排列数、组合数公式及二项式定理的应用
排列组合二项式定理知识点

排列组合二项定理考试内容:分类计数原理与分步计数原理.排列.排列数公式.组合.组合数公式.组合数的两个性质.二项式定理.二项展开式的性质.考试要求:1掌握分类计数原理与分步计数原理,并能用它们分析和解决一些简单的应用问题.2理解排列的意义,掌握排列数计算公式,并能用它解决一些简单的应用问题.3理解组合的意义,掌握组合数计算公式和组合数的性质,并能用它们解决一些简单的应用问题.4掌握二项式定理和二项展开式的性质,并能用它们计算和证明一些简单的问题.排列组合二项定理知识要点一、两个原理.1. 乘法原理、加法原理.2. 可.以有..的排列...重复..元素从m个不同元素中,每次取出n个元素,元素可以重复出现,按照一定的顺序排成一排,那么第一、第二……第n位上选取元素的方法都是m个,所以从m 个不同元素中,每次取出n个元素可重复排列数m·m·… m = m n.. 例如:n 件物品放入m个抽屉中,不限放法,共有多少种不同放法解:n m种二、排列.1. ⑴对排列定义的理解.定义:从n个不同的元素中任取mm≤n个元素,按照一定顺序......排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. ⑵相同排列.如果;两个排列相同,不仅这两个排列的元素必须完全相同,而且排列的顺序也必须完全相同. ⑶排列数.从n 个不同元素中取出mm≤n 个元素排成一列,称为从n 个不同元素中取出m 个元素的一个排列. 从n 个不同元素中取出m 个元素的一个排列数,用符号m n A 表示.⑷排列数公式:注意:!)!1(!n n n n -+=⋅ 规定0 = 1111--++=⋅+=m nm n m n m m m n m n mA A C A A A 11--=m n m n nA A 规定10==n n n C C 2. 含有可重元素......的排列问题. 对含有相同元素求排列个数的方法是:设重集S 有k 个不同元素a 1,a 2,…...a n 其中限重复数为n 1、n 2……n k ,且n = n 1+n 2+……n k , 则S 的排列个数等于!!...!!21k n n n n n =.例如:已知数字3、2、2,求其排列个数3!2!1)!21(=+=n 又例如:数字5、5、5、求其排列个数其排列个数1!3!3==n .三、组合.1. ⑴组合:从n 个不同的元素中任取mm≤n 个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合.⑵组合数公式:)!(!!!)1()1(m n m n C m m n n n A A C m nm mm nmn-=+--==⑶两个公式:①;mn nm n C C -= ②m n m n m n C C C 11+-=+ ①从n 个不同元素中取出m 个元素后就剩下n-m 个元素,因此从n 个不同元素中取出 n-m 个元素的方法是一一对应的,因此是一样多的就是说从n 个不同元素中取出n-m 个元素的唯一的一个组合.或者从n+1个编号不同的小球中,n 个白球一个红球,任取m 个不同小球其不同选法,分二类,一类是含红球选法有1m n 111m n C C C --=⋅一类是不含红球的选法有m n C②根据组合定义与加法原理得;在确定n+1个不同元素中取m 个元素方法时,对于某一元素,只存在取与不取两种可能,如果取这一元素,则需从剩下的n个元素中再取m-1个元素,所以有C 1-m n ,如果不取这一元素,则需从剩余n 个元素中取出m 个元素,所以共有C m n 种,依分类原理有mn m n m n C C C 11+-=+.⑷排列与组合的联系与区别.联系:都是从n 个不同元素中取出m 个元素.区别:前者是“排成一排”,后者是“并成一组”,前者有顺序关系,后者无顺序关系.⑸①几个常用组合数公式 ②常用的证明组合等式方法例. i. 裂项求和法. 如:)!1(11)!1(!43!32!21+-=++++n n n利用!1)!1(1!1n n n n --=- ii. 导数法. iii. 数学归纳法. iv. 倒序求和法.v. 递推法即用m n m n m n C C C 11+-=+递推如:413353433+=+++n n C C C C C . vi. 构造二项式. 如:nn n n n n C C C C 222120)()()(=+++证明:这里构造二项式n n n x x x 2)1()1()1(+=++其中n x 的系数,左边为22120022110)()()(n n n n n n n n n n n n n n n n C C C C C C C C C C C +++=⋅++⋅+⋅+⋅-- ,而右边nn C 2=四、排列、组合综合.1. I. 