实验6_离散时间系统的z域分析报告
Z变换离散时间系统的Z域分析

| x[n] | M
n1
z 1
显然lim X (z) x[0]
z
学习材料
22
§8.2 Z变换及其收敛域
终值定理:假设n<0,xn]=0,则序列的终值为
lim x[n] lim{( z 1)X (z)}
n
z1
证明:利用单边Z 变换时移性质,有:
Z{x[n 1]} x[n 1]zn zX (z) zx[0] n0
注:交集 R1 一R2般小于R1或R2。但有时会扩大,如
零点与极点相消时。
学习材料
15
§8.2 Z变换及其收敛域
2).时域平移(双边信号〕
x[n] X (z), ROC Rz x[n n0 ] zn0 X (z), ROC Rz ,
证明:依据双边Z变换的定义式,有
Z[x[n n0 ]} x[n n0 ]zn zn0 x[k]zk
X (z) x[n]r ne jn DTFT{x[n]r n} n
DTFT{x[n] | z |n}
即x[n] | z |n 是收敛的
假设 x[n] | z |n x[n] n , n由0 .
| z |n n | z |
即,右边函数时收敛域为| z|>α的圆外地域。
其它信号依学习此材料 类推…。
z
,
n0
z 1
极点z1 1,
1
Re
∴收敛域为 |z|>1 的单位圆以外。
ROC | z | a
例8-2.求 x[n] anu的[nz变1换] 。xn]是一个从-1到-∞的左
边序列。
解:
X (z) x[n]zn anu[n 1]zn
n
n
1
数字信号处理实验离散系统的Z域分析

数字信号处理实验报告实验名称:离散系统的Z 域分析学号:姓名: 评语: 成绩: 一、实验目的1、掌握离散序列z 变换的计算方法。
2、掌握离散系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的因果性和稳定性。
3、掌握利用MATLAB 进行z 反变换的计算方法。
二、实验原理与计算方法1、z 变换离散序列x (n )的z 变换定义为:。
∑∞-∞=-=n n z n x Z X )()(在MATLAB 中可以利用符号表达式计算一个因果序列的z 变换。
其命令格式为:syms n; f=(1/2)^n+(1/3)^n;ztrans(f)2、离散系统的系统函数及因果稳定的系统应满足的条件一个线性移不变离散系统可以用它的单位抽样响应h (n )来表示其输入与输出关系,即y (n )= x (n )* h (n )对该式两边取z 变换,得: Y (z )= X (z )· H (z )则: )()()(z X z Y z H =将H (z )定义为系统函数,它是单位抽样响应h (n )的z 变换,即∑∞-∞=-==n n z n h n h Z z H )()]([)(对于线性移不变系统,若n <0时,h (n )=0,则系统为因果系统;若,则系统稳∞<∑∞-∞=n n h |)(|定。
由于h (n )为因果序列,所以H (z )的收敛域为收敛圆外部区域,因此H (z )的收敛域为收敛圆外部区域时,系统为因果系统。
因为,若z =1时H (z )收敛,即∑∞-∞=-=n n z n h z H )()(,则系统稳定,即H(z)的收敛域包括单位圆时,系统稳定。
∞<=∑∞-∞==n z n h z H |)(||)(1因此因果稳定系统应满足的条件为:,即系统函数H (z )的所有极点全部落在1,||<∞≤<ααz z 平面的单位圆之内。
3、MATLAB 中系统函数零极点的求法及零极点图的绘制方法MATLAB 中系统函数的零点和极点可以用多项式求根函数roots ()来实现,调用该函数的命令格式为:p=roots(A)。
信号实验离散系统的Z域分析

信号实验离散系统的Z域分析上机实验8 离散系统的Z域分析⼀.实验⽬的1. 掌握离散时间信号的Z变换和Z逆变换的实现⽅法与编程思想。
2. 掌握系统频率响应函数幅频特性、相频特性和系统函数的零极点图的绘制⽅法。
3. 了解函数ztrans,iztrans,zplane,dimpulse,dstep和freqz的调⽤格式及作⽤。
4. 了解利⽤零极点图判断系统稳定性的原理。
⼆.实验原理离散系统的分析⽅法可分为时域解法和变换域解法两⼤类。
其中离散系统变换域解法只有⼀种。
即Z变换域解法。
