 轴于点D ,交抛物线于点E ,求ME 长的最大值及此时点M 的坐标; (3)在(2)的条件下:当ME 取得最大值时,在x 轴上是否存在这样的点P ,使得以点M 、点B 、点P 为顶点的三角形是等腰三角形?若存在,请直接写出所有点P 的坐标;若不存在,请说明理由.答案一.选择题1. B .2. D .3. D .4. C .5. C .6. C .7. C .8. B .9. B .10. C . 二.填空题11. 72.02210⨯.12. 30-.13. 228y x x =---.14. 70︒或110︒.15. (4,3)-. 三.解答题16.解:(1)2()(2)x y x y x +--22222x xy y xy x =++-- 2y =;(2)2219(1)244a a a a --÷--+ 23(3)(3)2(2)a a a a a ---+=÷-- 23(2)2(3)(3)a a a a a --=⋅---+ 23a a -=--. 17.解:(1)如图所示即为所求作的图形. (2)ED 垂直AB , 90ADE EDB ∴∠=∠=︒,在Rt BDE ∆中,22221086DE BE BD =-=-=, 在Rt ADE ∆和Rt ACE ∆中, AC ADAE AE =⎧⎨=⎩, Rt ADE Rt ACE(HL)∴∆≅∆, 6EC ED ∴==, 16BC BE EC ∴=+=.18.证明:ABD BDC ∠=∠, //AB CD ∴.BAE DCF ∴∠=∠.在ABE ∆与CDF ∆中, 90BAE DCF AEB CFD BE DF ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩. ()ABE CDF AAS ∴∆≅∆. AB CD ∴=.∴四边形ABCD 是平行四边形.19.解:(1)设每副围棋x 元,每副中国象棋y 元,根据题意得:3598236x y x y +=⎧⎨+=⎩,∴1610x y =⎧⎨=⎩,∴每副围棋16元,每副中国象棋10元;(2)设购买围棋z 副,则购买象棋(40)z -副, 根据题意得:1610(40)538m m +-,40m z -,2023m ∴,m 可以取20、21、22、23则有:方案一:购买围棋20副,购买中国象棋20副方案二:购买围棋21副,购买中国象棋19副方案:购买围棋22副,购买中国象棋18副方案四:购买围棋23副,购买中国象棋17副由4种方案;(3)由上一问可知共有四种方案:方案一:购买围棋20副,购买中国象棋20副;方案二:购买围棋21副,购买中国象棋19副;方案三:购买围棋22副,购买中国象棋18副;方案四:购买围棋23副,购买中国象棋17副;方案一需要20162010520x x +=; 方案二需要21161910526x x +=; 方案三需要22161810532x x +=; 方案四需要23161710538x x +=; 所以最省钱是方案一,需要520元.20.(1)解:根据题意得:总人数为:315%20÷=(人), 表示“D 等级”的扇形的圆心角为43607220⨯︒=︒;C等级所占的百分比为8100%40% 20⨯=,所以40m=,故答案为:20,72,40.(2)解:等级B的人数为20(384)5-++=(人),补全统计图,如图所示:(3)解:根据题意,列出表格,如下:男女1女2男女1、男女2、男女1男、女1女2、女1女2男、女2女1、女2共有6种等可能结果,其中恰是一男一女的有4种,所以恰是一男一女的概率为42 63 =.21.解:由题意可得(20)(10400)200550x x--+-=解得125x=,235x=因为要让顾客得到实惠,所以25x=答:当销售单价定为25元时,捐款后每天剩余利润为550元.22.(1)证明:连接OC,OE,如图,AB为直径,90ACB∴∠=︒,即190BCO∠+∠=︒,又DCB CAD∠=∠,1CAD∠=∠,1DCB∴∠=∠,90DCB BCO ∴∠+∠=︒,即90DCO ∠=︒, CD ∴是O 的切线;(2)解:EC ,EA 为O 的切线, EC EA ∴=,AE AD ⊥, OC OA =, OE AC ∴⊥,90BAC EAC ∴∠+∠=︒,90AEO EAC ∠+∠=︒, BAC AEO ∴∠=∠, tan tan BAC AEO ∴∠=∠,∴23BC AO AC AE ==, Rt DCO Rt DAE ∆∆∽,∴23CD OC OA DA AE AE ===, 2643CD ∴=⨯=, 在Rt DAE ∆中,设AE x =,222(4)6x x ∴+=+, 解得52x =. 即AE 的长为52.23.解:(1)直线33y x =--与x 轴、y 轴分别交于点A 、C , (1,0)A ∴-,(0,3)C -抛物线2y x bx c =++经过点(1,0)A -,(0,3)C -, ∴103b c c -+=⎧⎨=-⎩,解得23b c =-⎧⎨=-⎩,∴抛物线的解析式为223y x x =--.(2)设(E x ,223)(03)x x x --<<,则(,3)M x x -, 222393(23)3()24ME x x x x x x ∴=----=-+=--+,∴当32x =时,94ME =最大,此时3(2M ,3)2-. (3)存在.如图3,由(2)得,当ME 最大时,则3(2D ,0),3(2M ,3)2-,32DO DB DM ∴===; 90BDM ∠=︒,223332()()222OM BM ∴==+=. 点1P 、2P 、3P 、4P 在x 轴上, 当点1P 与原点O 重合时,则1322PM BM ==,1(0,0)P ; 当2322BP BM ==时,则232632322OP -=-=, 2632(2P -∴,0); 当点3P 与点D 重合时,则3332P M P B ==,33(2P ,0); 当4322BP BM ==时,则432632322OP +=+=, 4632(2P +∴,0). 综上所述,1(0,0)P ,2632(2P -,0),33(2P ,0),4632(2P +,0).。