排列、组合问题几大解题方法及题型: ①直接法. ②排除法.③捆绑法:在特定要求的条件下,将几个相关元素当作一个元素来考虑,待整体排好之后再考虑它们“局部”的排列.它主要用于解决“元素相邻问题”,例如,一般地,n 个不同元素排成一列,要求其中某)(n m m ≤个元素必相邻的排列有m m m n m n A A ⋅+-+-11个.其中11+-+-m n m n A 是一个“整体排列”,而m m A 则是“局部排列”.又例如①有n 个不同座位,A 、B 两个不能相邻,则有排列法种数为-2n A 2211A An ⋅-. ②有n 件不同商品,若其中A 、B 排在一起有2211A An n ⋅--.③有n 件不同商品,若其中有二件要排在一起有112--⋅n n nA A. 注:①③区别在于①是确定的座位,有22A 种;而③的商品地位相同,是从n 件不同商品任取的2个,有不确定性.④插空法:先把一般元素排列好,然后把待定元素插排在它们之间或两端的空档中,此法主要解决“元素不相邻问题”.例如:n 个元素全排列,其中m 个元素互不相邻,不同的排法种数为多少mm n m n m n A A 1+---⋅插空法,当n – m+1≥m, 即m≤21+n 时有意义.⑤占位法:从元素的特殊性上讲,对问题中的特殊元素应优先排列,然后再排其他一般元素;从位置的特殊性上讲,对问题中的特殊位置应优先考虑,然后再排其他剩余位置.即采用“先特殊后一般”的解题原则.⑥调序法:当某些元素次序一定时,可用此法.解题方法是:先将n 个元素进行全排列有n n A 种,)(n m m 个元素的全排列有mm A 种,由于要求m 个元素次序一定,因此只能取其中的某一种排法,可以利用除法起到去调序的作用,即若n个元素排成一列,其中m 个元素次序一定,共有m mn n A A 种排列方法.例如:n 个元素全排列,其中m 个元素顺序不变,共有多少种不同的排法解法一:逐步插空法m+1m+2…n = n/ m;解法二:比例分配法mm n n A A /.⑦平均法:若把kn 个不同元素平均分成k 组,每组n 个,共有k knnn n k n kn A C C C )1(-⋅.例如:从1,2,3,4中任取2个元素将其平均分成2组有几种分法有3!224=C 平均分组就用不着管组与组之间的顺序问题了又例如将200名运动员平均分成两组,其中两名种子选手必在一组的概率是多少!2/102022818C C C P =注意:分组与插空综合. 例如:n 个元素全排列,其中某m 个元素互不相邻且顺序不变,共有多少种排法有m m m m n m n m n A A A /1+---⋅,当n – m+1 ≥m, 即m≤21+n 时有意义.⑧隔板法:常用于解正整数解组数的问题.例如:124321=+++x x x x 的正整数解的组数就可建立组合模型将12个完全相同的球排成一列,在它们之间形成11个空隙中任选三个插入3块摸板,把球分成4个组.每一种方法所得球的数目依次为4321,,,x x x x 显然124321=+++x x x x ,故2,x 是方程的一组解.反之,方程的任何一组解),,,(4321y y y y ,对应着惟一的一种在12个球之间插入隔板的方式如图所示故方程的解和插板的方法一一对应. 即方程的解的组数等于插隔板的方法数311C .注意:若为非负数解的x 个数,即用na a a , (21)ia 等于1+i x ,有A a a a A x x x x n n =-+-+-⇒=+++1...11...21321,进而转化为求a 的正整数解的个数为2x 41-+n n A C .⑨定位问题:从n 个不同元素中每次取出k 个不同元素作排列规定某r 个元素都包含在内,并且都排在某r 个指定位置则有rk r n r r A A --.例如:从n 个不同元素中,每次取出m 个元素的排列,其中某个元素必须固定在或不固定在某一位置上,共有多少种排法固定在某一位置上:11--m n A ;不在某一位置上:11---m n m n A A 或11111----⋅+m n m m n A A A 一类是不取出特殊元素a,有mn A 1-,一类是取特殊元素a,有从m-1个位置取一个位置,然后再从n-1个元素中取m-1,这与用插空法解决是一样的 ⑩指定元素排列组合问题.i. 从n 个不同元素中每次取出k 个不同的元素作排列或组合,规定某r 个元素都包含在内 ;先C 后A 策略,排列k k r k r n r r A C C --;组合r k r n r r C C --.ii. 