Z变换域没有物理意义,它只是⼀种数学⼿段,之所以在离散系统的分析中引⼊Z变换的概念,就是要像在连续系统分析是引⼊拉⽒变换⼀样,简化分析⽅法和过程,为系统的分析研究提供⼀条新的途径。
这种⽅法的数学描述为Z变换及其逆变换,这种⽅法称为离散信号与系统的Z域分析法。
三.实验内容:验证性试验1 Z变换确定信号f1(n)=n3U(n),f2(n)=cos(2n)U(n)的Z变换。
程序:%确定信号的Z变换syms n zf1=3^n;f1_z=ztrans(f1)f2=cos(2*n);f2_z=ztrans(f2)结果:f1_z =z/(z - 3)f2_z =(z*(z - cos(2)))/(z^2 - 2*cos(2)*z + 1)2 Z反变换已知离散LTI系统的激励函数为f(k)=(-1)^kU(k),单位序列响应h(k)=(1/3*(-1)^k+2/3*3^k)U(k),采⽤变换域分析法确定系统的零状态响应程序:syms k zf=(-1)^k;f_z=ztrans(f);h=1/3*(-1)^k+2/3*3^k;h_z=ztrans(h);yf_z=f_z*h_z;yf=iztrans(yf_z)结果:yf =(5*(-1)^n)/6 + 3^n/2 + ((-1)^n*(n - 1))/3计算1/((1+5*z^(-1))*(1-2*z^(-1))^2),|z|>5的反变换程序:num=[0,1];den=poly([-5,1,1]);[r,p,k]=residuez(num,den)结果:r =-0.1389 + 0.0000i-0.0278 - 0.0000i0.1667 + 0.0000ip =-5.0000 + 0.0000i1.0000 + 0.0000i1.0000 - 0.0000ik = []3采⽤MATLAB语⾔编程,绘制离散LTI系统函数的零极点图,并从零极点图判断系统的稳定性。
北京理工大学信号与系统实验报告6-离散时间系统的z域分析

实验6 离散时间系统的z 域分析(综合型实验)一、实验目的1) 掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。
2) 学习和掌握离散时间系统系统函数的定义及z 域分析方法。
3) 掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理与方法 1. z 变换序列(n)x 的z 变换定义为(z)(n)znn X x +∞-=-∞=∑ (1)Z 反变换定义为11(n)(z)z 2n rx X dz jπ-=⎰(2)MATLAB 中可采用符号数学工具箱ztrans 函数和iztrans 函数计算z 变换和z 反变换: Z=ztrans(F)求符号表达式F 的z 变换。
F=iztrans(Z)求符号表达式Z 的z 反变换 2. 离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换(z)(n)znn H h +∞-=-∞=∑ (3)此外连续时间系统的系统函数还可由系统输入与输出信号z 变换之比得到(z)(z)/X(z)H Y = (4)由(4)式描述的离散时间系统的系统时间函数可以表示为101101...(z)...MM NN b b z b z H a a z a z----+++=+++ (5) 3. 离散时间系统的零极点分析MATLAB 中可采用roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。
此外还可采用MATLAB 中zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数的调用格式为:zplane(b,a) b 、a 为系统函数分子分母多项式的系数向量(行向量) zplane(z,p) z 、p 为零极点序列(列向量) 系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统频率特性响应以及判断系统的稳定性; 系统函数的极点位置决定了系统的单位抽样响应的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。
第6章 离散时间系统的z域分析

1 | z | 1 2 | z | 2
例 求序列f (k ) cosh (2k ) (k )的z变换。