人就版数学九年级上册第 二十一章 一元二次方程---二十二章 二次函数综合复习试卷(含简单答案)

人就版数学九年级上册第 二十一章 一元二次方程---二十二章 二次函数综合复习试卷(含简单答案)

人就版数学九年级上册第二十一章-二十二章一、单选题1.下列方程是一元二次方程的是( )A.x2=x B.a x2+bx+c=0C.xy=1D.x+1x=12.把抛物线y=−x2+1向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为( )A.y=−(x+3)2+1B.y=−(x+1)2+3C.y=−(x−1)2+4D.y=−(x+1)2+43.已知关于x的一元二次方程k x2−(4k−1)x+4k−3=0有两个不相等的实数根,则实数k的取值范围是( )A.k<14B.k<14且k≠0C.k>−14D.k>−14且k≠04.如图,长方形花圃ABCD面积为4m2,它的一边AD利用已有的围墙(围墙足够长),另外三边所围的栅栏的总长度是5m.EF处开一门,宽度为1m.设AB的长度是xm,根据题意,下面所列方程正确的是( )A.x(5−2x)=4B.x(5+1−2x)=4C.x(5−2x−1)=4D.x(2.5−x)=45.如图是抛物线型拱桥,当拱顶高离水面2m时,水面宽4m.水面上升1.5m,水面宽度为( )A.1m B.2m C.3m D.23m6.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图像大致为( )A .B .C .D .7.一个等腰三角形两边的长分别等于一元二次方程x 2−16x +55=0的两个实数根,则这个等腰三角形周长为( )A .11B .27C .5或11D .21或278.已知关于x 的方程a(x−m)x =x−m 有两个相等的实数根,若M =a 2−2am ,N =4am−1m 2,则M 与N 的关系正确的是 ( )A .M +N =2B .M +N =−2C .2M +N =0D .M +N =09.y =a x 2+bx +c 与自变量x 的部分对应值如下,已知有且仅有一组值错误(其中a ,b ,c ,m 均为常数).x …−1012…y…m 2−2m 2m 2…甲同学发现当a <0时,x =3是方程a x 2+bx +c +2=0的一个根;乙同学发现当a >0时,则2a +b >0.下列说法正确的是( )A .甲对乙错B .甲错乙对C .甲乙都错D .甲乙都对10.已知二次函数y =−12x 2+bx 的对称轴为x =1,当m ≤x ≤n 时,y 的取值范围是2m ≤y ≤2n .则m +n 的值为( )A .−6或−2B .14或−74C .14D .−2二、填空题11.方程 x 2=5x 的根是  .12.已知x =−1是关于x 的方程x 2+mx−n =0的一个根,则m +n 的值是=  .13.已知点A(−1,y 1),B(1,y 2),C(4,y 3)在二次函数y =x 2−6x +c 的图象上,则y 1,y 2,y 3的大小关系是 (用“>”连接).14.如图,水池中心点О处竖直安装一水管,水管喷头喷出抛物线形水柱,喷头上下移动时,抛物线形水柱随之竖直上下平移,水柱落点与点О在同一水平面.安装师傅调试发现,喷头高2.5m时,水柱落点距О点2.5m;喷头高4m时,水柱落点距О点3m.那么喷头高 m时,水柱落点距O点4m.15.已知A(x1,y1),B(x2,y2)是抛物线y=a x2−3x+1上的两点,其对称轴是直线x=x0,若|x1−x0|>|x2−x0|时,总有y1>y2,同一坐标系中有M(−1,−2),N(3,2)且抛物线y=a x2−3x+1与线段MN有两个不相同的交点,则a的取值范围是 .16.已知抛物线y=a x2+bx+c(a,b,c是常数),其图像经过点A(2,0),坐标原点为O.①若b=−2a,则抛物线必经过原点;②若c≠4a,则抛物线与x轴一定有两个不同的公共点;③若抛物线与x轴交于点B(不与A重合),交y轴于点C且OB=OC,则a=−12;④点M(x1,y1),N(x2,y2)在抛物线上,若当x1>x2>−1时,总有y1>y2,则8a+c≤0.其中正确的结论是 (填写序号).三、解答题17.解方程:x2−4x−5=0.18.在二次函数y=x2−2tx+3(t>0)中,(1)若它的图象过点(2,1),则t的值为多少?(2)当0≤x≤3时,y的最小值为−2,求出t的值:(3)如果A(m−2,a),B(4,b),C(m,a)都在这个二次函数的图象上,且a<b<3,求m的取值范围.19.阅读下列材料,解答问题:材料:若x1,x2为一元二次方程a x2+bx+c=0(a≠0)的两个实数根,则x1+x2=−ba ,x1⋅x2=ca.(1)已知实数m,n满足3m2−5m−2=0,3n2−5n−2=0,且m≠n,求m2n+m n2的值.解:根据题意,可将m,n看作方程3x2−5x−2=0的两个实数根.∴m+n= ,mn= .∴m2n+m n2=mn(m+n)= .(2)已知实数a,b满足a2=2a+3,9b2=6b+3,且a≠3b,求ab的值.(3)已知实数m,n满足m+mn+n=a24−6,m−mn+n=−a24+2a,求实数a的最大整数值.20.如图,在平面直角坐标系中,从原点O的正上方8个单位A处向右上方发射一个小球,小球在空中飞行后,会落在截面为矩形CDEF的平台EF上(包括端点),把小球看作点,其飞行的高度y与飞行的水平距离x满足关系式L1:y=−x2+bx+c.其中C(6,0),D(10,0),CF=2.(1)求c的值;(2)求b的取值范围;(3)若落在平台EF上的小球,立即向右上方弹起,运动轨迹形成另一条与L1形状相同的拋物线L2,在21.x轴有两个点M、N,且M(15,0),N(16,0),从点N向上作NP⊥x轴,且PN=2.若沿抛物线L2下落的小球能落在边MP(包括端点)上,求抛物线L2最高点纵坐标差的最大值是多少?定义:函数图象上到两坐标轴的距离都不大于n(n≥0)的点叫做这个函数图象的“n阶方点”.例如,点(1 3,13)是函数y=x图象的“12阶方点”;点(−1,1)是函数y=−x图象的“1阶方点”.(1)在①(−1,2);②(0,0);③(12,−1)三点中,是正比例函数y=−2x图象的“1阶方点”的有___(填序号);(2)若y关于x的一次函数y=ax−4a+1图象的“2阶方点”有且只有一个,求a的值;(3)若函数图象恰好经过“n阶方点”中的点(n,n),则点(n,n)称为此函数图象的“不动n阶方点”,若y关于x的二次函数y=14x2+(p−t+1)x+q+t−2的图象上存在唯一的一个“不动n阶方点”,且当2≤p≤3时,q的最小值为t,求t的值.22.如图,抛物线L:y=a(x+2)2+9与x轴交于A,B(−5,0)两点,与y轴交于点C.(1)写出抛物线的对称轴,并求a的值;(2)平行于x轴的直线l交抛物线L于点M,N(点M在点N的左边),交线段BC于点R.当R为线段MN的中点时,求点N的坐标;(3)将线段AB先向左平移1个单位长度,再向上平移5个单位长度,得到线段A′B′.若抛物线L平移后与线段A′B′有两个交点,且这两个交点恰好将线段A′B′三等分,求抛物线L平移的最短路程;(4)P是抛物线L上任意一点(不与点C重合),点P的横坐标为m.过点P作PQ⊥y轴于点Q,E 为y轴上的一点,纵坐标为−2m.以EQ,PQ为邻边构造矩形PQEF,当抛物线L在矩形PQEF内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.答案解析部分1.【答案】A 2.【答案】D 3.【答案】D 4.【答案】B 5.【答案】B 6.【答案】B 7.【答案】B 8.【答案】A 9.【答案】D 10.【答案】D11.【答案】x 1=0,x 2=512.【答案】113.【答案】y 1>y 2>y 314.【答案】815.【答案】109≤a <216.【答案】①②④17.【答案】x 1=−1,x 2=518.【答案】(1)t =32(2)t =5(3)3<m <4或m >619.【答案】(1)53;−23;−109(2)解:∵9b 2=6b +3,∴(3b)2=2×(3b)+3∵a 2=2a +3,a ≠3b∴a ,3b 是一元二次方程x 2=2x +3的不相等的两个实数根整理方程得:x 2−2x−3=0,∴a ×3b =−3∴ab =−1(3)解:∵m +mn +n =a 24−6①,m−mn +n =−a 24+2a②,∴①+②可得:2(m+n)=2a−6,即:m+n=a−3①−②可得:2mn=a22−2a−6,即:mn=a24−a−3∴m,n可以看作是一元二次方程x2−(a−3)x+a24−a−3=0的两个实数根∴Δ=[−(a−3)]2−4×1×(a24−a−3)≥0化简得:−2a+21≥0,解得:a≤21 2,∴实数a的最大整数值为10 20.【答案】(1)c=8;(2)5≤b≤47 5;(3)抛物线L2最高点纵坐标差的最大值是19.71.21.【答案】(1)②③(2)a的值为32或a=−12(3).t=3−3或4+5 22.【答案】(1)x=−2,a=−1;(2)6−2(3)10(4)−6−1<m<0或m>6−1。

