实验 (三) 项目名称:利用MATLAB分析连续系统及离散系统的复频域特性
MATLAB信号与系统实验报告

信号与系统实验报告(5)MATLAB 综合实验项目二 连续系统的频域分析目的:周期信号输入连续系统的响应可用傅里叶级数分析。
由于计算过程烦琐,最适合用MATLAB 计算。
通过编程实现对输入信号、输出信号的频谱和时域响应的计算,认识计算机在系统分析中的作用。
任务:线性连续系统的系统函数为11)(+=ωωj j H ,输入信号为周期矩形波如图1所示,用MATLAB 分析系统的输入频谱、输出频谱以及系统的时域响应。
图1方法:1、确定周期信号f(t)的频谱nF 。
基波频率Ω。
2、确定系统函数)(Ωjn H 。
3、计算输出信号的频谱nn F jn H Y )(Ω= 4、系统的时域响应∑∞-∞=Ω=n tjn neY t y )(MATLAB 计算为y=Y_n*exp(j*w0*n'*t);要求(画出3幅图):1、在一幅图中画输入信号f(t)和输入信号幅度频谱|F(jω)|。
用两个子图画出。
2、画出系统函数的幅度频谱|H(jω)|。
3、在一幅图中画输出信号y(t)和输出信号幅度频谱|Y(jω)|。
用两个子图画出。
解:(1)分析计算:输入信号的频谱为(n)输入信号最小周期为=2,脉冲宽度,基波频率Ω=2π/=π,所以(n)系统函数为因此输出信号的频谱为系统响应为(2)程序:t=linspace(-3,3,300);tau_T=1/4; %n0=-20;n1=20;n=n0:n1; %计算谐波次数20F_n=tau_T*Sa(tau_T*pi*n);f=2*(rectpuls(t+1.75,0.5)+rectpuls(t-0.25,0.5)+rectpuls(t-2.25,0.5));figure(1),subplot(2,1,1),line(t,f,'linewidth',2); %输入信号的波形axis([-3,3,-0.1,2.1]);grid onxlabel('Time(sec)','fontsize',8),title('输入信号','fontweight','bold') %设定字体大小,文本字符的粗细text(-0.4,0.8,'f(t)')subplot(2,1,2),stem(n,abs(F_n),'.'); %输入信号的幅度频谱xlabel('n','fontsize',8),title('输入信号的幅度频谱','fontweight','bold')text(-4.0,0.2,'|Fn|')H_n=1./(i*n*pi+1);figure(2),stem(n,abs(H_n),'.'); %系统函数的幅度频谱xlabel('n','fontsize',8),title('系统函数的幅度频谱','fontweight','bold')text(-2.5,0.5,'|Hn|')Y_n=H_n.*F_n;y=Y_n*exp(i*pi*n'*t);figure(3),subplot(2,1,1),line(t,y,'linewidth',2); %输出信号的波形axis([-3,3,0,0.5]);grid onxlabel('Time(sec)','fontsize',8),title('输出信号','fontweight','bold')text(-0.4,0.3,'y(t)')subplot(2,1,2),stem(n,abs(Y_n),'.'); %输出信号的幅度频谱xlabel('n','fontsize',8),title('输出信号的幅度频谱','fontweight','bold')text(-4.0,0.2,'|Yn|')(3)波形:-3-2-1012300.511.52Time(sec)输入信号n输入信号的幅度频谱-20-15-10-55101520n系统函数的幅度频谱-3-2-112300.10.20.30.4Time(sec)输出信号n输出信号的幅度频谱项目三 连续系统的复频域分析目的:周期信号输入连续系统的响应也可用拉氏变换分析。
实验三利用MATLAB进行系统频域分析

实验三利用MATLAB进行系统频域分析系统频域分析是指通过对系统的输入输出信号进行频域分析,从而分析系统的频率响应特性和频率域特征。
利用MATLAB进行系统频域分析可以方便地实现信号的频谱分析、滤波器设计等功能。
下面将介绍如何利用MATLAB进行系统频域分析的基本步骤。
一、信号频谱分析1. 将信号导入MATLAB环境:可以使用`load`函数导入数据文件,或者使用`audioread`函数读取音频文件。
2. 绘制信号的时域波形图:使用`plot`函数绘制信号的时域波形图,以便对信号的整体特征有一个直观的了解。
3. 计算信号的频谱:使用快速傅里叶变换(FFT)算法对信号进行频谱分析。
使用`fft`函数对信号进行频域变换,并使用`abs`函数计算频谱的幅度。
4. 绘制信号的频谱图:使用`plot`函数绘制信号的频谱图,以便对信号的频率特征有一个直观的了解。