1 2k 由于 cosh ( k ) (e e 2 k ) 2 2 在单边指数序列a k ( k )的z变换中令a e 2 , 可得 z e (k ) , | z || e 2 | z e2 根据z变换的线性性质可得
f (k )
3
f ( k ) ( k ) 3
2
2
1
1 o 1 2
f ( k 1) 3 2
k
1 o 1 2
f ( k 1) ( k ) 3 2
1
k
1
1 o 1 2
f ( k 1)
k
1 o 1 2
f ( k 1) ( k )
3
k
3
2 1
1 o 1 2
k
1 o 1 2
k
(1)双边Z变换的移位 若 f (k ) F ( z )
k 0
该式称为单边Z变换。
将f ( k )的Z变换简记为Z [ f ( k )] ,象函数F ( z )的逆z变换 简记为Z
1
[ F ( z )] f ( k )与F ( z )两者间的关系简记为 ,
f (k ) F ( z )
在拉普拉斯变换分析中重点讨论了单边拉普拉斯 变换,这是由于在连续时间系统中,非因果信号 的应用较少。 对于离散系统,非因果信号也有一定的应用范围, 因此对单、双边z变换都进行讨论。
a
b
O
Re(z )
6.1.3 常见序列的Z变换
(k )
1
O
k
(k ) 1
离散时间信号与系统的Z域分析

《信号与系统》课程实验报告变换。
zz z z z z F 2112)(232+++-=一、实验原理的验证 1、离散系统零极点图实验原理如下:离散系统可以用差分方程描述:∑∑==-=-Mm m Ni i m k f b i k y a 0)()(Z 变换后可得系统函数:NN MM z a z a a z b z b b z F z Y z H ----++++++==......)()()(110110 可以用root 函数可分别求零点和极点。
例7-4 求系统函数零极点图131)(45+-+=z z z z H实验结果如下:2、离散系统的频率特性实验原理如下:离散系统的频率特性可由系统函数求出,既令ωj e z =,函数freqz 可计算频率特性,调用格式是:[H ,W]=freqz(b,a,n),b 和a 是系统函数分子分母系数,n 是π-0范围内n 个等份点,默认值为512,H 是频率响应函数值,W 是相应频率点; 例7-5 系统函数z z z H 5.0)(-=10个频率点的计算结果为幅频特性曲线相频特性曲线freqz语句直接画图例7-7已知系统函数114/11)1(4/5)(----=z z z H ,画频率响应和零极点图。
零极点图幅频特性曲线相频特性曲线二、已知离散系统的系统函数如下所示:1422)(232+-++=z z z z z H试用MATLAB 实现下列分析过程: (1)求出系统的零极点位置;(2)绘出系统的零极点图,根据零极点图判断系统的稳定性; (3)绘出系统单位响应的时域波形,并分析系统稳定性与系统单位响应时域特性的关系。
(1)由计算结果可知:系统的极点为p0=-3.3028、p1=1、p2=0.3028。
由计算结果可知:系统的零点为z0=1.4142i 、z1=-1.4142i 。
(2)系统的零极点图如下:程序清单如下: a=[1 2 -4 1]; b=[1 0 2]; ljdt(a,b)p=roots(a)q=roots(b)pa=abs(p)由图可知:第一个极点(p0)在单位圆外部,第二个极点(p1)在单位圆上,第三个极点(p2)在单位圆内部,因为有一个极点在单位圆外部,故该系统是不稳定的系统(稳定系统要求极点全部在单位圆内)。
数字信号处理实验离散时间 LTI 系统的时域分析与 Z 域分析

实验一离散时间LTI系统的时域分析与Z域分析一、实验目的1、掌握用MATLAB求解离散时间系统的零状态响应、单位脉冲响应和单位阶跃响应;2、掌握离散时间系统系统函数零极点的计算方法和零极点图的绘制方法,并能根据零极点图分析系统的稳定性。
二、实验原理1、离散时间系统的时域分析(1)离散时间系统的零状态响应离散时间LTI系统可用线性常系数差分方程来描述,即MATLAB中函数filter可对式(1-1)的差分方程在指定时间范围内的输入序列所产生的响应进行求解。
函数filter的语句格式为:y=filter(b,a,x)其中,x为输入的离散序列;y为输出的离散序列;y的长度与x的长度一样;b与a分别为差分方程右端与左端的系数向量。
(2)离散时间系统的单位脉冲响应系统的单位脉冲响应定义为系统在 (n)激励下系统的零状态响应,用h(n)表示。