人教版九年级数学上册第21-第22章综合测试 含答案

人教版九年级数学上册第21-第22章综合测试  含答案

人教版九年级数学上册第21-第22章综合测试 含答案九年级数学试卷一、选择题(每小题3分,共30分)01.把一元二次方程223x x =-化为一般形式,若二次项系数为1,则一次项系数及常数项分别为( ) A.2、3 B.-2、3 C.2、-3 D.-2、-3 02.方程2(1)x +=4的解是( )A.1x =2,2x =一2B. 1x =3,2x =-3C. 1x =1,2x =-3D. 1x =l ,2x =-2 03.用配方法解方程243x x --=0,下列变形正确的是( )A.2(4)x - =19B. 2(2)x -=7C. 2(2)x -=1D. 2(2)x +=704.二次函数264y x x =++图象的对称轴是直线( )A.x =-3B.x =-6C.x =6D.x =4 05.已知一个直角三角形的两条直角边长恰好是方程214480x x -+==0的两根,则此三角形的斜边长为( )A.6B.8C.10D.1406.将抛物线23y x =向右平移1个单位,再向下平移2个单位,所得到的抛物线是( )A.23(1)2y x =--B. 23(1)2y x =+-C. 23(1)2y x =++D. 23(1)2y x =-+07.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支。