从n 个不同元素中每次取出k 个不同元素作排列或组合,规定某r 个元素都不包含在内;先C 后A 策略,排列k k k r n A C -;组合k r n C -.iii 从n 个不同元素中每次取出k 个不同元素作排列或组合,规定每个排列或组合都只包含某r 个元素中的s 个元素;先C 后A 策略,排列kk sk r n sr A C C --;组合sk r n sr C C --.II. 排列组合常见解题策略:①特殊元素优先安排策略;②合理分类与准确分步策略;③排列、组合混合问题先选后排的策略处理排列组合综合性问题一般是先选元素,后排列;④正难则反,等价转化策略;⑤相邻问题插空处理策略;⑥不相邻问题插空处理策略;⑦定序问题除法处理策略;⑧分排问题直排处理的策略;⑨“小集团”排列问题中先整体后局部的策略;⑩构造模型的策略.2. 组合问题中分组问题和分配问题.①均匀不编号分组:将n 个不同元素分成不编号的m 组,假定其中r 组元素个数相等,不管是否分尽,其分法种数为r r A A /其中A 为非均匀不编号分组中分法数.如果再有K 组均匀分组应再除以k k A .例:10人分成三组,各组元素个数为2、4、4,其分法种数为1575/224448210=A C C C .若分成六组,各组人数分别为1、1、2、2、2、2,其分法种数为44222224262819110/A A C C C C C C ⋅②非均匀编号分组: n 个不同元素分组,各组元素数目均不相等,且考虑各组间的顺序,其分法种数为m mA A ⋅ 例:10人分成三组,各组人数分别为2、3、5,去参加不同的劳动,其安排方法为:335538210A C C C ⋅⋅⋅种.若从10人中选9人分成三组,人数分别为2、3、4,参加不同的劳动,则安排方法有334538210A C C C ⋅种③均匀编号分组:n 个不同元素分成m 组,其中r 组元素个数相同且考虑各组间的顺序,其分法种数为m mr r A A A ⋅/. 例:10人分成三组,人数分别为2、4、4,参加三种不同劳动,分法种数为33224448210A A C C C ⋅ ④非均匀不编号分组:将n 个不同元素分成不编号的m 组,每组元素数目均不相同,且不考虑各组间顺序,不管是否分尽,其分法种数为1m n C A =21m m -n C …k m )m ...m (m -n 1-k 21C +++例:10人分成三组,每组人数分别为2、3、5,其分法种数为25205538210=C C C若从10人中选出6人分成三组,各组人数分别为1、2、3,其分法种数为126003729110=C C C .五、二项式定理.1. ⑴二项式定理:nn n r r n r n n n n nn b a C b a C b a C b a C b a 01100)(+++++=+-- . 展开式具有以下特点: ① 项数:共有1+n 项;② 系数:依次为组合数;,,,,,,210n n rn n n n C C C C C③ 每一项的次数是一样的,即为n 次,展开式依a 的降幕排列,b 的升幕排列展开.⑵二项展开式的通项.n b a )+(展开式中的第1+r 项为:),0(1Z r n r b aC T r rn r n r ∈≤≤=-+.⑶二项式系数的性质.①在二项展开式中与首未两项“等距离”的两项的二项式系数相等; ②二项展开式的中间项二项式系数.....最大. I. 当n 是偶数时,中间项是第12+n 项,它的二项式系数2nn C 最大;II. 当n 是奇数时,中间项为两项,即第21+n 项和第121++n 项,它们的二项式系数2121+-=n nn n C C最大.③系数和:附:一般来说b a by ax n ,()(+为常数在求系数最大的项或最小的项...........时均可直接根据性质二求解. 当11≠≠b a 或时,一般采用解不等式组11111(,+-+-+⎩⎨⎧≤≤⎩⎨⎧≥≥k k k kk k k k k k T A A A A A A A A A 为或的系数或系数的绝对值的办法来求解. ⑷如何来求n c b a )(++展开式中含r q p c b a 的系数呢其中,,,N r q p ∈且n r q p =++把n n c b a c b a ])[()(++=++视为二项式,先找出含有rC 的项r r n rnC b a C -+)(,另一方面在rn b a -+)(中含有q b 的项为q p q r n q q r n q r n b a C b a C ----=,故在n c b a )(++中含r q p c b a 的项为r q p q r n r n c b a C C -.其系数为r r q p n p n q r n r n C C C p q r n q r n q r n r n r n C C --==---⋅-=!!!!)!(!)!()!(!!. 2. 近似计算的处理方法.