二、滤波器设计1.确定滤波器类型和要求:根据系统的要求和信号的特性,确定滤波器的类型(如低通滤波器、高通滤波器、带通滤波器等)和相应的频率响应要求。
2. 设计滤波器:使用MATLAB中的滤波器设计函数(如`fir1`、`butter`、`cheby1`等)来设计滤波器。
这些函数可以根据指定的滤波器类型、阶数和频率响应要求等参数来生成相应的滤波器系数。
3. 应用滤波器:使用`filter`函数将滤波器系数应用到信号上,得到滤波后的信号。
三、系统频率响应分析1. 生成输入信号:根据系统的要求和实际情况,生成相应的输入信号。
可以使用MATLAB中的信号生成函数(如`square`、`sine`、`sawtooth`等)来生成基本的周期信号,或者使用`randn`函数生成高斯白噪声信号。
2.绘制输入信号的频谱图:使用前面提到的信号频谱分析方法,绘制输入信号的频谱图。
3. 输入信号与输出信号的频域分析:使用`fft`函数对输入信号和输出信号进行频谱分析,并使用`abs`函数计算频谱的幅度。
连续信号与系统复频域分析的MATLAB实现

实验六 连续信号与系统复频域的MATLAB 实现一、实验目的1. 掌握连续时间信号拉普拉斯变换的MATLAB 实现方法;2. 掌握连续系统复频域分析的MATLAB 实现方法。
二、实验原理1. 连续时间信号的拉普拉斯变换连续时间信号的拉普拉斯正变换和逆变换分别为:⎰∞∞--=dt e t f s F st )()(⎰∞+∞-=j j stds e s F j t f σσπ)(21)(Matlab 的符号数学工具箱(Symbolic Math Toolbox )提供了能直接求解拉普拉斯变换和逆变换的符号运算函数laplace()和ilaplace ()。
下面举例说明两函数的调用方法。
(1)拉普拉斯变换例1.求以下函数的拉普拉斯变换。
212(1)()()(2)()()t t f t e u t f t te u t --==解:输入如下M 文件:syms tf1=sym('exp(-2*t)*Heaviside(t)'); F1=laplace(f1) %求f1(t)的拉普拉斯变换 f2=sym('t*exp(-t)*Heaviside(t)'); F2=laplace(f2) 运行后,可得如下结果:F1 = 1/(s+2) F2 = 1/(s+1)^2 (2)拉普拉斯逆变换例2.若系统的系统函数为1]Re[,231)(2->++=s s s s H 。
求冲激响应)(t h 。
解:输入如下M 文件:H=sym('1/(s^2+3*s+2)');h=ilaplace(H) %求拉普拉斯逆变换运行后,可得如下结果:h=exp(-t)-exp(-2*t) 2. 连续系统的复频域分析 若描述系统的微分方程为∑∑===Mj j j Ni i i t f b t ya 0)(0)()()(则系统函数为)()()()()(00s A s B sa sb s F s Y s H Ni ii Mj jj===∑∑== 其中,∑∑====Mj j j Ni i i s b s B s a s A 0)(,)(。
基于MATLAB实现连续信号与系统复频域分析

摘要拉普拉斯变换(Laplace Transform),是工程数学中常用的一种积分变换。
它是为简化计算而建立的实变量函数和复变量函数间的一种函数变换。
对一个实变量函数作拉普拉斯变换,并在复数域中作各种运算,再将运算结果作拉普拉斯反变换来求得实数域中的相应结果,往往比直接在实数域中求出同样的结果在计算上容易得多。
拉普拉斯变换的这种运算步骤对于求解线性微分方程尤为有效,它可把微分方程化为容易求解的代数方程来处理,从而使计算简化。
在经典控制理论中,对控制系统的分析和综合,都是建立在拉普拉斯变换的基础上的。
引入拉普拉斯变换的一个主要优点,是可采用传递函数代替微分方程来描述系统的特性。
这就为采用直观和简便的图解方法来确定控制系统的整个特性(见信号流程图、动态结构图)、分析控制系统的运动过程(见奈奎斯特稳定判据、根轨迹法),以及综合控制系统的校正装置(见控制系统校正方法)提供了可能性。
拉普拉斯变换在工程学上的应用:应用拉普拉斯变换解常变量齐次微分方程,可以将微分方程化为代数方程,使问题得以解决。
在工程学上,拉普拉斯变换的重大意义在于:将一个信号从时域上,转换为复频域(s域)上来表示;在线性系统,控制自动化上都有广泛的应用。
关键词:拉普拉斯变换,拉普拉斯反变换,拉普拉斯变换幅度曲面,MATLAB目录绪论 (3)(一)MATLAB软件简介 (3)(二)课程设计意义及目的 (3)设计原理 (4)(一)拉普拉斯变换 (4)(二)拉普拉斯反变换 (4)课程设计 (7)(一)拉普拉斯变换的MATLAB实现 (7)(二)拉普拉斯的反变换的MATLAB实现 (7)(三)通过MATLAB实现拉普拉斯变换曲面图 (9)致谢 (12)参考文献: (12)绪论(一)MATLAB软件简介MATLAB(矩阵实验室)是MatrixLaboratory的缩写,是一款由美国The Mathworks 公司出品的商业数学软件。
MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。
实验三 离散信号与系统的连续频域分析

实验三离散信号与系统的连续频域分析一、实验目的1.离散时间信号的DTFT的MA TLAB实现;2.进行离散时间系统的DTFT分析;3.理解系统函数和频率相应之间的关系。
二、实验内容1.自定义一个长度为8点的信号,信号幅度值也由自己任意指定,对该信号作DTFT,分别画出幅度谱和相位谱;2.已知离散时间系统差分方程为y(n)-0.5y(n-1)+0.06y(n-2)=x(n)+x(n-1),求出并画出其频率响应;3.求该系统系统函数,并画极零点图,并通过freqz函数求频率响应。
三、实验平台MATLAB集成系统(MA TLAB6.5版本以上)四、设计流程查找离散时间系统信号的幅度和相位函数→通过MATLAB帮助阅读函数的使用→编写程序→在MATLAB上调试→书写实验报告。
五、程序清单参考程序附后。
六、要求1.通过参考程序进行仿真,并理解程序;2.对重要语句进行解释,附在程序行后面;3.理解函数的含义及参数所表示的意义。
本实验中如freqz函数、abs函数和angle函数。
参考程序:1n=0:7;x=(0.9*exp(j*pi/3)).^n; w=-pi:pi/200:pi;X=x*(exp(-j*pi/4)).^(n'*w); magX=abs(X);angX=angle(X);subplot(2,1,1);plot(w/pi,magX);xlabel('w/pi');ylabel('幅度|X|'); subplot(2,1,2);plot(w/pi,angX);xlabel('w/pi');ylabel('相位(rad/π)');-1-0.8-0.6-0.4-0.200.20.40.60.810246w/pi幅度|X |-1-0.8-0.6-0.4-0.200.20.40.60.81-2-1012w/pi相位(r a d /π)2a=[1,-0.5,0.06];b=[1,1,0];m=0:length(b)-1;l=0:length(a)-1; w=0:pi/500:pi;num=b*exp(-j*m'*w); den=a*exp(-j*l'*w); H=num./den;magH=abs(H);angH=angle(H); H1=freqz(b,a,w);magH1=abs(H1);angH1=angle(H1);subplot(2,2,2);plot(w/pi,angH/pi);grid; xlabel('w (frequency in pi units)');ylabel('相位(rad/π)');subplot(2,2,1);plot(w/pi,magH);grid;xlabel('w (frequency in pi units)');ylabel('幅度|H|'); subplot(2,2,3);plot(w/pi,magH1);grid;xlabel('w (frequency in pi units)');ylabel('幅度|H1|'); subplot(2,2,4);plot(w/pi,angH1/pi);grid; xlabel('w (frequency in pi units)');ylabel('相位(rad/π)');axis([0,1,-0.8,0]);figure(2);zplane(b,a);0.51w (frequency in pi units)相位(r a d /π)0.51w (frequency in pi units)幅度|H |0.51w (frequency in pi units)幅度|H 1|0.51w (frequency in pi units)相位(r a d /π)-1-0.500.51-1-0.8-0.6-0.4-0.200.20.40.60.81Real PartI m a g i n a r y P a r t。
Matlab讲义连续时间系统的复频域分析

-0.9
-0.8
-0.7
-0.6
-0.5 Real Axis
-0.4
-0.3
-0.2
-0.1
0
Impulse Response 0.45 0.4 0.35 0.3 0.25 ) t ( h 0.2 0.15 0.1 0.05 0 -0.05
0
1
2
3
4
5 t(s)
6
7
8
9
10
1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 1 2 3 4 5 6 7 8 9 10
讲解 Bode(sys)
Bode Diagram 0 -20 ) B d ( e d u t i n g a M -40 -60 -80 -100 -120 0
) g e d ( e s a h P
-90