若主干、支干和小分支的总数是57,则每个支干长出( )根小分支。

A.5根B.6根C.7根D.8根08.若点1P (-1,1y ),2P (3,2y ),2P (5,3y )均在二次函数22y x x c =-++(c 为常数)的图象上,则1y , 2y , 3y 的大小关系是( )A. 1y >2y >3yB. 3y >1y =2yC. 3y >2y >1yD. 1y =2y >3y09.设a 、b 是方程220180x x +-=的两个实数根,则22a a b ++的值是( ) A.2016 B.2017 C.2018 D.201910.如图,已知二次函数2y ax bx c =++(a 、b 、c 为常数,且a ≠0)的图象与x 轴的交点的横坐标分别为-1、3,则下列结论:①abc <0②2a +b =0; ③3a +2c >0;④对于任意x 均有2ax a bx b -+-≥0,正确个数有( )A.1个B.2个C.3个D.4个二、填空题(每小题3分,共18分)11.关于x 的方程2160x ax ++==0有两个相等的实数根,则a 的值为__________.12.已知1x ,2x 是方程22530x x --=的两个根,则1211x x +=_______.13.飞机着陆后滑行的距离s (m )与滑行时间t (s )的函数关系式为s =60t -1.2t 2,飞机着陆后滑行__秒才能停下来.14.如图,在□ABCD 中,E 、F 是对角线AC 上两点,AE =AF =CD ,∠ADF =90°,∠BCD =63°,则∠ADE的大小是______________.15. 抛物线2y ax bx c =++经过点A (-3,0)、B (4,0)两点,则关于x 的一元二次方2(1)a x c b bx -+=-的解是 .16.问题背景:如图1,将△ABC 绕点A 逆时针旋转60°得到△ADE ,DE 与BC 交于点P ,可推出结论:P A +PC =PE . 问题解决:如图2,在△MNG 中,MN =6,∠M=75°,MG =O 是△MNG 内一点,则点O 到△MNG 三个顶点的距离和的最小值是 .图1图2三、解答题(共72分)17.(8分)解方程:22410x x -+=.18.(8分)已知二次函数23y x x =---.(1)用配方法求函数图象的顶点坐标、对称轴,并写出图象的开口方向; (2)在所给网格中建立平面直角坐标系并直接画出此函数的图象.19.(8分)用一条长40厘米的绳子围成一个矩形,设其一边长为x 厘米。

2024-2025学年人教版数学九年级上册期中测试模拟试卷(第二十一章一元二次方程—第二十三章旋转)

2024-2025学年人教版数学九年级上册期中测试模拟试卷(第二十一章一元二次方程—第二十三章旋转)