MATLAB求解单位脉冲响有两种方法:一种是利用函数filter;另一种是利用函数impz。
impz函数的常用语句格式为impz(b,a,n),其中b和a的定义见filter,n表示脉冲响应输出的序列个数。
(3)离散时间系统的单位阶跃响应系统的单位阶跃响应定义为系统在ε(n)激励下系统的零状态响应。
MATLAB求解单位脉冲响应有两种方法:一种是利用函数filter,另一种是利用函数stepz。
stepz函数的常用语句格式为stepz(b,a,N)其中,b和a的定义见filter,N表示脉冲响应输出的序列个数。
2、离散时间系统的Z域分析(1)系统函数的零极点分析离散时间系统的系统函数定义为系统零状态响应的z变换与激励的z变换之比,即如果系统函数H(z)的有理函数表示式为那么,在MATLAB中系统函数的零极点就可通过函数roots得到,也可借助函数tf2zp得到。
roots的语法格式为:Z=roots(b)%计算零点b=[b1b2…bmbm+1]P=roots(a)%计算极点a=[a1a2…anan+1]tf2zp的语句格式为[Z,P,K]=tf2zp(b,a)其中,b与a分别表示H(z)的分子与分母多项式的系数向量。
试验离散系统的Z域分析

实验三、 离散系统的Z 域分析(一)实验要求1)学习和掌握离散系统的频率特性及其幅度特性、相位特性的物理意义; 2)深入理解离散系统频率特性的对称性和周期性; 3)认识离散系统频率特性与系统参数之间的关系;4)通过阅读、修改并调试本实验系统所给源程序,加强计算机编程能力;(二)实验内容1、计算差分方程(1)用MATLAB 计算差分方程当输入序列为 时的输出结果。
MATLAB 程序如下: N=41;a=[0.8 -0.44 0.36 0.22]; b=[1 0.7 -0.45 -0.6]; x=[1 zeros(1,N-1)]; k=0:1:N-1; h=filter(a,b,x); stem(k,h)xlabel('n');ylabel('h(n)')请给出了该差分方程的前41个样点的输出,即该系统的单位脉冲响应。
(说明:y=filter(a,b,x),计算系统对输入信号向量x 的零状态响应输出信号向量y,x 与y 长度相等,其中a 和b 是∑∑-=-Mii Nii i n x b i n y a )()(所给差分方程的相量。
详见教材P25-27)2、用MATLAB 计算差分方程所对应的系统函数的FT 。
差分方程所对应的系统函数为:1231230.80.440.360.02()10.70.450.6z z z H z z z z -------++=+--其FT 为23230.80.440.360.02()10.70.450.6j j j j j j j e e e H ee e e ωωωωωωω--------++=+--用MATLAB 计算的程序如下:k=256;num=[0.8 -0.44 0.36 0.02]; den=[1 0.7 -0.45 -0.6]; w=0:pi/k:pi; h=freqz(num,den,w); subplot(2,2,1); plot(w/pi,real(h));grid title('实部')xlabel('\omega/\pi');ylabel('幅度') subplot(2,2,2); plot(w/pi,imag(h));grid title('虚部')xlabel('\omega/\pi');ylabel('Amplitude') subplot(2,2,3); plot(w/pi,abs(h));grid title('幅度谱')xlabel('\omega/\pi');ylabel('幅值') subplot(2,2,4);plot(w/pi,angle(h));grid title('相位谱')xlabel('\omega/\pi');ylabel('弧度')(说明:freqz 为计算数字滤波器H(z)的频率响应函数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验6 离散时间系统的z 域分析一、实验目的1.掌握z 变换及其反变换的定义,并掌握MATLAB 实现方法。
2.学习和掌握离散时间系统系统函数的定义及z 域分析方法。
3.掌握系统零极点的定义,加深理解系统零极点分布与系统特性的关系。