-180
-270 10
-2
-1
0
1
2
10
10 Frequency (rad/sec)
10
10
三、练习 1. 求下列信号的拉普拉斯变换 (1) 2 ( t ) 3e u (t ) //dirac()函数。 (2) e (t ) e (3) (1 e ) u(t ) (4) u( t )
figure(3); plot(w,abs(H)); xlable('\omega(rad/s)'); ylable('|H(j\omega)|'); title('Magentitude Response')
Pole-Zero Map 1 0.8 0.6 0.4 i s x A y r a n i g a m I 0.2 0 -0.2 -0.4 -0.6 -0.8 -1 -1
MATLAB实验3信号与系统频域分析的MATLAB实现

举例4 举例4
用有限时宽余弦信号f(t)=cos(2πt/3)(0≤ 40)近似 用有限时宽余弦信号f(t)=cos(2πt/3)(0≤t ≤40)近似 理想余弦信号,用Matlab编程画出该信号及其抽 理想余弦信号,用Matlab编程画出该信号及其抽 样信号的频谱,并对比观察过抽样和欠抽样状态。 解:首先计算该信号的临界抽样角频率 临界抽样频率 临界抽样周期
举例1 举例1
syms t x=exp(-2*abs(t)) F=fourier(x) subplot(211) ezplot(x) subplot(212) ezplot(F)
仿真波形
x4/(4+w^2)
举例2 举例2 傅里叶变换的对称性
命令代码1 命令代码1: syms t r=0.01;%采样间隔 r=0.01;%采样间隔 j=sqrt(j=sqrt(-1); t=-15:r:15; t=f=sin(t)./t;%计算采样函数的离散采样点 f=sin(t)./t;%计算采样函数的离散采样点 f1=pi*(Heaviside(t+1)-Heaviside(t-1));%计算脉 f1=pi*(Heaviside(t+1)-Heaviside(t-1));%计算脉 宽为2 宽为2的门信号的离散采样点 N=500;%采样点数 N=500;%采样点数 W=5*pi*1;%设定采样角频率 W=5*pi*1;%设定采样角频率 w=k*W/N;%对频率采样 w=k*W/N;%对频率采样
一个频谱受限的信号
2 fm
或者说, 或者说,最低抽样频率为 2 最低抽样频率
fm
→
。 称为“奈奎斯特频率” 称为“奈奎斯特频率”。
fs = 2 fm
也就是说:对于带限信号, 也就是说:对于带限信号,当
信号与系统matlab实验3连续时间LTI分析报告

实验三连续时间LTI系统分析姓名学号班级通信一班一、实验目的(一)掌握使用Matlab进行连续系统时域分析的方法1、学会使用符号法求解连续系统的零输入响应和零状态响应2、学会使用数值法求解连续系统的零状态响应3、学会求解连续系统的冲激响应和阶跃响应(二)掌握使用Matlab进行连续时间LTI系统的频率特性及频域分析方法1、学会运用MATLAB分析连续系统地频率特性2、学会运用MATLAB进行连续系统的频域分析(三)掌握使用Matlab进行连续时间LTI系统s域分析的方法1、学会运用MATLAB求拉普拉斯变换(LT)2、学会运用MATLAB求拉普拉斯反变换(ILT)3、学会在MATLAB环境下进行连续时间LTI系统s域分析二、实验原理及实例分析(一)连续系统时域分析(详细请参见实验指导第二部分的第5章相关部分)(二)连续时间LTI系统的频率特性及频域分析(详细请参见实验指导第二部分的第8章相关部分)(三)拉普拉斯变换及连续时间系统的s域分析(详细请参见实验指导第二部分的第10、11章相关部分)三、实验过程(一)熟悉三部分相关内容原理(二)完成作业已知某系统的微分方程如下:)(3)()(2)(3)(t e t e t r t r t r +'=+'+''其中,)(t e 为激励,)(t r 为响应。
1、用MATLAB 命令求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应(零状态响应分别使用符号法和数值法求解,零输入响应只使用符号法求解);>> eq='D2y+3*Dy+2*y=0';>> cond='y(0)=1,Dy(0)=2';>> yzi = dsolve(eq,cond);yzi = simplify(yzi);>> eq1 = 'D2y+3*Dy+2*y=Dx+3*x';eq2 = 'x= exp(-3*t)*Heaviside(t)';cond = 'y(-0.01)=0,Dy(-0.001)=0';yzs = dsolve(eq1,eq2,cond);yzs = simplify(yzs.y)yzs =heaviside(t)*(-exp(-2*t)+exp(-t))>> yt = simplify(yzi+yzs)yt =-3*exp(-2*t)+4*exp(-t)-exp(-2*t)*heaviside(t)+exp(-t)*heaviside(t)>> subplot(3,1,1);>> ezplot(yzi,[0,8]);grid on;>> title ('rzi');>> subplot(3,1,2);>> ezplot(yzs,[0,8]);>> grid on;>> title('rzs');>> subplot(3,1,3);>> ezplot(yt,[0,8]);grid on;>> title('完全响应')sys = tf([1,3],[1,3,2]);t = ts:dt:te;f = exp(-3*t).