2024-2025学年人教版数学九年级上册期中测试模拟试卷(第二十一章一元二次方程—第二十三章旋转)一、单选题1.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 2.将函数22y x =的图象向右平移1个单位,再向上平移3个单位,可得到的抛物线是( ) A .()2213y x =--B .()2213y x =-+C .()2213y x =+- D .()2213y x =++ 3.已知m ,n 是方程2330x x --=的两根,则代数式22m m n mn -+-的值是( ) A .12- B .12 C .3 D .04.已知:毕业典礼后,小芳学习小组内部的m 名同学,每两个同学都互相交换了礼物,她们一共买了20份礼物.根据以上条件可以列出以下哪个方程( )A .()11202m m -=B .()11202m m += C .()120m m -= D .()120m m +=5.巴黎奥运会后,受到奥运健儿的感召,全民健身再次成为了一种时尚,球场上出现了更多年轻人的身影.下面四幅球类的平面图案中,是中心对称图形的是( ) A . B . C . D . 6.如图,将ABC V 绕着点A 逆时针旋转40︒得到AB C ''△,点B 的对应点B '恰好落在边BC 上,则AB C ''∠的度数是( )A .70︒B .60°C .50︒D .40︒7.如图,将Rt ABC △绕点A 按顺时针旋转一定角度得到Rt ADE V ,点B 的对应点D 恰好落在BC 边上,若260AB B =∠=︒,,则CD 的长为( )A .1BC .2D .8.如图,ABC V 中,90ACB ∠=︒,4BC =,3AC =,将ABC V 绕点B 逆时针旋转得A BC ''△,若点C '在AB 上,则AA '的长为( )A .4 BC D .59.如图,在期末体育测试中,小朱掷出的实心球的飞行高度y (米)与水平距离x (米)之间的关系大致满足二次函数21381055y x x =-++,则小朱本次投掷实心球的成绩为( )A .7mB .7.5mC .8mD .8.5m10.如图,抛物线()²0y ax bx c a =++≠的对称轴为直线2x =-,并与x 轴交于A B ,两点,若5OA OB =, 则下列结论中:① 0abc >;②()220a c b +-=;③90a c +<;④若m 为任意实数,则 ²24am bm b a ++>,错误结论的个数是( )个A .1B .2C .3D .4二、填空题11.一元二次方程x 2=9的解是.12.关于x 的一元二次方程2440kx x -+=有实数根,k 的取值范围是.13.一次篮球锦标赛,每个队都进行了3场比赛后,有6个队被淘汰,剩下的队进行单循环赛,共进行了33场比赛,共有个球队.14.如图,在△ABC 中,∠BAC=35°,将△ABC 绕点A 顺时针方向旋转50°,得到△AB′C′,则∠B′AC 的度数是.15.如图,有长为24m 的篱笆,一边利用墙(墙长不限),则围成的花圃ABCD 的面积最大为 2m .16.如图,在ABC V 中,=65CAB ∠︒,在同一平面内,将ABC V 绕点A 逆时针旋转到AB C ''△的位置,使得CC '平行AB ,则B AB '∠等于.17.如图,点O 是等边三角形ABC 内一点,110AOB ∠=︒,BOC α∠=.将BOC V 绕点C 按顺时针方向旋转60︒得到ADC △,连接OD .α为度时,AOD △是等腰三角形.18.二次函数()20y ax bx c a =++≠的图象如图所示,则函数值0y >时,x 的取值范围是.三、解答题19.△ABC 在平面直角坐标系xOy 中的位置如图所示.(1)作△ABC 关于点C 成中心对称的△A 1B 1C 1,(2)将△A 1B 1C 1向右平移4个单位,作出平移后的△A 2B 2C 2,(3)在x 轴上求作一点P ,使P A 1+PC 2的值最小,并写出点P 的坐标(不写解答过程,直接写出结果)20.解下列方程(1)2410x x --=(2)2(21)63x x +=--21.已知关于x 的方程()222110x m x m -+++=.(1)若方程总有两个不相等的实数根,求m 的取值范围;(2)若两实数根1x ,2x 满足()()12118x x ++=,求m 的值.22.某商店准备进一种季节性小家电,每台进价为40元.经市场预测,销售定价为52元时,可售出180台;销售定价每降低1元,销售量将增多10台.(1)商店若希望销售量为260台,则应降价多少元?(2)商店若希望获利2000元,且使顾客得到实惠,则销售定价为多少元?23.如图,隧道的截面由抛物线DEC 和矩形ABCD 构成,矩形的长AB 为6m ,宽BC 为4m ,以DC 所在的直线为x 轴,线段CD 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,最高点E 到地面距离为5米.(1)求出抛物线的解析式.(2)如果该隧道内设单行道(只能朝一个方向行驶),现有一辆货运卡车高4.5米,宽3米,这辆货运卡车能否通过该隧道?通过计算说明你的结论.24.如图,二次函数2123y x x =--的图象与x 轴交于点A ,B (A 在B 的左侧),与一次函数2y x b =-+的图象交于A ,C 两点.(1)求b 的值;(2)求ABC V 的面积;(3)根据图象,直接写出当12y y >时x 的取值范围. 25.如图,点E 为正方形ABCD 外一点,90AEB ∠=︒,将R t A B E V 绕A 点逆时针方向旋转90︒得到,ADF DF V 的延长线交BE 于H 点.(1)试判定四边形AFHE 的形状,并说明理由; (2)已知7,13BH BC ==,求DH 的长.。