当a 的绝对值与1相比很小且n 不大时,常用近似公式na a n +≈+1)1(,因为这时展开式的后面部分nn n n n aC a C a C +++ 3322很小,可以忽略不计;类似地,有na a n -≈-1)1(但使用这两个公式时应注意a 的条件,以及对计算精确度的要求.高中数学第十一章-概率考试内容:随机事件的概率.等可能性事件的概率.互斥事件有一个发生的概率.相互独立事件同时发生的概率.独立重复试验.考试要求:1了解随机事件的发生存在着规律性和随机事件概率的意义.2了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率;3了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率.4会计算事件在n 次独立重复试验中恰好发生κ次的概率.。
排列组合、二项式定理(附答案)

排列组合、二项式定理(附答案)第六章:排列组合与二项式定理一、考纲要求:1.掌握加法原理和乘法原理,能够用这两个原理解决简单的问题。
2.理解排列和组合的意义,掌握排列数和组合数的计算公式以及组合数的性质,并能够用它们解决简单的问题。
3.掌握二项式定理和二项式系数的性质,并能够用它们计算和论证简单的问题。
二、知识结构:加法原理和乘法原理排列和组合排列数和组合数的公式和应用二项式定理和二项式系数的性质和应用三、知识点、能力点提示:1.加法原理和乘法原理是排列组合的基础,掌握这两个原理为处理排列和组合中的问题提供了理论根据。
2.排列和排列数公式是中学代数中的独特内容,研究对象和研究方法与前面掌握的知识不同,解题方法比较灵活。
历届高考主要考查排列的应用题,通常是选择题或填空题。
3.组合和组合数公式是历届高考中常出现的题型,主要考查排列组合的应用题,通常是选择题或填空题。
组合数有两个性质:对称性和递推关系。
4.二项式定理和二项式系数的性质是高中数学中的重要内容,主要考查计算和论证方面的问题,通常是选择题或证明题。
3a4的值为(。
)A.4B.6C.8D.10解:根据二项式定理,展开(2x+3)的四次方可得:2x+3)4= C412x)4+ C422x)3(3)+ C432x)2(3)2+ C442x)(3)3+ C453)416x4+96x3+216x2+216x+81将(2x+3)表示成a+a1x+a2x+a3x+a4x的形式,可得:a+a1x+a2x+a3x+a4x= C4a4+ C41a3x+ C42a2x2+ C43ax3+ C44x416a4+96a3x+216a2x2+216ax3+81x4 由此可得:a+a2a3a4C4a4+ C42a2+ C43a+ C4416a4+216a2+81又因为(2x+3)的系数为1,所以a=2,代入上式可得:a+a2a3a416(2)4+216(2)2+81=8故选C.例21:有两排座位,第一排有3个座位,第二排有5个座位,8名学生入座(每人一个座位),则不同座法的总数是多少?解:对于8个人的任意一个排列均可“按先前排从左到右再后排从左到右”的次序入座,所以应有$P_8$种不同的入座法。
高一数学排列组合二项式定理及其应用分析总结归纳

02
二项式定理及其应用
二项式定理的展开式
二项式定理:(a+b)^n = a^n + n*a^(n-1)*b + n*(n-1)/2*a^(n-2)*b^2 + ... + b^n 展开式特点:每一项的系数是n的阶乘除以(n-k)的阶乘 展开式应用:求解组合问题、概率问题、数列问题等 展开式计算:利用公式进行计算,注意系数和指数的变化规律
多项式定理的应用:在数学、 物理、工程等领域有广泛应用
多项式定理的证明:通过数学 归纳法进行证明
多项式定理的推广:将二项式 定理推广到更高阶的多项式
二项式定理的扩展形式
二项式定理的推广:从n次方推广到任意次方 二项式定理的拓展:从整数推广到实数 二项式定理的推广和拓展:从二项式定理推广到多项式定理 二项式定理的推广和拓展:从二项式定理推广到组合定理
用
期望值:二项 式定理在期望 值计算中的应
用
方差:二项式 定理在方差计
算中的应用
在统计学中的应用
概率计算:二项式定理可以用于计算概率,例如计算抛硬币、掷骰子等事件的概率。 统计推断:二项式定理可以用于统计推断,例如进行假设检验、参数估计等。 统计模型:二项式定理可以用于建立统计模型,例如建立线性回归模型、逻辑回归模型等。 数据分析:二项式定理可以用于数据分析,例如进行数据清洗、数据可视化等。
计算期望:二项 式定理可以用来 计算期望,如 E(X) = Σ[k * P(X=k)]
在代数中的应用
求解多项式方 程:利用二项 式定理求解多
项式方程
求函数值:利 用二项式定理
求函数值
求极限:利用 二项式定理求
极限
求导数:利用 二项式定理求