*uCT(t);y = lsim(sys,f,t);plot(t,y),grid on;axis([0,8,-0.02,0.27]);xlable('Time(sec)'),ylable('y(t)'); title('零状态响应')2、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''2)0(,1)0(),()(3='==---r r t u e t e t使用MATLAB 命令求出并画出系统的冲激响应和阶跃响应(数值法);用卷积积分法求系统的零状态响应并与(1)中结果进行比较;t = 0:0.001:4;sys = tf([1,3],[1,3,2]);h = impulse(sys,t);g = step(sys,t);subplot(2,1,1);plot(t,h),grid on;xlable('Time(sec)'),ylable('h(t)');title('冲激响应');subplot(2,1,2);plot(t,g),grid on;xlable('Time(sec)'),ylable('g(t)');title ('阶跃响应')_dt = 0.01;t1 = 0:dt:8;f1=exp(-3*t1);t2 = t1;sys = tf([1,3],[1,3,2]);f2 = impulse(sys,t2);[t,f]= ctsconv(f1,f2,t1,t2,dt)function[f,t] = ctsconv(f1,f2,t1,t2,dt)f = conv(f1,f2);f = f*dt;ts = min(t1)+min(t2);te = max(t1)+max(t2);t = ts:dt:te;subplot(1,1,1)plot(t,f);grid on;axis([min(t),max(t),min(f)-abs(min(f)*0.2),max(f)+abs(max(f)*0.2)]); title('卷积结果')3、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出此系统的幅频特性和相频特性;使用频域分析法求解系统的零状态响应并与(1)中结果进行比较;>> w = -3*pi:0.01:3*pi;b = [1,3];a = [1,3,2];H = freqs(b,a,w);subplot(2,1,1);plot(w,abs(H)),grid on;xlabel('\omega(rad/s)'),ylabel('|H(\omega)|');title ('H(w)的幅频特性');subplot(2,1,2);plot(w,angle(H)),grid on;xlabel('\omega(rad/s)'),ylabel('\phi(\omega)');title('H(w)的相频特性')H = sym('1/(i^2*w^2+3*i*w+2)'); H= simplify(ifourier(H)); subplot(3,1,1);ezplot(H,[0,8]),grid on;title('零状态响应')4、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''使用MATLAB 命令求出并画出t t e 2cos )(=时系统的稳态响应;t = 0:0.1:20;w = 2;H = (j*w+3)/(j^2*w^2+3*j*w+2);f = cos(2*t);y = abs(H)*cos(w*t+angle(H));subplot(2,1,1);plot(t,f);grid on;ylabel('f(t)'),xlabel('Time(s)');title('输入信号的波形');subplot(2,1,2);plot(t,y);grid on;ylabel('y(t)'),xlabel('Time(sec)');title('稳态响应的波形')5、)(3)()(2)(3)(t e t e t r t r t r +'=+'+''若已知条件同(1),借助MATLAB 符号数学工具箱实现拉普拉斯正反变换的方法求出并画出2)0(,1)0(),()(3='==---r r t u e t e t 时系统的零状态响应和零输入响应,并与(1)的结果进行比较。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