九年级数学 第22章一元二次方程达标检测卷含试卷分析

九年级数学 第22章一元二次方程达标检测卷含试卷分析

第22章达标检测卷(120分,90分钟)一、选择题(每题3分,共30分)1.下列方程是一元二次方程的是()A.1x2-1x=0 B.xy+x2=9C.7x+6=x2D.(x-3)(x-5)=x2-4x2.一元二次方程3x2-4x-5=0的二次项系数、一次项系数、常数项分别是() A.3,-4,-5 B.3,-4,5C.3,4,5 D.3,4,-53.方程2(x+3)(x-4)=x2-10的一般形式为()A.x2-2x-14=0 B.x2+2x+14=0C.x2+2x-14=0 D.x2-2x+14=04.下列方程中,常数项为零的是()A.x2+x=1 B.2x2-x-12=12 C.2(x2-1)=3(x-1) D.2(x2+1)=x+25.为解决群众看病贵的问题,有关部门决定降低药价,对某种原价为300元的药品进行连续两次降价后为243元,设平均每次降价的百分率为x,则下面所列方程正确的是() A.300(1-x)2=243 B.243(1-x)2=300C.300(1-2x)=243 D.243(1-2x)=3006.下列方程,适合用因式分解法解的是()A.x2-42x+1=0 B.2x2=x-3C.(x-2)2=3x-6 D.x2-10x-9=07.(·烟台)关于x的方程x2-ax+2a=0的两根的平方和是5,则a的值是()A.-1或5 B.1 C.5 D.-18.三角形的一边长为10,另两边长是方程x2-14x+48=0的两个实数根,则这个三角形是()A.等边三角形B.等腰三角形C.直角三角形D.等腰直角三角形9.(·安顺)若一元二次方程x2-2+1)x+m-1的图象不经过第()象限.A.四B.三C.二D.一10.一个三角形的两边长分别为3和6,第三边的长是方程(x-2)(x-4)=0的根,则这个三角形的周长是()A.11 B.11或13 C.13 D.以上选项都不正确二、填空题(每题3分,共30分)11.当m________时,关于x的方程(m-2)x2+n+n2的值为________.13.若将方程=________.14.如果关于x的方程ax2+2x+1=0有两个不相等的实数根,那么实数a的取值范围是________.15.(·内江)已知关于x的方程x2-6x+k=0的两根分别是x1,x2,且满足1x1+1x2=3,则k的值是________.16.2月28日,前央视知名记者柴静推出了关于雾霾的纪录片——《穹顶之下》,引起了极大的反响.某市准备加大对雾霾的治理力度,第一季度投入资金100万元,第二季度和第三季度计划共投入资金260万元,求这两个季度计划投入资金的平均增长率.设这两个季度计划投入资金的平均增长率为x,根据题意可列方程为____________.17.(·毕节)关于x的两个方程x2-4x+3=0与1x-1=2x+a有一个解相同,则a=________.18.小明的妈妈周三在自选商场花10元钱买了几瓶酸奶,周六再去买时,正好遇上商场酬宾活动,同样的酸奶,每瓶比周三便宜0.5元,结果小明的妈妈只比上次多花了2元钱,却比上次多买了2瓶酸奶,她周三买了________瓶酸奶.19.现定义运算“★”:对于任意实数a,b,都有a★b=a2-3a+b,如:3★5=32-3×3+5.若x★2=6,则实数x的值是________.(第20题)20.(·贵阳)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16 cm,AD为BC边上的高,动点P从点A出发,沿A→D方向以 2 cm/s的速度向点D运动.设△ABP的面积为S1,矩形PDFE的面积为S2,运动时间为t s(0<t<8),则t=________时,S1=2S2.三、解答题(21题8分,22、23题每题6分,24、25题每题9分,26题10分,27题12分,共60分)21.用适当的方法解下列方程.(1)x2-x-1=0; (2)x2-2x=2x+1;(3)x(x-2)-3x2=-1; (4)(x+3)2=(1-2x)2.22.关于-2)+3=0有两个不相等的实数根.(1)求m的取值范围;(2)当m取满足条件的最大整数时,求方程的根.23.晓东在解一元二次方程时,发现有这样一种解法:如:解方程x(x+4)=6.解:原方程可变形,得[(x+2)-2][(x+2)+2]=6.(x+2)2-22=6,(x+2)2=6+22,(x+2)2=10.直接开平方并整理,得x1=-2+10,x2=-2-10.我们称晓东这种解法为“平均数法”.(1)下面是晓东用“平均数法”解方程(x+2)(x+6)=5时写的解题过程.解:原方程可变形,得[(x+□)-○][(x+□)+○]=5.(x+□)2-○2=5,(x+□)2=5+○2.直接开平方并整理,得x1=☆,x2=¤.上述过程中的“□”,“○”,“☆”,“¤”表示的数分别为________,________,________,________.(2)请用“平均数法”解方程:(x-3)(x+1)=5.24.已知x1,x2是一元二次方程(a-6)x2+2ax+a=0的两个实数根.(1)是否存在实数a,使-x1+x1x2=4+x2成立?若存在,求出a的值;若不存在,请说明理由.(2)求使(x1+1)(x2+1)为负整数的实数a的整数值.25.(·随州)楚天汽车销售公司5月份销售某种型号汽车.当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30辆.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润为25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价-进价)26.如图,A ,B ,C ,D 为矩形的四个顶点,AB =16 cm ,AD =6 cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以3 cm /s 的速度向点B 移动,一直到达B 为止,点Q 以2 cm /s 的速度向D 移动.(1)P ,Q 两点从出发开始到几秒时,四边形PBCQ 的面积为33 cm 2? (2)P ,Q 两点从出发开始到几秒时,点P 和点Q 之间的距离是10 cm?(第26题)27.目前世界上最长的跨海大桥——杭州湾跨海大桥通车了.通车后,A 地到宁波港的路程比原来缩短了120 km .已知运输车速度不变时,行驶时间将从原来的103h 缩短到2 h .(1)求A 地经杭州湾跨海大桥到宁波港的路程.(2)若货物运输费用包括运输成本和时间成本,某车货物从A 地到宁波港的运输成本是每千米1.8元,时间成本是每时28元,那么该车货物从A地经杭州湾跨海大桥到宁波港的运输费用是多少元?(3)A地准备开辟宁波方向的外运路线,即货物从A地经杭州湾跨海大桥到宁波港,再从宁波港运到B地.若有一批货物(不超过10车)从A地按外运路线运到B地的运费需8 320元,其中从A地经杭州湾跨海大桥到宁波港的每车运输费用与(2)中相同,从宁波港到B地的海上运费对一批不超过10车的货物计费方式是:1车800元,当货物每增加1车时,每车的海上运费就减少20元,问这批货物有几车?答案一、1.C点拨:因为1x2-1x=0中分母含有未知数,B中xy+x2=9含有两个未知数,所以A、B都不是一元二次方程,D中可变形为x2-8x+15=x2-4x.化简后不含x2,故不是一元二次方程,故选C .2.A 3.A 4.D5.A 点拨:第一次降价后的价格为300×(1-x)元,第二次降价后的价格为300×(1-x)×(1-x)元,则列出的方程是300(1-x)2=243.6.C 7.D8.C 点拨:由x 2-14x +48=0,得x 1=6,x 2=8.因为62+82=102,所以该三角形为直角三角形.9.D 10.C二、11.≠2 12.1 13.4 14.a <1且a ≠015.2 点拨:∵x 2-6x +k =0的两根分别为x 1,x 2, ∴x 1+x 2=6,x 1x 2=k. ∴1x 1+1x 2=x 1+x 2x 1x 2=6k=3. 解得k =2.经检验,k =2满足题意. 16.100(1+x)+100(1+x)2=260点拨:根据题意知:第二季度计划投入资金100(1+x)万元,第三季度计划投入资金100(1+x)2万元.∴100(1+x)+100(1+x)2=260.17.1 点拨:由方程x 2-4x +3=0,得 (x -1)(x -3)=0, ∴x -1=0,或x -3=0. 解得x 1=1,x 2=3;当x =1时,分式方程1x -1=2x +a 无意义;当x =3时,13-1=23+a ,解得a =1,经检验a =1是方程13-1=23+a的解.18.4 点拨:设她周三买了x 瓶酸奶,根据题意得(x +2)·⎝⎛⎭⎫10x -0.5=10+2,化简得x 2+6x -40=0,解得x 1=4,x 2=-10(舍去).19.-1或4 点拨:根据题中的新定义将x ★2=6变形得x 2-3x +2=6,即x 2-3x -4=0,解得x 1=4,x 2=-1,则实数x 的值是-1或4.20.6 点拨:∵在Rt △ABC 中,∠BAC =90°,AB =AC =16 cm ,AD 为BC 边上的高,∴AD =BD =CD =8 2 cm .又∵AP =2t cm ,∴S 1=12AP·BD =12×2t ×82=8t(cm 2),PD =(82-2t)cm .易知PE =AP =2t cm ,∴S 2=PD·PE =(82-2t)·2t cm 2.∵S 1=2S 2,∴8t =2(82-2t)·2t.解得t 1=0(舍去),t 2=6.三、21.解:(1)(公式法)a =1,b =-1,c =-1, 所以b 2-4ac =(-1)2-4×1×(-1)=5.所以x =-b±b 2-4ac 2a =1±52,即原方程的根为x 1=1+52,x 2=1-52.(2)(配方法)原方程可化为x 2-4x =1, 配方,得x 2-4x +4=1+4,(x -2)2=5. 两边开平方,得x -2=±5, 所以x 1=2+5,x 2=2- 5.(3)(公式法 )原方程可化为2x 2+2x -1=0,所以a =2,b =2,c =-1,b 2-4ac =22-4×2×(-1)=12. 所以x =-2±122×2=-1±32,即原方程的根为x 1=-1+32,x 2=-1-32.(4)(因式分解法)移项,得(x +3)2-(1-2x)2=0, 因式分解,得(3x +2)(-x +4)=0, 解得x 1=-23,x 2=4.22.解:(1)∵关于-2)+3=0有两个不相等的实数根, ∴m -2≠0且Δ=(2m)2-4(m -2)(m +3)=-4(m -6)>0. 解得m<6且m ≠2.(2)在m<6且m ≠2的范围内,最大整数为5. 此时,方程化为3x 2+10x +8=0. 解得x 1=-2,x 2=-43.23.解:(1)4;2;-1;-7(最后两空可交换顺序); (2)(x -3)(x +1)=5,原方程可变形,得[(x -1)-2][(x -1)+2]=5, (x -1)2=5+22,即(x -1)2=9, 直接开平方并整理,得x 1=4,x 2=-2.24.解:(1)Δ=4a 2-4a(a -6)=24a ,∵一元二次方程有两个实数根,∴Δ≥0,即a ≥0.又∵a -6≠0,∴a ≠6.∴a ≥0且a ≠6.由题可知x 1+x 2=2a 6-a ,x 1x 2=aa -6.∵-x 1+x 1x 2=4+x 2,即x 1x 2=4+x 1+x 2,∴a a -6=4+2a6-a.解得a =24,经检验,符合题意.∴存在实数a ,a 的值为24;(2)(x 1+1)(x 2+1)=x 1+x 2+x 1x 2+1=2a 6-a +aa -6+1=-6a -6.∵-6a -6为负整数,∴整数a 的值应取7,8,9,12.25.解:(1)当x ≤5时,y =30.当5<x ≤30时,y =30-(x -5)×0.1=-0.1x +30.5.∴y =⎩⎪⎨⎪⎧30,(x ≤5,且x 为正整数),-0.1x +30.5,(5<x ≤30,且x 为正整数).(2)当x ≤5时,(32-30)x =2x ≤10<25,不合题意. 当5<x ≤30时,(32+0.1x -30.5)x =25, ∴x 2+15x -250=0.解得x 1=-25(舍去),x 2=10. 答:该月需售出10辆汽车.(第26题)26.解:(1)设P ,Q 两点从出发开始到2,则AP =3,所以PB =(16-3x)cm .因为(PB +CQ)×BC ×12=33,所以(16-3x +2x)×6×12=33.解得x =5,所以P ,Q 两点从出发开始到5 s 时,四边形PBCQ 的面积为33 cm 2.(2)设P ,Q 两点从出发开始到a s 时,点P 和点Q 之间的距离是10 cm . 如图,过点Q 作QE ⊥AB 于E ,易得EB =QC ,EQ =BC =6 cm , 所以PE =|PB -BE|=|PB -QC|=|16-3a -2a|=|16-5a|(cm ).在直角三角形PEQ 中,PE 2+EQ 2=PQ 2,所以(16-5a)2+62=102,即25a 2-160a +192=0,解得a 1=85,a 2=245,所以P ,Q 两点从出发开始到85 s 或245 s 时,点P 和点Q 之间的距离是10 cm .27.解:(1)设A 地经杭州湾跨海大桥到宁波港的路程为x km , 由题意得x +120103=x2,解得.(2)1.8×180+28×2=380(元),∴该车货物从A 地经杭州湾跨海大桥到宁波港的运输费用是380元.(3)设这批货物有y 车,由题意得y[800-20×(y -1)]+380y =8 320,整理得y 2-60y +416=0,解得y 1=8,y 2=52(不合题意,舍去),∴这批货物有8车.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