(完整版)排列组合与二项式定理

8、九张卡片分别写着数字0,1,2,…,8,从中取出三张排成一排组成一个三位数,如果6可以当作9使用,问可以组成多少个三位数? 【参考答案】可以分为两类情况:① 若取出6,则有()211182772P C C C +种方法; ②若不取6,则有1277C P 种方法.根据分类计数原理,一共有()211182772P C C C ++1277C P =602种方法. 9、从6台原装计算机和5台组装计算机中任意选取5台,其中至少有原装与组装计算机各两台,则不同的取法有 种.【参考答案】由分析,完成第一类办法还可以分成两步:第一步在原装计算机中任意选取2台,有26C 种方法;第二步是在组装计算机任意选取3台,有35C 种方法,据乘法原理共有3526C C ⋅种方法.同理,完成第二类办法中有2536C C ⋅种方法.据加法原理完成全部的选取过程共有+⋅3526C C 3502536=⋅C C 种方法. 经典例题:例1.四面体的顶点和各棱中点共10个点,在其中取4个不共面的点,不同取法共有( )A .150种B. 147种C. 144种D. 141种【答案】取出的四个点不共面的情况要比取出的四个点共面的情况复杂,可采用间接法,先不加限制任取四点,再减去四面共点的取法.在10个点中任取4点,有410C 种取法,取出的4点共面有三类 第一类:共四面体的某一个面,有446C 种取法;第二类:过四面体的一条棱上的三点及对棱的中点,如图中的平面ABE ,有6种取法; 第三类:过四面体的四条棱的中点,面与另外两条棱平行,如图中的平面EFGM ,共有3个. 故取4个不共面的点的不同取法共有410C -(446C +6+3)=141,因此选D例2. 一天要排语文、数学、英语、生物、体育、班会六节课(上午四节,下午二节),要求上午第一节不排体育,。
排列组合与概率原理及解题技巧

排列组合与概率原理及解题技巧一、基础知识1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。
2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。
3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,mn A =n(n-1)…(n-m+1)=)!(!m n n -,其中m,n ∈N,m ≤n,注:一般地0n A =1,0!=1,nn A =n!。
4.N 个不同元素的圆周排列数为nA n n =(n-1)!。
5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。
从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用mn C 表示:.)!(!!!)1()1(m n m n m m n n n C m n -=+--=6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n nm n m n C C C ;(3)kn k n C C kn =--11;(4)n nk k n n nnnC C C C 2010==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)kn m n m k k n C C C --=。
二项式定理及其应用

二项式定理及其应用二项式定理是数学中非常基础的一个定理,它的重要性不亚于勾股定理和皮克定理。
在高中数学学习中,学生一定会接触到它,它被广泛应用于高中数学乃至进一步的数学学习中。
下面我们就来介绍一下什么是二项式定理以及它的应用。
一、二项式定理的定义二项式定理又称为二项式展开定理,是可以展开(a+b)^n的定理。
其中a、b为任意数,n为正整数。
它的一般形式为:(a+b)^n = C(n,0)·a^n·b^0 + C(n,1)·a^(n-1)·b^1 + … + C(n,k)·a^(n-k)·b^k + … + C(n,n)·a^0·b^n其中C(n,k)表示组合数。
二、组合数的定义组合数是数学中一个非常重要的概念,它的作用非常广泛,不仅仅在二项式定理中使用,还在概率论、统计学、组合数学等多个领域中都有应用。
组合数C(n,k)表示从n个不同元素中取出k个元素的组合数,公式为:C(n,k) = n!/(k!(n-k)!),其中0≤k≤n,n!表示n的阶乘。
三、二项式定理的应用1.幂的展开(a+b)^n = C(n,0)·a^n·b^0 + C(n,1)·a^(n-1)·b^1 + … + C(n,k)·a^(n-k)·b^k + … + C(n,n)·a^0·b^n中,幂的展开就是应用二项式定理的一个实际应用。