二、实验原理1. Z 变换序列x(n)的z 变换定义为()()nn X z x n z+∞-=-∞=∑Z 反变换定义为11()()2n rx n X z z dzj π-=⎰Ñ在MATLAB 中,可以采用符号数学工具箱的ztrans 函数和iztrans 函数计算z 变换和z 反变换:Z=ztrans(F) 求符号表达式F 的z 变换。
F=ilaplace(Z) 求符号表达式Z 的z 反变换。
2.离散时间系统的系统函数离散时间系统的系统函数H(z)定义为单位抽样响应h(n)的z 变换()()nn H z h n z+∞-=-∞=∑此外,连续时间系统的系统函数还可以由系统输入和输出信号的z 变换之比得到()()/()H z Y z X z =由上式描述的离散时间系统的系统函数可以表示为101101()MM N N b b z b z H z a a z a z ----+++=+++……3.离散时间系统的零极点分析离散时间系统的零点和极点分别指使系统函数分子多项式和分母多项式为零的点。
在MATLAB 中可以通过函数roots 来求系统函数分子多项式和分母多项式的根,从而得到系统的零极点。
此外,还可以利用MATLAB 的zplane 函数来求解和绘制离散系统的零极点分布图,zplane 函数调用格式为:zplane(b,a) b,a 为系统函数的分子、分母多项式的系数向量(行向量)。
zplane(z,p) z,p 为零极点序列(列向量)。
系统函数是描述系统的重要物理量,研究系统函数的零极点分布不仅可以了解系统单位抽样响应的变化,还可以了解系统的频率特性响应以及判断系统的稳定性:①系统函数的极点位置决定了系统单位抽样响应h(n)的波形,系统函数零点位置只影响冲激响应的幅度和相位,不影响波形。
②系统的频率响应取决于系统的零极点,根据系统的零极点分布情况,可以通过向量分析系统的频率响应。
③因果的离散时间系统稳定的充要条件是H(z)的全部极点都位于单位圆内。
三、实验内容(1)已知因果离散时间系统的系统函数分别为:①23221()0.50.0050.3z z H z z z z ++=--+ ②324322()3331z z H z z z z z -+=+-+-试采用MATLAB 画出其零极点分布图,求解系统的冲激响应h(n)和频率响应H(),并判断系统是否稳定。
①MATLAB 代码如下: b=[1 2 1];a=[1 -0.5 -0.005 0.3]; zplane(b,a); b1=[1 2 1];a1=[1 -0.5 -0.005 0.3 0]; [r,p,k]=residue(b1,a1) r =-1.5272 - 2.2795i -1.5272 + 2.2795i -0.2790 + 0.0000i 3.3333 + 0.0000i p =0.5198 + 0.5346i 0.5198 - 0.5346i -0.5396 + 0.0000i 0.0000 + 0.0000i k = []实验结果分析:由零极点分布可得 冲激响应:h(n)=((-1.5272 - 2.2795*i)*(0.5198 + 0.5346i)^n+(-1.5272 + 2.2795*i)*(0.5198 - 0.5346*i)^n+(-0.2790)*(-0.5396)^n)*heaviside(n) 频率响应:Ωj e232()21()()0.5()0.0050.3jw jw jwjw jw jwe e H e e e e ++=--+ 由于该系统所有极点位于Z 平面单位圆内,故系统是稳定的。
②MATLAB 代码如下: b=[1 -1 0 2]; a=[3 3 -1 3 -1]; zplane(b,a); b1=[1 -1 0 2];a1=[3 3 -1 3 -1 0]; [r,p,k]=residue(b1,a1) r =-0.1375 + 0.0000i 0.2628 + 0.3222i 0.2628 - 0.3222i 1.6119 + 0.0000i -2.0000 + 0.0000i p =-1.6462 + 0.0000i 0.1614 + 0.7746i 0.1614 - 0.7746i 0.3234 + 0.0000i 0.0000 + 0.0000i k = []实验结果分析: 由零极点分布可得 冲激响应:h=((-0.1375)*(-1.6462)^n+(0.2628 + 0.3222*i)*(0.1614 + 0.7746*i)^n+(0.2628 - 0.3222*i)*(0.1614 - 0.7746*i)^n+(1.6119)*(0.3234)^n)*heaviside(n); 频率响应:32432()()2()3()3()()31jw jw jwjw jw jw jw e e H e e e e e -+=+-+- 由于该系统所有存在极点位于Z 平面单位圆外,故系统是不稳定的。