九年级数学周考试卷
(A).12 (B).32+x (C).
2
3
(D).b a 2 2. 下列图案中,既是中心对称又是轴对称的图案是( )
A B C D
3、用配方法解一元二次方程x 2-4x =5时,此方程可变形为( )
A .(x +2)2 =1
B .(x -2)2 =1
C .(x +2)2 =9
D .(x -2
)2 =9 4、如图,在长为
100米,宽为80米的矩形场地上修建两条宽度相等且互相垂直的道路,剩余部分进行绿化,要使绿化面积为7644米2,则道路的宽应为多少米?设道路的宽为X 米,则可列方程为( ) A.100×80-100X -80X=7644 B.(100-X)(80-X)+X
2=7644 C.(100-X)(80
-X)=7644 D.100X +80X=356
5、将等腰直角三角形AOB 按如图所示放置,然后绕点O
逆时针旋转90︒至的位置,点B 的横坐标为2,则点A '的坐标为( ) A .(1,1)
B .)
C .(-1,1)
D .(6、已知α,β是关于x 的一元二次方程x 2
+(2m+3)x+m 2
=0的两个不相等的实数根,且满足
+
=﹣1,则m 的值是( )
A . 3或﹣1
B .
3 C .
1 D . ﹣3或1
二、填空题(每小题3分,共24分) 7、当x=﹣4时,
的值是 .
8、若x 1=﹣1是关于x 的方程x 2
+mx ﹣5=0的一个根,则方程的另一个根x 2= . 9、若一个一元二次方程的两个根分别是Rt △ABC 的两条直角边长,且S △ABC =3,请写出一.
个.符合题意的一元二次方程.
10、如图,把Rt⊿ABC绕点A逆时针旋转40°,得到Rt⊿AB′C′,点C′恰好落在边
AB上,连接BB′,则∠BB′C′=
11、已知关于x的一元二次方程x2+bx+b﹣1=0有两个相等的实数根,则b的值是.
12、如图,将n个边长都为1cm的正方形按如图所示摆放,点A1、A2、…、An分别是正方形的中心,则n个这样的正方形重叠部分的面积和为
13、.一幅三角板按右图所示叠放在一起,若固定△AOB,将△ACD绕着公共顶点A,按顺时针方向旋转α度(0<α<180),当△ACD 的一边与△AOB的某一边平行时,相应的旋转角α的最小值是_______________
14、已知关于x的方程x2﹣(a+b)x+ab﹣1=0,x1、x2是此方程的两个实数根,现给出三个结论:①x1≠x2;②x1x2<ab;③.则正确结论的序号是.(填上你认为正确结论的所有序号)
三、(每小题5分,共10分)
15、解方程:x2﹣4x+2=0 16、解方程:1
2
2
2+
=
-x
x
x
四、(每小题6分,共12分)
17、5
)2
2(
8
)3
(0
2-
+
-
+
-
18、已知1
3-,求代数式)
1
(
1
x
x
x
x
-
÷
-
的值
五(每小题8分,共16分)
如图,在平面直角坐标系中,已知点B(4,2),BA⊥x轴于A.
(1)画出将△OAB绕原点逆时针旋转90°后所得的△OA1B1
(2)△OAB关于原点O的中心对称图形,并写出点A、B对称点的坐标..
C/
B/
C
B
A
20、四边形ABCD是正方形,E、F分别是DC和CB的
延长线上的点,且DE=BF,连接AE、AF、EF.
(1)填空:△ABF可以由△ADE绕旋转中心点,
按顺时针方向旋转度得到;
(2)若BC=8,DE=6,求△AEF的面积.
六(每小题9分,共18分)
21、小丽为校合唱队购买某种服装时,商店经理给出了如下优惠条件:如果一次性购买不超过10件,单价为80元;如果一次性购买多于10件,那么每增加1件,购买的所有服装的单价降低2元,但单价不得低于50元.按此优惠条件,小丽一次性购买这种服装付了1200元.请问她购买了多少件这种服装?
22、关于的一元二次方程x2+2x+k+1=0的实数解是x1和x2。