例如:(2x+3)^3 = C(3,0)·2^3·3^0 + C(3,1)·2^2·3^1 + C(3,2)·2^1·3^2 + C(3,3)·2^0·3^3 = 8x^3+36x^2+54x+272.排列组合排列组合问题是组合数学中的一个重要分支,可以通过二项式定理来解决。
排列、组合与二项式定理(理)

二项式定理的未来发展方向
理论完善
随着数学的发展,二项式定理的理论体系将不断完善,新的证明方 法和技巧将不断涌现。
应用拓展
随着各学科的发展,二项式定理的应用领域将不断拓展,特别是在 大数据处理、人工智能和量子计算等领域。
排列数的计算
01
二项式定理也可以用来计算排列数,特别是当排列数的上标和
下标较大时,使用二项式定理可以简化计算过程。
排列数的性质
02
通过二项式定理,我们可以推导出排列数的性质,如排列数的
增减性等。
排列数的递推关系
03
利用二项式定理,我们可以得到排列数的递推关系,从而更方
便地计算排列数。
利用二项式定理解决实际问题
互异性
有序性
排列中的元素顺序是确定的,不能随 意调换。
排列中的元素没有重复出现的情况。
组合的定义与性质
组合的定义
从n个不同元素中取出m个元素 (0<m≤n),不考虑顺序,称为 从n个不同元素中取出m个元素的
一个组合。
互异性
组合中的元素没有重复出现的情况。
无序性
组合中的元素顺序不影响其组合结 果。
排列与组合的关系
利用组合数的性质,通过数学推导推导出二项式定理的展开式。
利用多项式乘法推导
将$(a+b)^n$展开成多项式,然后利用多项式乘法的性质推导出二 项式定理的展开式。
利用幂的性质推导
利用幂的性质,将$(a+b)^n$展开成幂的形式,然后通过数学推导 推导出二项式定理的展开式。
04 二项式定理的应用举例
利用二项式定理计算组合数
二项式定理与组合数的计算

二项式定理与组合数的计算二项式定理是高中数学中的一个重要定理,它与组合数的计算密切相关。
在数学中,组合数是一种用于计算选择的方法,它在概率论、统计学和组合数学中都有广泛的应用。
本文将探讨二项式定理与组合数的计算方法,并且通过一些实例来加深理解。
一、二项式定理的基本概念二项式定理是指对于任意实数a和b以及非负整数n,有如下等式成立:(a + b)^n = C(n,0) * a^n * b^0 + C(n,1) * a^(n-1) * b^1 + C(n,2) * a^(n-2) * b^2 + ... + C(n,n-1) * a^1 * b^(n-1) + C(n,n) * a^0 * b^n其中C(n,k)表示从n个元素中选取k个元素的组合数,也可以表示为n个元素中取k个元素的方式数。
二、组合数的计算方法组合数的计算方法有多种,常见的有排列组合法、杨辉三角法和递推法。
1. 排列组合法排列组合法是一种直观的计算组合数的方法。
对于从n个元素中选取k个元素的组合数,可以通过以下公式计算:C(n,k) = n! / (k! * (n-k)!)其中n!表示n的阶乘,即n! = n * (n-1) * (n-2) * ... * 1。
2. 杨辉三角法杨辉三角是一种特殊的数列,它可以用来计算组合数。
杨辉三角的第n行第k 个数等于C(n,k),可以通过以下规律进行计算:- 第n行有n+1个数;- 第n行的第一个数和最后一个数都是1;- 第n行的第k个数等于第n-1行的第k-1个数和第k个数之和。
通过杨辉三角法,可以方便地计算组合数,尤其适用于大规模的组合数计算。
3. 递推法递推法是一种基于递推关系计算组合数的方法。
对于从n个元素中选取k个元素的组合数,可以通过以下递推关系计算:C(n,k) = C(n-1,k-1) + C(n-1,k)这个递推关系的含义是,从n个元素中选取k个元素的组合数等于从n-1个元素中选取k-1个元素的组合数加上从n-1个元素中选取k个元素的组合数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列数、组合数及二项式定理整理慈济中学全椒 刘1、排列数公式m n A =)1()1(+--m n n n =!!)(m n n -.(n ,m ∈N*,且m n ≤).2、排列恒等式(1)1(1)mm nn A n m A-=-+;(2)1mmn n n A A n m -=-;(3)11m m n n A nA --=; (4)11n n n n n n nA A A ++=-;(5)11m m m n n nA A mA -+=+.(6) 1!22!33!!(1)!1n n n +⋅+⋅++⋅=+-.3、组合数公式m n C =m n m m A A =m m n n n ⨯⨯⨯+-- 21)1()1(=!!!)(m n m n -⋅(n ∈N*,m N ∈,且m n ≤).4、组合数的两个性质 (1)m n C =mn nC - ; (2) m n C +1-m n C =m n C 1+.5、排列数与组合数的关系m mn nA m C =⋅! .6、二项式定理:011()()n n n r n r rn nn n n n a b C a C a b C a b C b n N --*+=+++++∈【注】:1.基本概念:①二项式展开式:右边的多项式叫做()na b +的二项展开式。