(2)已知离散时间系统系统函数的零点z 和极点p 分别为:①z=0,p=0.25 ②z=0,p=1 ③z=0,p=-1.25 ④z=0,p 1=60.8je π,p 2=60.8jeπ- ⑤z=0,p 1= 8jeπ,p 2= 8jeπ-⑥z=0,p 1= 341.2jeπ,p 2= 341.2jeπ-试用MATLAB 绘制上述6种不同情况下,系统函数的零极点分布图,并绘制相应单位抽样响应的时域波形,观察分析系统函数极点位置对单位抽样响应时域特性的影响和规律。
①MATLAB 代码如下:b=[1 0];a=[1 -0.25];subplot(121);zplane(b,a); %绘出零极点分布图subplot(122);impz(b,a,0:10); %绘出单位抽样响应得到图像如下:②MATLAB代码如下:b=[1 0];a=[1 -1];subplot(121);zplane(b,a);subplot(122);impz(b,a,0:10);得到图像如下:③MATLAB代码如下:b=[1 0];a=[1 1.25];subplot(121);zplane(b,a);impz(b,a,0:20);得到图像如下:④MATLAB代码如下:z=[0]';p=[0.8*exp(i*pi/6) 0.8*exp(-i*pi/6)]'; subplot(121);zplane(z,p);b=[1 0];a=[1 -1.6*cos(pi/6) 0.64];subplot(122);impz(b,a,0:30);得到图像如下:⑤MATLAB代码如下:z=[0]';p=[exp(i*pi/8) exp(-i*pi/8)]'; subplot(121);zplane(z,p);b=[1 0];a=[1 -2*cos(pi/8) 1];impz(b,a,0:30);得到图像如下:⑥MATLAB代码如下:z=[0]';p=[1.2*exp(3*i*pi/4) 1.2*exp(-3*i*pi/4)]';subplot(121);zplane(z,p);b=[1 0];a=[1 -2.4*cos(-3*pi/4) 1.44];subplot(122);impz(b,a,0:30);得到图像如下:实验结果分析:由以上6种情况可以总结出:①当极点位于单位圆内时,h(n)为衰减序列;②当极点位于单位圆上时,h(n)为等幅序列;③当极点位于单位圆外时,h(n)为增幅序列;④若h(n)有一阶实数极点,则h(n)为指数序列;⑤若h(n)有一阶共轭极点,则h(n)为指数振荡序列,并且当h(n)的极点位于虚轴左边时,h(n)按一正一负的规律交替变化。
(3)已知离散时间系统的系统函数分别为:①66(2)()(0.8)(0.8)jjz z H z z ez eππ-+=--②66(2)()(0.8)(0.8)jjz z H z z ez eππ--=--上述两个系统具有相同的极点,只是零点不同,试用MATLAB 分别绘制上述两个系统的零极点分布图及相应单位抽样响应的时域波形,观察分析系统函数零点位置对单位抽样响应时域特性的影响。
①MATLAB 代码如下:z=[0 -2]';p=[0.8*exp(i*pi/6) 0.8*exp(-i*pi/6)]'; subplot(121); zplane(z,p); b=[1 2 0];a=[1 -1.6*cos(pi/6) 0.64]; subplot(122); impz(b,a,0:30);得到图像如下:②MATLAB 代码如下:z=[0 2]';p=[0.8*exp(i*pi/6) 0.8*exp(-i*pi/6)]'; subplot(121); zplane(z,p); b=[1 -2 0];a=[1 -1.6*cos(pi/6) 0.64]; subplot(122);impz(b,a,0:30);得到图像如下:实验结果分析:从图像看出,两个系统极点相同,零点互为相反数,得到的h(n)各值也对应相反,但收敛性一致,故在有相同极点的情况下,零点分布只影响系统时域响应的幅度,不影响响应模式。
四、实验心得体会。