(1)求k的取值范围;
(2)如果x1+x2-x1x2<-1且k为整数,求k的值。

七(第23小题10分,第24小题12分,共22分)
23、菜农李伟种植的某蔬菜计划以每千克5元的单价对外批发销售,由于部分菜农盲目扩大种植,造成该蔬菜滞销.李伟为了加快销售,减少损失,对价格经过两次下调后,以每千克3.2元的单价对外批发销售.
(1)求平均每次下调的百分率;
(2)小华准备到李伟处购买5吨该蔬菜,因数量多,李伟决定再给予两种优惠方案以供选择:方案一:打九折销售;方案二:不打折,每吨优惠现金200元.试问小华选择哪种方案更优惠,请说明理由.
24、如图1所示,将一个边长为2的正方形ABCD 和一个长为2、宽为1的长方形CEFD 拼在一起,构成一个大的长方形ABEF .现将小长方形CEFD 绕点C 顺时针旋转至'
''D F CE ,旋转角为α.
(1)当点'
D 恰好落在EF 边上时,求旋转角α的值;
(2)如图2,G 为BC ,且0°<α<90°,求证:D E GD '
'
=;
(3)小长方形CEFD 绕点C 顺时针旋转一周的过程中,'
DCD ∆与'
CBD ∆能否全等?若能,直接写出旋转角α的值;若不能,说明理由.。

相关文档
最新文档