②二项式系数:展开式中各项的系数rn C (0,1,2,,)r n =⋅⋅⋅. ③项数:共(1)r +项,是关于a 与b 的齐次多项式 ④通项:展开式中的第1r +项rn rr n C a b -叫做二项式展开式的通项。
用1r n r rr n T C a b -+=表示。
2.注意关键点:①项数:展开式中总共有(1)n +项。
②顺序:注意正确选择a ,b ,其顺序不能更改。
()na b +与()nb a +是不同的。
③指数:a 的指数从n 逐项减到0,是降幂排列。
b 的指数从0逐项减到n ,是升幂排列。
各项的次数和等于n .④系数:注意正确区分二项式系数与项的系数,二项式系数依次是012,,,,,,.r nn n n n n C C C C C ⋅⋅⋅⋅⋅⋅项的系数是a 与b 的系数(包括二项式系数)。
3.常用的结论:令1,,a b x == 0122(1)()n r r n nn n n n n x C C x C x C x C x n N *+=++++++∈ 令1,,a b x ==- 0122(1)(1)()n r r n n n n n n n n x C C x C x C x C x n N *-=-+-+++-∈4.性质:①二项式系数的对称性:与首末两端“对距离”的两个二项式系数相等,即0n n n C C =,···1k k n n C C -=②二项式系数和:令1a b ==,则二项式系数的和为0122r nn n n n n n C C C C C ++++++=, 变形式1221r n n n n n n C C C C +++++=-。
③奇数项的二项式系数和=偶数项的二项式系数和:在二项式定理中,令1,1a b ==-,则0123(1)(11)0n n n n n n n n C C C C C -+-++-=-=,从而得到:0242132111222r r n n n n n n n n n C C C C C C C +-++⋅⋅⋅++⋅⋅⋅=++++⋅⋅⋅=⨯=④奇数项的系数和与偶数项的系数和:0011222012012001122202121001230123()()1, (1)1,(1)n n n n n nnn n n n n n n n n n n n n n n n n n n n n a x C a x C a x C a x C a x a a x a x a x x a C a x C ax C a x C a x a x a x a x a x a a a a a a x a a a a a a ----+=++++=+++++=++++=++++=++++=+---------=--+-++=-----令则①令则024135(1)(1),()2(1)(1),()2n nn n nn a a a a a a a a a a a a ----++-++++=+---+++=②①②得奇数项的系数和①②得偶数项的系数和⑤二项式系数的最大项:如果二项式的幂指数n 是偶数时,则中间一项的二项式系数2n nC 取得最大值。
如果二项式的幂指数n 是奇数时,则中间两项的二项式系数12n nC -,12n nC+同时取得最大值。
⑥系数的最大项:求()na bx +展开式中最大的项,一般采用待定系数法。
设展开式中各项系数分别为121,,,n A A A +⋅⋅⋅,设第1r +项系数最大,应有112r rr r A A A A +++≥⎧⎨≥⎩,从而解出r 来。
7、组合数公式的应用:公式1m mc +m m c 1++m m c 2++……+m k m c +=11+++m k m c 此公式可由下面方法推得 从1++n m 个不同元素中取出m 个不同元素的组合数为11+++m k mc 先将其分为1++n m 个元素中不含其中一个元素1a 的和含元素1a 的两类而这两类的组合数分别为1++m kmc 与m kmc +即得11+++m k mc =1++m kmc +m kmc +,依此再将组合数1++m kmc 分为两类可得1++m km c =11+-+m k m c +m k m c 1-+,不断将组合数上标为1+m 的项进行如此分类即得公式1。