广东技术师范学院实验报告实验 (三) 项目名称:利用MATLAB 分析连续系统及离散系统的复频域特性一.实验目的1.掌握 Laplace 变换的意义、基本性质及应用。
2.掌握拉普拉斯变换的三维可视化表示。
3.理解系统函数的零、极点分布(极、零图)决定系统时间原函数的特性。
4.掌握系统冲激响应。
5. H (z )部分分式展开的MA TLAB 实现6. H (z )的零极点与系统特性的MATLAB 计算二.实验原理1.Laplace 变换和逆变换定义为⎰⎰∞+∞-∞-==j j stst ds e s F jt f dte tf s F σσπ)(21)()()(0( 4 – 1 )在 Matlab 中实现 Laplace 变换有两个途径:直接调用指令 laplace 和ilaplace 进行;根据定义式 ( 4 – 1 ),利用积分指令 int 实现。
相较而言,直接利用 laplace 和 ilaplace 指令实现机器变换要简洁一些。
调用格式:L=laplace(F) F=ilaplace(L)2.实现拉普拉斯曲面图及其可视化的步骤如下:a .定义两个向量x 和y 来确定绘制曲面图的复平面横座标和纵座标的范围。
b .调用meshgrid 函数产生包含绘制曲面图的s 平面区域所有等间隔取样点的复矩阵。
c .计算复矩阵s 定义的各样点处信号拉氏变换F(s)的函数值,并调用abs 函数求其模。
d .调用mesh 函数绘出其幅度曲面图。
3.在连续系统的复频域分析中,系统函数起着十分重要的作用,它包含了连续系统的固有特性。
通过系统函数可以对系统的稳定性、时域特性、系统频率响应等系统特性进行分析。
若连续系统的系统函数的零极点已知,系统函数便可确定下来,即系统函数H (s )的零极点分布完全决定了系统的特性。
系统函数的零点和极点位置可以用matlab 的多项式求根函数roots()来求得。
用roots()函数求得系统函数H(s)的零极点后,就可以用plot 命令在复平面上绘制出系统函数的零极点图。
4.系统冲激响应h (t )的时域特性完全由系统函数H (s )的极点位置决定,H (s )的每一个极点将决定h (t )的一项时间函数。
显然,H (s )的极点位置不同,h (t )的时域特性也完全不同。
用函数residue ()求出H (s )部分分式展开的系数后,便可根据其极点位置分布情况直接求出H (s )的拉普拉斯反变换h (t )。
且利用绘制连续时间系统冲激响应曲线的matlab 函数impulse (),将系统冲激响应h (t )的时域波形绘制出来。
5.利用tf()函数、pole()函数、zero()函数和pzmap()函数,能方便地求出系统函数的零极点,并绘出其零极点分布图。
调用格式:sys=tf(b,a); %b 为系统函数分子多项式系数构成的行向量;a 为分母多项式系数构成的行向量;sys 为系统函数对象。
p=pole(sys); %输出参量p 为返回包含系统函数所有极点位置的列向量。
z=zero(sys);pzmap(sys);%用于绘制系统函数零极点分布图和计算系统函数的零极点位置6.部分分式展开的MA TLAB 实现 [r,p,k]=residuez(num,den)num,den 分别为X (z )分子多项式和分母多项式的系数向量。
r 为部分分式的系数,p 为极点,k 为多项式的系数。
若为真分式,则k 为零。
7.H (z )的零极点与系统特性的MATLAB 计算 利用tf2zp 函数计算H (z )的零极点,调用形式为[z,p,k]=tf2zp(b,a)b 和a 分别为H (z )分子多项式和分母多项式的系数向量。
返回值z 为零点、p 为极点、 k 为增益常数。
H (z )零极点分布图可用zplane 函数画出,调用形式为zplane(b,a)三.实验内容1. 试用MATLAB 求函数)t (u e )t (u e )t (h tt2--+=的拉普拉斯变换,绘出其零极点分布图。
syms t;F=exp(-1*t)+exp(-2*t); L=laplace(F)求得L =1/(1+s)+1/(s+2); 即L=(2s+3)/(2+s^2+3*s); b=[0 2 3]; a=[1 3 2];sys=tf(b,a) p=pole(sys) z=zero(sys) Subplot(221) Pzmap(sys)-2-1.5-1-0.50P ole-Zero MapReal AxisI m a g i n a r y A x i s2. 使用Matlab 绘出下列信号拉普拉斯变换的三维曲面图。
a.()cos()()2tf t e t u t π-=b. ()2sin(2)()4f t t u t π=-a:syms t;F=exp(-1*t)*cos(pi/2); L=laplace(F)求得L =4967757600021511/811296384146005144064/(1+s); x=-1:0.1:0.5; %定义绘制曲面图的横坐标范围 y=-5:0.1:5; %定义绘制曲面图的纵坐标范围 [x,y]=meshgrid(x,y);s=x+i*y; %产生绘制曲面图范围的复矩阵F=abs(4967757600021511./811296384146005144064./(1+s)); %求单边指数信号的拉普拉斯变换幅度值mesh(x,y,F); %绘制拉普拉斯变换幅度曲面图 surf(x,y,F)colormap(hsv); %绘图修饰title('单边指数信号拉普拉斯变换幅度曲面图');%设置文本标题 xlabel('实轴') %设置横坐标标题 ylabel('虚轴') %设置纵坐标标题实轴单边指数信号拉普拉斯变换幅度曲面图虚轴b: syms t;F=2*sin(2*t-pi/4); L=laplace(F)求得:L =-1/4*2^(1/2)*s/(1/4*s^2+1)+1/2*2^(1/2)/(1/4*s^2+1); x=-1:0.1:0.5; %定义绘制曲面图的横坐标范围 y=-5:0.1:5; %定义绘制曲面图的纵坐标范围 [x,y]=meshgrid(x,y);s=x+i*y; %产生绘制曲面图范围的复矩阵F=abs(-1./4*2.^(1./2)*s./(1./4*s.^2+1)+1./2*2.^(1./2)./(1./4*s.^2+1)); %求单边指数信号的拉普拉斯变换幅度值mesh(x,y,F); %绘制拉普拉斯变换幅度曲面图 surf(x,y,F)colormap(hsv); %绘图修饰title('单边指数信号拉普拉斯变换幅度曲面图');%设置文本标题 xlabel('实轴') %设置横坐标标题 ylabel('虚轴') %设置纵坐标标题实轴单边指数信号拉普拉斯变换幅度曲面图虚轴3.已知系统函数如下,试用Matlab 绘出其零极点分布图,求出冲激响应,并判断系统是否稳定。
254321()23332s H s s s s s s +=+-+++b=[1 0 1];a=[1 2 -3 3 3 2]; sys=tf(b,a) p=pole(sys) z=zero(sys) Subplot(221) Pzmap(sys) Subplot(222) Impulse(b,a)-1-0.500.51Real AxisI m a g i n a r y A x i s00.51 1.52 2.50.511.52Impulse ResponseTime (sec)A m p l i t u d e该系统不稳定4.利用Matlab 的residuez 函数求下式的部分分式展开及对应的h[k]。
432432216445632()33151812z z z z H z z z z z ++++=+-+-num = [2 16 44 56 32]; den = [3 3 -15 18 -12]; [r,p,k] = residuez(num,den) figure(1);stem(h) xlabel('k')title('Impulse Respone') [H,w]=freqz(num,den); 求得: r =-0.0177 9.4914 -3.0702 + 2.3398i -3.0702 - 2.3398ip =-3.2361 1.2361 0.5000 + 0.8660i 0.5000 - 0.8660i k =-2.666705101520253035-1-0.50.511.522.5k5.试画出系统432432216445632()33151812z z z z H z z z z z ++++=+-+-的零极点分布图,求其单位冲激响应h [k ]和频率响应H (e jΩ) 。
b =[2 16 44 56 32];a =[3 3 -15 18 -12]; figure(1);zplane(b,a); num=[2 16 44 56 32]; den=[3 3 -15 18 -12];h=impz(num,den); figure(2);stem(h) xlabel('k')title('Impulse Respone') [H,w]=freqz(num,den); figure(3);plot(w/pi,abs(H)) xlabel('Frequency \omega') title('Magnitude Respone')-4-3.5-3-2.5-2-1.5-1-0.50.51-2-1.5-1-0.500.511.52Real PartI m a g i n a r y P a r t1234567891011kImpulse Respone0.10.20.30.40.50.60.70.80.910200400600800100012001400160018002000FrequencyMagnitude Respone四.实验总结。