公式20mc .k n c +1m c .1-k n c +2m c .2-k n c +……+m m c m k n c -=kn m c + 此公式可由下面方法推得。
从放在一个盒中的m 个不同黑球与n 个不同白球中任取出k 的球的方法种数为kn m c +,将取出的k 个球按所含白球数分类,分为含白球数为0个,1个,2个….k 个共k+1类,取法种数分别为0m c .kn c ,1m c .1-k n c ,2m c .2-k n c ,……,mmc mk nc -即得公式2。
下面举例说明以上两个公式在数列求和方面的应用。
例1n s =1×2+2×3+3×4+….. +n ×(n+1) 求n s解:1×2+2×3+3×4+….. +n ×(n+1)= 2(22c +23c +24c +…+21+n c ) ∴n s =232+n c =3)1)(2(nn n ++例2 求n s =12+22+32+……+n 2解:∵21+n c =2)1(n n + ∴221+n c =n 2+n ∴2(22c +23c +24c +…+21+n c )=n s +2)1(n n +∴232+n c =n s +2)1(n n + 得3)1)(2(n n n ++=n s +2)1(n n +整理得n s =6)12)(1(++n n n例3求n s =13+23+33+……+n 3解:∵32+n c =6)1)(2(n n n ++ ∴632+n c =n 3+3n 2+2n6(33c +34c +35c +…+32+n c )=n s +36)12)(1(++n n n +22)1(n n +∴643+n c =n s +36)12)(1(++n n n +22)1(n n + 解出n s 并整理得n s =4)1(22n n + 用类似的方法可求出a n =n 4,a n =n 5,…的和。
例4 一盒内有大小相同的黑球M 个,白球N 个,从中任取m 个球(m ≤M ,m ≤N ),求含有白球的个数ξ的数学期望。
∴E ξ=mNM c +1(11-m M N c c +222-m M N c c +…+(m-1)11M m N c c -+m 0M m N c c )E ξ=m NM c N+(N 111-m M N c c +N 222-m M N c c +…+N m 1-11M m N c c -+Nm 0M m N c c ) E ξ=mNM c N+(11--m M N c c +211--m M N c c +…+121M m N c c --+011M m N c c --)(∵Nm m N c =11--m N c ) ∴E ξ=m NM c N+11--+m M N c =mNM c N+M N m +mMN c +=NM Nm +(此为超几何分布的数学期望) 8、二项式定理的应用:题型一:二项式定理的逆用;例:12321666 .n n n n n n C C C C -+⋅+⋅++⋅=解:012233(16)6666n nn n n n n n C C C C C +=+⋅+⋅+⋅++⋅与已知的有一些差距,123211221666(666)6nn n n n n n n n n n C C C C C C C -∴+⋅+⋅++⋅=⋅+⋅++⋅ 0122111(6661)[(16)1](71)666nn n n n n n n C C C C =+⋅+⋅++⋅-=+-=-练:1231393 .n nn n n n C C C C -++++=解:设1231393n nn n n n n S C C C C -=++++,则122330122333333333331(13)1n n n nn n n n n n n n n n n S C C C C C C C C C =++++=+++++-=+-(13)14133n n n S +--∴==题型二:利用通项公式求n x 的系数;例:在二项式n的展开式中倒数第3项的系数为45,求含有3x 的项的系数? 解:由条件知245n nC -=,即245n C =,2900n n ∴--=,解得9()10n n =-=舍去或,由2102110343411010()()r r rrrr r T C x x C x--+--+==,由题意1023,643r r r --+==解得, 则含有3x 的项是第7项6336110210T C x x +==,系数为210。
练:求291()2x x-展开式中9x 的系数? 解:291821831999111()()()()222r r r r r r r rr r r T C x C x x C x x ----+=-=-=-,令1839r -=,则3r =故9x 的系数为339121()22C -=-。